reactive polymers: design considerations, novel...

12
Pure & Appl. Chem., Vol. 60, No. 3, pp. 353-364, 1988. Printed in Great Britain. @ 1988 IUPAC Reactive polymers: design considerations, novel preparations and selected applications in organic chemistry Jean M.J. Frkchet", Graham D. Darling, Shinichi Itsuno, Pei-Zhi Lu, Marina Vivas de Meftahi, and Wesley A. Rolls, Jr. Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N-9B4, Canada. Abstract - Crosslinked reactive polymers with novel structures have been prepared from the corresponding monomers or by newly developed chemical modification reactions. These include the preparation of polymers with two or three carbon spacer groups between backbone and functionality, the first preparation of a Grignard reagent on an insoluble polymer, and some new copper mediated chemical modification reactions resulting in C-C bond formation. Novel applications of these polymers in asymmetric syntheses, regenerable polymeric protecting groups, supernucleophilic catalysts, polymeric separation media for HPLC, as well as aids in the determination of reaction mechanisms, have been investigated. Microenvironment effects within the polymer beads are shown t o be important when considering the use of an insoluble reactive polymer, INTRODUCTION The first synthetic reactive polymers of some significance were undoubtedly the ion-exchange resins [l] first prepared as early as 1935 [2] from phenol-formaldehyde condensates, then adapted in the early 1950's t o the more suitable styrene-divinylbenzene structures [3,4] which are still in use today. Despite their great importance, the impact of ion-exchange resins on the specialized field of reactive polymers is overshadowed by Merrifield's deve- lopment of the solid-phase method of synthesis in the early 1960's [5]. Merrifield's concept not only revolutionized [6] the field of peptide synthesis for which it had been developed, but also spread quickly to other areas of organic synthesis, catalysis, separation science, etc. Interestingly, the development of numerous new polymeric reagents, catalysts, and supports, has resulted in a better awareness of the fact that polymers could be designed to have special reactivities and this, in turn, has contributed to a new interest in reactive polymers for application in areas not directly related to synthesis, catalysis, or separation science. This report will make no attempt to broad coverage of the field of reactive polymers; indeed, several books [7-91 and numerous other reviews have adequately covered most of the various synthetic or catalytic applications of the field. Instead this will focus mainly on the authors' own recent experiences and will present a limited and perhaps somewhat biased view of that part of the field of reactive polymers which is of closest interest to the synthetic organic or industrial chemist. PREPARATION OF POLYMERIC REAGENTS, CATALYSTS, AND SUPPORTS Although some very interesting results have been obtained in applications involving soluble polymers [ 101 the discussion below will focus almost exclusively on the preparation of crosslinked reactive resins, macroporous or gel-type. Gel-type polymers, such as the 1-279 crosslinked (chloromethy1)polystyrene used by Merrifield [ 51, have no permanent pores but swell extensively in some appropriately chosen solvents. Functional groups attached to these polymers have high reactivities, often comparable to those of analogous small molecules in lution. Similarly, as the chains have excellent mobilities in the swollen state, their 89C-NMR spectra can be measured easily albeit with some line broadening, under conventional conditions [ll]. In contrast, more highly crosslinked macroporous resins prepared by suspen- sion polymerization in the presence of porogens [12,13] often have high porosities and high surface areas which make them more suitable in certain applications such as those involving flow-systems prevalent in the area of polymer-based separation media. A definite drawback of macroporous resins when compared to swellable gels, is their lower reactivity and relatively poor mechanical properties which often preclude their use. Note : address correspondence to this author at the Department of Chemistry, Cornell University, Ithaca, New York 14853-1301, U.S.A. 353

Upload: others

Post on 27-Jun-2020

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

Pure & Appl. Chem., Vol. 60, No. 3, pp. 353-364, 1988. Printed in Great Britain. @ 1988 IUPAC

Reactive polymers: design considerations, novel preparations and selected applications in organic chemistry J e a n M.J. Frkchet" , Graham D. D a r l i n g , S h i n i c h i I t s u n o , Pei-Zhi Lu, Mar ina V i v a s d e M e f t a h i , and Wesley A. R o l l s , Jr.

Department of Chemis t ry , U n i v e r s i t y of Ottawa, Ottawa, O n t a r i o , K1N-9B4, Canada.

A b s t r a c t - C r o s s l i n k e d r e a c t i v e polymers w i t h n o v e l s t r u c t u r e s h a v e been p r e p a r e d from t h e c o r r e s p o n d i n g monomers o r by newly d e v e l o p e d c h e m i c a l m o d i f i c a t i o n r e a c t i o n s . These i n c l u d e t h e p r e p a r a t i o n of po lymers w i t h two o r t h r e e c a r b o n s p a c e r groups between backbone and f u n c t i o n a l i t y , t h e f i r s t p r e p a r a t i o n of a G r i g n a r d r e a g e n t on a n i n s o l u b l e polymer , and some new copper media ted chemica l m o d i f i c a t i o n r e a c t i o n s r e s u l t i n g i n C-C bond f o r m a t i o n . Novel a p p l i c a t i o n s of t h e s e p o l y m e r s i n asymmetr ic s y n t h e s e s , r e g e n e r a b l e p o l y m e r i c p r o t e c t i n g g r o u p s , s u p e r n u c l e o p h i l i c c a t a l y s t s , p o l y m e r i c s e p a r a t i o n media f o r HPLC, as wel l as a i d s i n t h e d e t e r m i n a t i o n of r e a c t i o n mechanisms, h a v e been i n v e s t i g a t e d . Microenvi ronment e f f e c t s w i t h i n t h e p o l y m e r b e a d s a r e shown t o be i m p o r t a n t when c o n s i d e r i n g t h e u s e of an i n s o l u b l e r e a c t i v e polymer,

