reactive distillation

36
Modeling of Reactive Distillation Modeling of Reactive Distillation John Schell Dr. R. Bruce Eldridge Dr. Thomas F. Edgar

Upload: zorro21072107

Post on 01-Dec-2015

107 views

Category:

Documents


4 download

DESCRIPTION

Reactive Distillation

TRANSCRIPT

Page 1: Reactive Distillation

Modeling of Reactive Distillation

Modeling of Reactive Distillation

John Schell

Dr. R. Bruce Eldridge

Dr. Thomas F. Edgar

Page 2: Reactive Distillation

OutlineOutline

• Overview of Reactive Distillation

• Project Overview– Tower Design

– Steady-State Models

– Dynamic Models and Control

• Individual Work– Column Design and

Operation

– Validation of Models

– Preliminary Dynamics and Control Studies

• Future Work

Page 3: Reactive Distillation

Reactive DistillationReactive Distillation

• Homogeneous or Heterogeneous/ Catalytic Distillation

• First Patents in 1920s• Applied in 1980s to

Methyl Acetate• Common applications:

– Ethylene Glycol– MTBE, TAME, TAA

Page 4: Reactive Distillation

Favorable ApplicationsWesterterp (1992)

Favorable ApplicationsWesterterp (1992)

• Match between reaction and distillation temperatures

• Difference in relative volatility between product and one reactant

• Fast reaction not requiring a large amount of catalyst

• Others: liquid phase reaction, azeotrope considerations,exothermic reactions

Page 5: Reactive Distillation

Subawalla Approach (Dissertation)Subawalla Approach (Dissertation)

1. Decide on a Pre-reactor- Rate of reaction

- >1/2 of initial reaction rate at 80% of equilibrium conversion

2. Pressure

3. Location of Zone

4. Estimate Catalyst- Isothermal Plug-flow reactor

with ideal separators

5. Design Tower- Size reaction zone

• Catalyst requirements• Column diameter

- Determine reactant feed ratio

- Feed location- Reflux ratio

• High reflux rate - 2-3 times non-rxtive column

- Diameter• Through-put• Catalyst density

Page 6: Reactive Distillation

Project Overview

• Design and Construct TAME Column

• Validate Steady State Models

• Develop Dynamic Models

• Test Control Algorithms

Page 7: Reactive Distillation

TAME ChemistryTAME Chemistry

• Exothermic• Equilibrium Limited

– 45-62% at 50-80 C

• Azeotropes• Catalyst: Amberlyst-15

• Methanol can inhibit rates.

• Rihko and Krause (1995)

MeOHSa MeOH Sa

TAMES a KB1

KB2

MeOHSa 2M1B

TAMES a KB3

KB4

MeOHSa 2M2B

TAMES a TAME Sa

2M2BKB5

KB62M1B

Sa is a vacant adsorption site.

Page 8: Reactive Distillation

Pilot Plant (SRP)Pilot Plant (SRP)

• 0.152-meter diameter column

• Finite reflux

• 7 meters of packing in 3 sections

• Fisher DeltaV Control

• Koch’s Katamax packing

Makeup MeOH

C5 from Cat

Cracker Pre-Reactor

ReactiveDistillation

Column

Mixing Tank

Back - CrackingReactor

Recycle

TAME

Unreacted C5, MeOH

3.7 atm

Page 9: Reactive Distillation

SRP Pilot PlantSRP Pilot Plant

•Koch – Spool section, Katamax, Catalyst

•SRP - $145K

Page 10: Reactive Distillation

Steady-State MultiplicitySteady-State Multiplicity

• Bravo et al. (1993)– Observed multiple steady-states in TAME CD

• Hauan et al. (1997)– dynamic simulation provided evidence in MTBE

system

• Nijuis et al. (1993)– found multiplicity in MTBE system

• Jacobs and Krishna (1993)– found multiplicity in MTBE system

Page 11: Reactive Distillation

Steady-State Distillation ModelsSteady-State Distillation Models

Trayed Tower:

Equilibrium Model

Rate Model

Packed Tower:

Continuous Model

ii

jijijjij

jijjij

Kxy

RyVxL

yVxL

,,,

1,11,1

Li

Vi NN

kkLi

Lii RAANLx

z

Page 12: Reactive Distillation

TAME Reaction RatesTAME Reaction Rates

Comparison of Reaction Rates

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stage (Condenser=1)

Rea

ctio

n R

ates

(lb

mol/h

r)

RADFRAC

RateFRAC

Page 13: Reactive Distillation

TAME Concentration ProfileTAME Concentration Profile

Comparison of TAME Profiles

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stage (Condenser=1)

Mole

Fra

ctio

n

RADFRAC

RateFRAC

Page 14: Reactive Distillation

Effective Reaction RateEffective Reaction Rate

• Traditionally simulations use intrinsic reaction rate.