INTRODUCTION

The f i r s t s y n t h e t i c r e a c t i v e p o l y m e r s of some s i g n i f i c a n c e were u n d o u b t e d l y t h e ion-exchange r e s i n s [l] f i r s t p r e p a r e d as ear ly a s 1935 [2] f rom phenol - formaldehyde c o n d e n s a t e s , t h e n a d a p t e d i n t h e e a r l y 1950's t o t h e more s u i t a b l e s t y r e n e - d i v i n y l b e n z e n e s t r u c t u r e s [3,4] w h i c h a r e s t i l l i n u s e t o d a y . D e s p i t e t h e i r g r e a t i m p o r t a n c e , t h e i m p a c t o f i o n - e x c h a n g e r e s i n s on t h e s p e c i a l i z e d f i e l d of r e a c t i v e polymers i s overshadowed by M e r r i f i e l d ' s deve- lopment of t h e s o l i d - p h a s e method of s y n t h e s i s i n t h e e a r l y 1960's [5]. M e r r i f i e l d ' s c o n c e p t n o t o n l y r e v o l u t i o n i z e d [6] t h e f i e l d of p e p t i d e s y n t h e s i s f o r which it had been d e v e l o p e d , b u t a l s o s p r e a d q u i c k l y t o o t h e r areas of o r g a n i c s y n t h e s i s , ca ta lys i s , s e p a r a t i o n s c i e n c e , etc. I n t e r e s t i n g l y , t h e d e v e l o p m e n t o f n u m e r o u s new p o l y m e r i c r e a g e n t s , c a t a l y s t s , a n d s u p p o r t s , h a s r e s u l t e d i n a b e t t e r awareness of t h e f a c t t h a t p o l y m e r s c o u l d be d e s i g n e d t o h a v e s p e c i a l r e a c t i v i t i e s and t h i s , i n t u r n , h a s c o n t r i b u t e d t o a new i n t e r e s t i n r e a c t i v e polymers f o r a p p l i c a t i o n i n areas n o t d i r e c t l y r e l a t e d t o s y n t h e s i s , c a t a l y s i s , o r s e p a r a t i o n s c i e n c e .

T h i s r e p o r t w i l l make n o a t t e m p t t o b r o a d c o v e r a g e o f t h e f i e l d o f r e a c t i v e p o l y m e r s ; indeed , s e v e r a l books [7-91 and numerous o t h e r r e v i e w s h a v e a d e q u a t e l y c o v e r e d most of t h e v a r i o u s s y n t h e t i c o r c a t a l y t i c a p p l i c a t i o n s of t h e f i e l d . I n s t e a d t h i s w i l l f o c u s m a i n l y on t h e a u t h o r s ' own r e c e n t e x p e r i e n c e s and w i l l p r e s e n t a l i m i t e d and p e r h a p s somewhat b i a s e d v i e w o f t h a t p a r t of t h e f i e l d o f r e a c t i v e p o l y m e r s w h i c h is o f c l o s e s t i n t e r e s t t o t h e s y n t h e t i c o r g a n i c o r i n d u s t r i a l chemis t .

PREPARATION OF POLYMERIC REAGENTS, CATALYSTS, AND SUPPORTS

Although some v e r y i n t e r e s t i n g r e s u l t s h a v e been o b t a i n e d i n a p p l i c a t i o n s i n v o l v i n g s o l u b l e p o l y m e r s [ 101 t h e d i s c u s s i o n b e l o w w i l l f o c u s a l m o s t e x c l u s i v e l y on t h e p r e p a r a t i o n o f c r o s s l i n k e d r e a c t i v e r e s i n s , macroporous o r g e l - t y p e . Gel - type polymers , s u c h as t h e 1-279 c r o s s l i n k e d ( ch lo romethy1)po lys ty rene used by M e r r i f i e l d [ 51, h a v e no permanent p o r e s b u t swel l e x t e n s i v e l y i n some a p p r o p r i a t e l y chosen s o l v e n t s . F u n c t i o n a l g r o u p s a t t a c h e d t o t h e s e polymers h a v e h i g h r e a c t i v i t i e s , o f t e n comparable t o t h o s e of a n a l o g o u s small m o l e c u l e s i n

l u t i o n . S i m i l a r l y , as t h e c h a i n s h a v e e x c e l l e n t m o b i l i t i e s i n t h e s w o l l e n state, t h e i r 89C-NMR s p e c t r a c a n be measured e a s i l y a l b e i t w i t h some l i n e b r o a d e n i n g , under c o n v e n t i o n a l c o n d i t i o n s [ll]. In c o n t r a s t , more h i g h l y c r o s s l i n k e d macroporous r e s i n s p r e p a r e d by suspen- s i o n p o l y m e r i z a t i o n i n t h e p r e s e n c e of porogens [12,13] o f t e n h a v e h i g h p o r o s i t i e s and h i g h s u r f a c e areas which make them more s u i t a b l e i n c e r t a i n a p p l i c a t i o n s s u c h as t h o s e i n v o l v i n g f low-sys tems p r e v a l e n t i n t h e area of polymer-based s e p a r a t i o n media. A d e f i n i t e drawback of macroporous r e s i n s when compared t o s w e l l a b l e g e l s , i s t h e i r lower r e a c t i v i t y and r e l a t i v e l y poor mechanica l p r o p e r t i e s which o f t e n p r e c l u d e t h e i r use.

N o t e : a d d r e s s c o r r e s p o n d e n c e t o t h i s a u t h o r a t t h e D e p a r t m e n t of C h e m i s t r y , C o r n e l l U n i v e r s i t y , I t h a c a , New York 14853-1301, U.S.A.

353

Page 2: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

354 J. M. J. FRECHET eta / .

Preparation by chemical modification The chemica l mod i f i ca t ion r o u t e i s p a r t i c u l a r l y a t t r a c t i v e wi th po lys ty rene based r e s i n s as t h e i r a r o m a t i c r i n g s can b e m o d i f i e d r e a d i l y by e l e c t r o p h i l i c a r o m a t i c s u b s t i t u t i o n o r through o t h e r s imple r eac t ions . Thus t h e ch lo romethy la t ion of po lys ty rene [ 3 ] was one of t h e impor tan t r e a c t i o n s used i n t h e development of i o n exchange r e s i n s and was a l s o used as t h e key polymer f u n c t i o n a l i z a t i o n r e a c t i o n i n M e r r i f i e l d ' s o r i g i n a l approach [ 51. Other wide ly a p p l i c a b l e f u n c t i o n a l i z a t i o n r e a c t i o n s which have been s t u d i e d e x t e n s i v e l y a r e t h e bromi- n a t i o n [14-161 and t h e l i t h i a t i o n [ 1 4 , 17-18] of c r o s s l i n k e d p o l y s t y r e n e . I n f a c t , i t i s l i k e l y t h a t w e l l o v e r h a l f t h e r e a c t i v e c r o s s l i n k e d r e s i n s prepared t o d a t e have been made through procedures i n v o l v i n g e i t h e r ch lo romethy la t ed o r l i t h i a t e d po lys ty rene . Th i s i s due t o t h e ease wi th which d isp lacement o r a d d i t i o n r e a c t i o n s (Fig. 1) can be c a r r i e d ou t on ( ch lo - romethy1)polys tyrene o r on ( 1 i t h i o ) p o l y s t y r e n e . These r e a c t i o n s which can be performed under c l a s s i c a l c o n d i t i o n s have been reviewed [ 193; i n t h e case of n u c l e o p h i l i c d i sp l acemen t s on (chloromethy1)polystyrene t h e r e a c t i o n s can a l s o be done us ing phase t r a n s f e r ca ta lys i s [20].

+CH,-CH+ + CH,-CH+ +cH,- CH +- +cH*- CH+ + * Q Q L 0 \

E CH,CI CH,Nu Li

Fig . 1. Typica l r e a c t i o n s invo lv ing (ch loromethyl ) o r ( 1 i t h i o ) p o l y s t y r e n e

Control of structure during chemical modification. A l t h o u g h t h e c h e m i c a l mod i f i ca t ion approach has been ex t r eme ly s u c c e s s f u l i n i t s a p p l i c a t i o n t o t h e p repa ra t ion of r e s i n s hav ing a g r e a t v a r i e t y of s t r u c t u r e s , i t i s a r o u t e which should be cons idered wi th g r e a t care . For example, it i s unwise t o assume t h a t a r e a c t i o n which has been optimized f o r t h e p r e p a r a t i o n of a small molecu le w i l l be d i r e c t l y a p p l i c a b l e t o t h e chemical mod i f i ca t ion of a polymer. Indeed t h e r e a c t i v e polymer l i t e r a t u r e i s f u l l of examples where t h e l a c k of r e a c t i v i t y , o r t h e s t r a n g e behavior of a p a r t i c u l a r f u n c t i o n a l polymer, is a t t r i b u t e d t o t h e d e l e t e r i o u s e f f e c t of a t t a c h m e n t t o a po lymer backbone , when i n f a c t i t i s t h e c h e m i c a l m o d i f i c a t i o n procedure which i s a t f a u l t . The term "polymer-analogous r eac t ion" may be a u s e f u l desc r ip - t o r f o r a p r o c e d u r e i n wh ich a known r e a c t i o n , o p t i m i z e d f o r t h e p r e p a r a t i o n o f a smal l m o l e c u l e , i s a p p l i e d t o t h e m o d i f i c a t i o n o f a p o l y m e r , b u t i t s h o u l d n o t l e a d t o t h e complacent assumption t h a t t h e r e a c t i o n a p p l i e d t o a po lymer ic s u b s t r a t e w i l l a f f o r d r e s u l t s which d u p l i c a t e e x a c t l y those of t h e model r eac t ion . I n f a c t t h i s te rminology which may be s e r i o u s l y mis l ead ing should probably be avoided a l t o g e t h e r .

Whenever chemica l mod i f i ca t ion of a polymer i s contempla ted , i t must be remembered t h a t any s i d e - r e a c t i o n which o c c u r s may r e s u l t i n t h e pe rmanen t a t t a c h m e n t of u n d e s i r e d o r e v e n d e l e t e r i o u s f u n c t i o n a l i t i e s t o t h e polymer backbone [21]. The same can be s a i d of incomple te r e a c t i o n s which a f f o r d m a t e r i a l s con ta in ing a t l e a s t two c l e a r l y d i s t i n g u i s h a b l e r e a c t i v e groups. These may have d i v e r g e n t r e a c t i v i t i e s which cou ld p o t e n t i a l l y reduce t h e e f f e c t i - veness of t h e f i n a l r e s i n . Although a t t empt s may be made t o e l i m i n a t e t h e p o t e n t i a l harmful e f f e c t s of undes i red f u n c t i o n a l i t i e s r e s u l t i n g from chemica l mod i f i ca t ion p rocesses [ 2 2 ] , it i s a lways b e s t t o opt imize t h e p rocess i t s e l f by deve lop ing procedures un ique ly s u i t e d t o t h e t a r g e t r e s i n [23-241. A t t h e same t ime , a n a l y t i c a l c o n t r o l s must be e s t a b l i s h e d t o confirm t h e q u a n t i t a t i v e n a t u r e of t h e f u n c t i o n a l i z a t i o n r e a c t i o n [23-241.