• Effective rate is a function of intrinsic rate and diffusion limitations. Molefraction

Eff

ecti

ve R

ate

Page 15: Reactive Distillation

Control for TAME TowerControl for TAME Tower

• Fisher DeltaV– Visual Basic

– Matlab, Visual Studio

• State Estimation– Temperature Profiles

– Online Analyzers

• Control Algorithms– PID

– Linear MPC

– Non-Linear MPC

Page 16: Reactive Distillation

Individual Work

• Design and Construct RD Column for Novel System

• Steady State Model Validation

• Dynamic Models and Control Study

Page 17: Reactive Distillation

Novel System

• Kinetic Reaction– Not Equilibrium limited

– Equilibrium Isomers

• Exothermic

• Kinetics from CSTR Experiments

• Feed is dominated by inerts

• Replace hazardous heterogeneous catalyst

A + B C1

C1 C3C2Isomer Distribution for Reactive Systems

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5

Isomer

Mo

le %

Plug-flow Reactor

CD Column

Page 18: Reactive Distillation

Novel System DataNovel System DataStandard Conditions at 50 psig Over 26 Experiments

OverheadVaporTemp

DA-220-1 DA-220-2 DA-220-3 DA-220-4 TI-215 DA-210-1 DA-210-2 DA-210-3 DA-210-4 ReboilerTemp

Te

mp

era

ture

(C

)

0

5

10

15

20

25

High

Low

Average

Standard Deviation

Reactive Zone

Page 19: Reactive Distillation

Novel System DataNovel System DataProfiles for 35 psig at Standard Conditions

OverheadVapor Temp

DA-220-1 DA-220-2 DA-220-3 DA-220-4 TI-215 DA-210-1 DA-210-2 DA-210-3 DA-210-4 ReboilerTemp

Tem

per

atu

re (

C)

0

5

10

15

20

25

Hi

Lo

Average

Stnd Dev

Reactive Zone

Page 20: Reactive Distillation

Simulation Validation - 50 psigSimulation Validation - 50 psigColumn Data and Simulation for Standard Flows at 50 psig

0 5 10 15 20 25

Tem

per

atu

re (

C)

Page 21: Reactive Distillation

Simulation Validation – 35 psi

Simulation and Data for Standard Flows at 35 psig

0 5 10 15 20 25

Tem

per

atu

re (

C)

Page 22: Reactive Distillation

Effect of PressureEffect of Varying Pressure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Tem

per

atu

re (

C)

25 psig

35 psig

50 psig

75 psig

Page 23: Reactive Distillation

Effect of Varying Feed RateEffect of Varying Reactant Feed Rates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Tem

per

atu

re (

C)

25 g/min A and 10 g/min B

75 g/min A and 10 g/min B

100 g/min A and 10 g/min B

150 g/min A and 20 g/min B

Page 24: Reactive Distillation

Dynamic Modeling and Control Study

• Aspen Custom Modeler/ Aspen Dynamics– Validate Steady State

Solution

– Validate Dynamic Studies

• Develop Control Algorithms– PID

– Linear MPC

– NLMPC

Page 25: Reactive Distillation

Aspen Custom ModelerAspen Custom Modeler• Formerly Speed-Up

and DynaPlus• Equation Solver• Aspen Properties Plus• Tear Variables

automatically selected• Solves Steady-State

and Dynamic• Dynamic Events and

Task Automation

1 2 3 4 5 6 7 8 9 10

1 X X

2 X X

3 X X T T

4 X X T T

5 X X T T

6 X X T T

7 T T T T T T

8 T T T T T T

9 X

10 X

Equations vs. Variables

Page 26: Reactive Distillation

Validation of Dynamic SimulatorValidation of Dynamic SimulatorComparison of ACM and Aspen Plus Radfrac Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Tem

per

atu

re (

C)

ACM w/Tear

Aspen Plus

Page 27: Reactive Distillation

Feed Disturbance With Manual ControlFeed Disturbance With Manual Control

Stream Results

Time Hours0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

Pre

ssur

e N

/m2

Tem

pera

ture

K

Mol

ar F

low

rat

e km

ol/s

3500

0036

0000

520

540

560

2e-5

2.5e

-53e

-53.