Consideration of microenvironment within a reactive polymer. This i s an i s s u e which i s a l l t o o o f t e n f o r g o t t e n i n t h e d e s i g n of r e a c t i v e p o l y m e r s . It s h o u l d be remembered t h a t whenever an i n s o l u b l e po lymer i s used as a r e a c t a n t o r c a t a l y s t i n a g i v e n r e a c t i o n , t h e microenvironment of t h e r e a c t i v e s i te i s very d i f f e r e n t from t h a t which p r e v a i l s i n c lass ical s o l u t i o n chemistry. Thus, t h e r e e x i s t s w i th in t h e r e a c t i o n medium an uneven d i s t r i b u t i o n of both t h e polymer-bound r e a c t i v e s p e c i e s and a l s o of t h e groups which make up t h e backbone of t h e polymer. For example, r e a c t i o n s c a r r i e d o u t w i th a r e a c t i v e s t y r e n e r e s i n wi th a degree of f u n c t i o n a l i z a t i o n of 0.1 may be a f f e c t e d by t h e f a c t a l l r e a c t i v e ends a r e c o n s t a n t l y surrounded by t h e s t y r e n i c moie t i e s t o which they are a t t ached , t h e s e may p rov ide a s p e c i a l non-polar microenvironment which i s no t no rma l ly obta ined i n t h e more u s u a l s o l u t i o n reac- t i o n s [25-271. I n a d d i t i o n , as t h e r e a c t i v e s i t e s are a l l a t t ached t o t h e i n s o l u b l e polymer and a r e t h e r e f o r e not e v e n l y d i s t r i b u t e d throughout t h e medium, h igh l o c a l c o n c e n t r a t i o n s l e a d i n g t o s i t e - s i t e i n t e r a c t i o n s may occur. Such i n t e r a c t i o n s of r e a c t i v e s i t e s which have been observed i n numerous polymer-supported r e a c t i o n s [21, 28-31] a r e examples of o t h e r t y p e s of microenvironment e f f e c t s which are a l s o o f t e n seen i n polymer-ass i s ted chemistry. These m i c r o e n v i r o n m e n t e f f e c t s c a n b e e x t r e m e l y i m p o r t a n t i f t h e y a r e h a r n e s s e d t o c o n t r i b u t e p o s i t i v e l y t o t h e u l t i m a t e des ign; t hey may a l s o be harmful e s p e c i a l l y i f they r e s u l t from u n c o n t r o l l e d , and t h e r e f o r e sometimes undetec ted , s ide - r eac t ions du r ing syn thes i s . A t t e m p t s t o des ign t h e microenvironment of r e a c t i v e s i t e s have been r epor t ed i n t h e l i t e r a t u r e [24-26, 28, 311.

Page 3: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

Reactive polymers 355

Use of polymethylene spacers on polystyrene substrates. Though a v e r y l a r g e number of r e a c t i v e polymers h a v e been p r e p a r e d s a t i s f a c t o r i l y by m o d i f i c a t i o n of ( c h l o r o m e t h y 1 ) p o l y - s t y r e n e , i t h a s become a p p a r e n t t h a t t h e b e n z y l i c l i n k a g e between r e a c t i v e group and r e s i n may n o t a lways p r o v i d e t h e l o n g - t e r m s t a b i l i t y w h i c h i s d e s i r a b l e i n r e a c t i v e p o l y m e r s . H e n c e , i t i s w e l l known t h a t b e n z y l i c q u a t e r n a r y onium s a l t s a re e a s i l y d e a l k y l a t e d [ 321 w h i l e b e n z y l i c amines, s u l f i d e s , esters and e t h e r s may be s u s c e p t i b l e t o c l e a v a g e by a c i d o r t o h y d r o g e n o l y s i s [33] . It s h o u l d be emphasized however , t h a t i t i s t h i s v e r y l a b i l i t y of b e n z y l i c s u b s t i t u e n t s which made (chloromethy1)polystyrene t h e s u p p o r t of c h o i c e i n s o l i d - phase s y n t h e s i s [ 5 ] as c o n t r o l l e d r e l e a s e of t h e f i n i s h e d p e p t i d e can be a c h i e v e d r e a d i l y . N e v e r t h e l e s s , t h e r e a r e numerous i n s t a n c e s where r e a c t i v e p o l y m e r s h a v e undergone u n e x p l a i n e d c l e a v a g e s i d e - r e a c t i o n s w h i c h h a v e a f f e c t e d t h e i r a b i l i t y t o be r e g e n e r a t e d a n d r e u s e d . Though, a s was m e n t i o n e d e a r l i e r , n o n - b e n z y l i c r e a c t i v e p o l y m e r s c a n be p r e p a r e d f r o m ( 1 i t h i o ) p o l y s t y r e n e [ 1 4 ] , it appeared u s e f u l t o d e v e l o p r e a c t i v e polymers i n which a s h o r t s p a c e r g r o u p i s i n t r o d u c e d b e t w e e n t h e s t y r e n i c r i n g s a n d t h e r e a c t i v e g r o u p s . To t h i s e f f e c t , a s e r i e s of s y n t h e t i c a p p r o a c h e s h a v e b e e n d e v e l o p e d f o r t h e i n t r o d u c t i o n o f a d i m e t h y l e n e s p a c e r between f u n c t i o n a l i t y and a r o m a t i c r i n g [23-241 by s e q u e n t i a l modi f ica- t i o n s of c r o s s l i n k e d p o l y s t y r e n e . The common f e a t u r e of t h e s e m o d i f i c a t i o n s i s t h a t e a c h was o p t i m i z e d t o e n s u r e t h a t q u a n t i t a t i v e y i e l d s were o b t a i n e d i n e a c h of t h e key m o d i f i c a t i o n s t e p s . Though it i s g e n e r a l l y t r u e t h a t a d i m e t h y l e n e s p a c e r may be s u b j e c t t o u n w a n t e d e l i m i n a t i o n r e a c t i o n s , it is p o s s i b l e i n most c a s e s t o d e v e l o p r e a c t i o n c o n d i t i o n s f o r which s u c h e l i m i n a t i o n s a r e n o t p o s s i b l e , o r s t r u c t u r e s i n which t h e polymer-bound f u n c t i o n a l i t i e s a r e p o o r l e a v i n g g r o u p s u n d e r b a s i c c o n d i t i o n s . T h i s w o r k o n t h e i n t r o d u c t i o n of d i - m e t h y l e n e s p a c e r s i s of p a r t i c u l a r i n t e r e s t a s it d e m o n s t r a t e s t h e f r e q u e n t inadequacy of b l i n d l y a p p l i e d " p o l ymer-analogous" r e a c t i o n s : s p e c i a l r e a c t i o n c o n d i t i o n s a r e r e q u i r e d t o c o p e w i t h t h e u n u s u a l e n v i r o n m e n t w h i c h p r e v a i l s w i t h i n r e a c t i v e polymers . For example , w h i l e model r e a c t i o n s s u g g e s t t h a t (2-bromoethyl)polystyrene s h o u l d be r e a d i l y o b t a i n e d from t h e c o r r e s p o n d i n g 2-hydroxyethyl a n a l o g by r e a c t i o n w i t h l i t h i u m bromide and c h l o r o t r i m e t h y l - s i l a n e i n a c e t o n i t r i l e , it is found t h a t t h i s r e a c t i o n o n l y p r o c e e d s t o 90% c o m p l e t i o n . T h i s i s l i k e l y due t o t h e u n i q u e non-polar microenvi ronment w i t h i n t h e polymer ( s t y r e n i c r e s i d u e s h e l d i n p r o x i m i t y t o t h e a l c o h o l s i te) which a l l o w s t h e s i l y l a t i o n of some of t h e r e a c t i v e groups t o o c c u r i n c o m p e t i t i o n t o t h e normal b r o m i n a t i o n which i s u s u a l l y q u a n t i t a t i v e i n t h e p o l a r a c e t o n i t r i l e medium. The c h o i c e of o t h e r o p t i m i z e d r e a c t i o n c o n d i t i o n s [ 231 a f f o r d s t h e f u l l y brominated polymer as shown i n F ig . 2.

+cH,- CH+ I

I CH,CH,-Br

90% C o n v e r s i o n

I CH,CH,-OH

I C H,CH,-Br

100% C o n v e r s i o n

Fig . 2. Development of a q u a n t i t a t i v e b r o m i n a t i o n p r o c e d u r e f o r a h y d r o x y l a t e d r e s i n .

O t h e r s p a c e r groups which may be e v e n more s u i t a b l e c a n a l s o be used a d v a n t a g e o u s l y [26, 34- 3 6 1 b u t t h e work on d i m e t h y l e n e s p a c e r s c l e a r l y d e m o n s t r a t e s t h a t c h e m i c a l m o d i f i c a t i o n p r o c e d u r e s need t o be s t u d i e d and o p t i m i z e d on t h e t a r g e t po lymers and n o t j u s t t a k e n from t h e o r g a n i c l i t e r a t u r e w i t h o u t due c o n s i d e r a t i o n of t h e s p e c i a l r e q u i r e m e n t s which a p p l y t o r e a c t i v e polymers .

Chemical modification of glycidyl methacrylate resins. Although t h e p r e v i o u s d i s c u s s i o n was f o c u s e d e n t i r e l y o n c r o s s l i n k e d p o l y s t y r e n e r e s i n s , i t i s w o r t h n o t i n g h e r e t h a t a n o t h e r r e a c t i v e r e s i n which h a s r e c e i v e d much a t t e n t i o n i s c r o s s l i n k e d g l y c i d y l m e t h a c r y l a t e . Most of t h e work on t h i s polymer h a s been c a r r i e d o u t on macroporous r e s i n s [12 , 37-38]. With few e x c e p t i o n s , t h e c h e m i c a l m o d i f i c a t i o n of t h e s e r e s i n s i s g e n e r a l l y n o t q u a n t i t a t i v e b u t t h i s h a s n o t o v e r l y a f f e c t e d t h e i r end use which h a s m a i n l y been i n t h e area of s e p a r a t i o n media.