5e-5

C - Production

Time Hours0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

B-F

eed

Rat

e

B-P

rodu

ctC

1.5e

-52e

-52.

5e-5

3e-5

-0.0

50

0.05

0.1

0.15

0.2

Page 28: Reactive Distillation

Control of Reactive DistillationControl of Reactive Distillation

• Configurations– DB

– LV

– BV, LB…

• Goals– Conversion

– Product Purity

F

R

D

B

VL

Duty

Page 29: Reactive Distillation

Control of Reactive DistillationControl of Reactive Distillation

• Bartlett and Wahnschafft (1997)– Simple Feed-Forward/

Feed-Back PI Scheme

• Sneesby et al. (1999)– Two point control with

linear conversion estimator

• Kumar and Daoutidis (1999)– Showed linear

controllers unstable for ethylene glycol systems

– Demonstrated possible Nonlinear MPC scheme

Page 30: Reactive Distillation

Dependency of Conversion on Reboiler Duty and Reflux RatioDependency of Conversion on Reboiler Duty and Reflux Ratio

Page 31: Reactive Distillation

Conversion vs Reboiler DutyConversion vs Reboiler Duty

Conversion of Olefin for Molar Reflux Ratio of 1.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reboiler Duty (MMkcal/hr)

Convers

ion

Page 32: Reactive Distillation

Single Tray Conversion Estimation

Dependency of Conversion on Temperature

0

50

100

150

200

250

300

350

400

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Conversion

Tem

per

ature

(C

)

T8

T6

Single Tray Conversion Estimation

Page 33: Reactive Distillation

Single Tray Purity Estimation

Purity of Alkylate

230

235

240

245

250

255

260

265

0.00

000E

+00

5.00

000E

-08

1.00

000E

-07

1.50

000E

-07

2.00

000E

-07

2.50

000E

-07

3.00

000E

-07

3.50

000E

-07

4.00

000E

-07

4.50

000E

-07

5.00

000E

-07

Benzene Concentration

Tem

per

ature

(C

) T6

T7

T8

Single Tray Purity Estimation

Page 34: Reactive Distillation

Feed Disturbance With Manual ControlFeed Disturbance With Manual Control

Stream Results

Time Hours0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

Pre

ssur

e N

/m2

Tem

pera

ture

K

Mol

ar F

low

rat

e km

ol/s

3500

0036

0000

520

540

560

2e-5

2.5e

-53e

-53.

5e-5

C - Production

Time Hours0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

B-F

eed

Rat

e

B-P

rodu

ctC

1.5e

-52e

-52.

5e-5

3e-5

-0.0

50

0.05

0.1

0.15

0.2

Page 35: Reactive Distillation

Feed Disturbance with Simple PID Control

Feed Disturbance with Simple PID Control

S trea m R esu lts

T im e H o u rs

0 0 .2 5 0 .5 0 .7 5 1 1 .2 5 1 .5 1 .7 5 2 2 .2 5 2 .5 2 .7 5 3

Pressu

re N/m

2

Tem

pera

ture K

Mo

lar F

low

rate k

mo

l/s

37

00

00

38

00

00

52

05

40

56

05

80

1.5

e-52

e-52

.5e-5

3e-5

3.5

e-5

C-Production

Time Hours0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

B-F

eed

Rat

e

B-P

rodu

ctC

1.5e

-52e

-52.

5e-5

3e-5

-0.0

50

0.05

0.1

0.15

Page 36: Reactive Distillation

Conclusion and Future WorkConclusion and Future Work

• TAME Tower– Collect Data– Validate Models– Developing Advanced

Models– Improvements

• New chemical system• Adjust for better dynamic

studies

• Novel System– Validate Dynamic Models– Develop Control

Algorithms

Comparison of Reaction Rates

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stage (Condenser=1)

Rea

ctio

n R

ates

(lb

mol/h

r)

RADFRAC

RateFRAC

C-Production

Time Hours0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

B-F

eed

Rat

e

B-P

rodu

ctC

1.5e

-52e

-52.

5e-5

3e-5

-0.0

50

0.05

0.1

0.15