New directions in chemical modification. It may be s a i d t h a t t h e r e a c t i v i t y of ( 1 i t h i o ) p o l y - s t y r e n e i s complementary t o t h a t of (chloromethy1)polystyrene as t h e former can be used as a n u c l e o p h i l i c r e a g e n t w h i l e t h e l a t t e r h a s e l e c t r o p h i l i c p r o p e r t i e s . In t h e o r y , ( c h l o r o - m e t h y 1 ) p o l y s t y r e n e i t s e l f c o u l d a l s o be t u r n e d i n t o a complementary n u c l e o p h i l i c r e a g e n t by t r a n s f o r m a t i o n i n t o t h e c o r r e s p o n d i n g l i t h i a t e d o r organomagnesium r e a g e n t . U n f o r t u n a t e l y a t t e m p t s a t l i t h i a t i o n of (chloromethy1)polystyrene under a v a r i e t y of c o n d i t i o n s a l l met w i t h f a i l u r e as t h e r e a g e n t c o u p l e s i n s t a n t l y t o y i e l d b i p h e n y l i c s p e c i e s t h e r e b y i n c r e a s i n g t h e d e g r e e o f c r o s s l i n k i n g o f t h e r e s i n a n d d e s t r o y i n g a l l d e s i r e d f u n c t i o n a l i t y [ 2 4 ] . S i m i l a r l y , s y n t h e s i s of t h e polymer-supported G r i g n a r d r e a g e n t i s made d i f f i c u l t by t h e f a c t b o t h ( ch lo romethy1)po lys ty rene and magnesium a r e s o l i d i n s o l u b l e r e a g e n t s . Numerous a t t e m p t s t o p r e p a r e t h e G r i g n a r d r e a g e n t e i t h e r d i r e c t l y o r v i a r e a c t i v e s p e c i e s such as magnesium bromide, o r s o l u b l e G r i g n a r d r e a g e n t s o p e r a t i n g as magnesium " s h u t t l e s " f a i l e d t o produce t h e d e s i r e d p o l y m e r i c G r i g n a r d [24] . We h a v e r e c e n t l y been a b l e t o s o l v e t h i s problem s a t i s f a c -

Page 4: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

356 J. M. J. FRECHET era/.

t o r i l y [ 3 9 ] u s i n g magnesium anthracene-THF complex [ 4 0 ] as t h e m e t a l a t i n g s p e c i e s (F ig . 3) . Under t h e s e c o n d i t i o n s e x c e l l e n t y i e l d s of t h e i n s o l u b l e p o l y m e r - b o u n d b e n z y l i c G r i g n a r d s p e c i e s a r e o b t a i n e d ; t h e s e r e a g e n t s are c u r r e n t l y b e i n g used i n t h e deve lopment of s e v e r a l new and i n t e r e s t i n g r e a c t i v e polymers .

..&%I. 3 TH F

I CH,CI CH,MgCI CH,COOH

F i g . 3 . P r e p a r a t i o n and tes t r e a c t i o n of a n i n s o l u b l e G r i g n a r d r e a g e n t

4 CH,- FH+ +cH~- CH+ I

* Q Ts 0 C H, CH,R

cu +

Li CH,CH,R

F i g . 4 . Copper-mediated f o r m a t i o n of C-C bonds on i n s o l u b l e polymers .

S i m i l a r l y , t h e deve lopment of polymer m o d i f i c a t i o n r e a c t i o n s i n which l i n k a g e of r e a c t i v e m o i e t i e s t o p o l y s t y r e n e i s accompl ished t h r o u g h carbon-carbon bonds o n l y , as opposed t o t h e carbon-he teroa tom l i n k a g e s which are u s u a l l y o b t a i n e d i n t h e r e a c t i o n of ( c h l o r o m e t h y 1 ) p o l y - s t y r e n e w i t h n u c l e o p h i l e s , h a s l e d u s t o d e v e l o p organo-copper media ted r e a c t i o n s which can be c a r r i e d o u t u s i n g c r o s s l i n k e d p o l y s t y r e n e r e s i n s as r e a c t i v e s u b s t r a t e s (F ig . 4 ) . Such r e a c t i o n s promise t o be u s e f u l i n t h e p r e p a r a t i o n of c e r t a i n p o l y m e r i c c a t a l y s t s [ 4 1 ] .

F i n a l l y , o u r a t t e m p t s t o modify c l e a n l y c r o s s l i n k e d polymers d e r i v e d from 2-methyl-5-vinyl- p y r i d i n e t h r o u g h a c t i v a t i o n of t h e 2-methyl group (F ig . 5) were much less s u c c e s s f u l as w e were n o t a b l e t o e l i m i n a t e s i d e r e a c t i o n s . The i n t r o d u c t i o n of a c e t a t e , h a l o g e n , o r d i a l k y l - a m i n o f u n c t i o n a l g r o u p s , o f t e n v i a t h e N-oxide d e r i v a t i v e were u s u a l l y a c c o m p a n i e d by u n d e s i r e d s i d e - r e a c t i o n s such as a d d i t i o n a l c r o s s l i n k i n g and a l s o t h e i n c o r p o r a t i o n of some u n c o n t r o l l e d f u n c t i o n a l i t i e s i n t o t h e r e a c t i v e polymer [ 4 2 ] . Though t h e m o d i f i e d p o l y m e r s may s t i l l be u s a b l e i n some a p p l i c a t i o n s , t h e s e m o d i f i c a t i o n r e a c t i o n s c a n n o t be compared t o t h o s e d e s c r i b e d ea r l i e r i n t h i s r e p o r t as o p t i m i z a t i o n c o u l d n o t be c a r r i e d out .

-( CH,- CH+ --f CH,- CH+- + CH,- CH+- Q - 0 ---+ f$ R = OAc: NMez

\ N -0

\ N \ N

CH3 CH 3 CH,- R

F i g . 5. Chemical m o d i f i c a t i o n of poly(2-methyl-5-vinylpyridine)

Preparation from reactive monomers The p r e p a r a t i o n of u s e f u l c r o s s l i n k e d r e a c t i v e r e s i n s f rom f u n c t i o n a l monomers h a s r e c e i v e d much less s u s t a i n e d a t t e n t i o n t h a n t h e c h e m i c a l m o d i f i c a t i o n a p p r o a c h d e s c r i b e d above. T h i s i s due i n p a r t t o t h e l i m i t e d a v a i l a b i l i t y of f u n c t i o n a l monomers and t o t h e r e l u c t a n c e of many r e s e a r c h e r s t o v e n t u r e i n t o t h e p r e p a r a t i o n of bead polymers w i t h s u i t a b l e p h y s i c a l as w e l l as c h e m i c a l c h a r a c t e r i s t i c s . The p r e p a r a t i o n of 1-2% c r o s s l i n k e d g e l po lymers by s u s p e n s i o n p o l y m e r i z a t i o n i s a r e l a t i v e l y easy t a s k p r o v i d e d a s u i t a b l e c r o s s l i n k i n g a g e n t w i t h a r e a c t i v i t y comparable t o t h a t of t h e f u n c t i o n a l monomer i s a v a i l a b l e . I n p r a c t i c e , d i v i n y l b e n z e n e , e t h y l e n e d i m e t h a c r y l a t e o r b i s - a c r y l a m i d e a r e u s e d m o s t f r e q u e n t l y , t h o u g h s p e c i a l t y c r o s s l i n k i n g a g e n t s s u c h a s d i v i n y l p y r i d i n e h a v e a l s o been used. S e v e r a l p r o c e d u r e s f o r t h e p r e p a r a t i o n of g e l r e s i n s

Page 5: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

Reactive polymers 357

h a v e b e e n d e s c r i b e d i n t h e l i t e r a t u r e [ 2 6 , 42-44]. I n c o n t r a s t , i t i s r e l a t i v e l y m o r e d i f f i c u l t t o p r e p a r e h i g h l y p o r o u s , h i g h s u r f a c e a r e a , m a c r o p o r o u s r e s i n s as n u m e r o u s v a r i a b l e s s u c h a s t h e n a t u r e a n d amount o f p o r o g e n i c a g e n t , t h e s t i r r i n g r a t e a n d r e a c t o r d e s i g n , t h e r e l a t i v e p r o p o r t i o n s of t h e v a r i o u s components i n t h e r e a c t i o n m i x t u r e , etc., a l l h a v e a s i g n i f i c a n t e f f e c t on t h e c h a r a c t e r i s t i c s of t h e f i n a l r e s i n s . F o r t u n a t e l y t h e r e e x i s t s e v e r a l e x c e l l e n t a c c o u n t s o f p r o c e d u r e s w h i c h a r e u s e f u l i n t h e p r e p a r a t i o n o f macroporous a c r y l i c [ 1 2 ] o r s t y r e n i c [ 1 3 , 451 r e s i n s .

F i g u r e 6 shows s e v e r a l r e l a t i v e l y e a s i l y a c c e s s i b l e s u b s t i t u t e d s t y r e n e monomers which a r e u s e f u l i n t h e p r e p a r a t i o n of r e a c t i v e p o l y m e r s . W h i l e some of t h e s e monomers a r e commer- c i a l l y a v a i l a b l e , o t h e r s , which are sometimes p r e p a r e d f o r p r o p r i e t a r y i n d u s t r i a l a p p l i c a - t i o n s , may be more d i f f i c u l t t o o b t a i n , S e v e r a l o t h e r i n t e r e s t i n g and c o m m e r i c a l l y a v a i l a b l e f u n c t i o n a l monomers s u c h as g l y c i d y l m e t h a c r y l a t e , 2 -hydroxyethyl m e t h a c r y l a t e , and o t h e r acrylics h a v e a l s o been used e x t e n s i v e l y t o p r e p a r e r e a c t i v e polymers . It i s e x p e c t e d t h a t as t h e marke t f o r s p e c i a l t y p o l y m e r s grows l a r g e r , o t h e r f u n c t i o n a l monomers w i l l be added t o t h e c a t a l o g s of c h e m i c a l s u p p l i e r s .

CHz= CH CH,=CH CH,=CH CHz= CH

c H3 HZCI

CHZCI

CH,=CH CHF CH CH,=CH CH,= CH

QQQQ CI Br OH OCOOt-BU

F i g . 6 . Examples of f u n c t i o n a l i z e d s t y r e n e monomers,

C H g CH I

I COOH

C H p Y H

Preparation of resins containing pendant phenolic groups. C r o s s l i n k e d p o l y s t y r e n e r e s i n s c o n t a i n i n g pendant p h e n o l i c g r o u p s c a n be eas i ly o b t a i n e d by s u s p e n s i o n c o p o l y m e r i z a t i o n of p r o t e c t e d p - h y d r o x y s t y r e n e w i t h d i v i n y l b e n z e n e . We h a v e f o u n d t h a t a n e x t r e m e l y u s e f u l monomer f o r t h i s p r e p a r a t i o n i s 4- t -buty loxycarbonyloxys tyrene [45-461. T h i s monomer co- o r t e r - p o l y m e r i z e s w e l l w i t h d i v i n y l b e n z e n e a n d / o r s t y r e n e a n d a f f o r d s a t-BOC p r o t e c t e d p h e n o l i c r e s i n which can be e a s i l y d e - p r o t e c t e d by a v a r i e t y of r o u t e s s u c h as h y d r o l y s i s , a c i d o l y s i s , o r t h e r m o l y s i s . As w i l l be s e e n below, t h e t h e r m a l d e p r o t e c t i o n r e a c t i o n which o n l y a f f o r d s g a s e o u s b y - p r o d u c t s , c a r b o n d i o x i d e a n d 2 - m e t h y l - p r o p e n e ( F i g . 7), i s p a r t i c u l a r l y w e l l s u i t e d t o t h e p r e p a r a t i o n of t h e v e r y small porous beads of t h e t y p e which i s commonly used f o r HPLC packings .

+CH,-CH~ +cH,- CH 3 ,c H3 A 190' 8 + COrf CH,=C,

o r HO -w CH3

OH

+ OCOOt-Bu

F i g . 7 . Thermal removal of t-BOC p r o t e c t i n g g r o u p s

Monomers containinga trimethylenespacer. A c o n v e n i e n t a l t e r n a t i v e t o c h l o r o m e t h y l s t y r e n e f o r t h e p r e p a r a t i o n of r e a c t i v e monomers i s t h e p-(3-bromopropyl)styrene which was o r i g i n a l l y d e v e l o p e d by H a l l e n s l e b e n [34]. T h i s monomer and o t h e r s d e r i v e d from i t a r e p a r t i c u l a r l y s u i t a b l e f o r t h e p r e p a r a t i o n of r e a c t i v e polymers i n which t h e a c t i v e s i t e s are s e p a r a t e d by a s h o r t s p a c e r arm from t h e s t y r e n e r e s i d u e s . We h a v e used p-(3-bromopropyl)styrene as t h e s t a r t i n g material i n t h e p r e p a r a t i o n of s e v e r a l o t h e r more e l a b o r a t e d s t r u c t u r e s c o n t a i n i n g f o r e x a m p l e p e n d a n t a c t i v a t e d s i l i c o n or a d i a l k y l a m i n o p y r i d i n e g r o u p as shown i n F i g . 8. [26, 471

Miscellaneous reactive monomers. Numerous o t h e r r e a c t i v e monomers are b e i n g p r e p a r e d f o r u l t i m a t e a p p l i c a t i o n s i n polymer a s s i s t e d chemis t ry . For example s e v e r a l c h i r a l amino a l c o - h o l l i g a n d s h a v e been a t t a c h e d t o c h l o r o m e t h y l s t y r e n e (Fig, 9) f o r t h e p r e p a r a t i o n of p o l y - m e r i c r e a g e n t s o r c a t a l y s t s u s e d i n a s y m m e t r i c s y n t h e s i s [ 28, 48-50]. O t h e r i n t e r e s t i n g

Page 6: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

358 J. M. J. FRECHET eta /

s t r u c t u r e s wh ich m a y f i n d v a r i e d a p p l i c a t i o n s i n c l u d e v i n y l t - b u t y l c a r b o n a t e [51] and numerous o t h e r ca rbona te s u b s t i t u t e d v i n y l compounds.

F ig . 8. P repa ra t ion of monomers having a t r ime thy lene spacer group.

CH,=CH I

CH2= CH Q CH2CI

Fig . 9. P r e p a r a t i o n of polymer-supported c h i r a l amino-alcohols.

POLYMER-ASSISTED CHEMISTRY

Q CHF CH

I

As most of t h e o rgan ic a p p l i c a t i o n s of r e a c t i v e polymers have been reviewed r e c e n t l y [ 7-9, 211, some w i l l be mentioned b r i e f l y i n t h e f o l l o w i n g paragraphs bu t d e t a i l e d cove rage w i l l be l i m i t e d t o a s m a l l s e l e c t i o n of newer e x a m p l e s , m a i n l y f rom t h e a u t h o r s ’ own l a b o r a t o r y , which p r o v i d e a v i e w o f some o f t h e d i r e c t i o n s i n which t h e f i e l d i s moving a t t h e p r e s e n t t ime.

With t h e cont inued expansion of t h e f i e l d of b io technology, immobilized enzymes and c e l l s a r e s t i l l r e c e i v i n g a c o n s i d e r a b l e amount of a t t e n t i o n . S e v e r a l i n d u s t r i a l p rocesses based on such i m m o b i l i z e d s p e c i e s h a v e b e e n i n o p e r a t i o n f o r some t ime now [52-541 and o t h e r s a r e l i k e 1 y t o f o l 1 ow, I n t h e area of polymer-supported t r a n s i t i o n metal ca ta lys t s s e r i o u s problems wi th t h e long- term s t a b i l i t y of t h e f u n c t i o n a l i z e d suppor t s have been encountered [55-561. Fu tu re deve lop- ments i n t h i s a r e a w i l l h inge on r e sea rch i n t o immobi l iz ing systems of improved s t a b i l i t y . Some v e r y imag ina t ive u s e s of s o l u b l e polymer ic r e a g e n t s and c a t a l y s t s have been desc r ibed by Bergbre i t e r [lo, 571 f o l l o w i n g t h e e a r l i e r s u c c e s s f u l a p p l i c a t i o n of s o l u b l e s u p p o r t s i n t h e s y n t h e s i s of po lypep t ides [58]. The polymer ic p h o t o s e n s i t i z e r s of Neckers and coworkers [59- 601 have now been s t u d i e d i n g r e a t d e t a i l and p rov ide an i n t e r e s t i n g and unique a l t e r n a t i v e t o t h e conven t iona l pho tosens i t i ze r s . Outs tanding work i n t h e a r e a of molecu la r r e c o g n i t i o n through t h e use of po lymer ic t e m p l a t e s by Wulff and coworkers [61-621 con t inues t o s t i m u l a t e r e sea rch towards polymeric enzyme models.

Polymer-assisted asymmetric synthesis W h i l e most e a r l y work i n t h e a p p l i c a t i o n of c h i r a l p o l y m e r s f o r a s y m m e t r i c p r o c e s s e s was d i r e c t e d towards m a t e r i a l s u s e f u l i n t h e chromatographic s e p a r a t i o n of enant iomers [62-641, s e v e r a l r e p o r t s of t h e use of polymers as c h i r a l a u x i l i a r i e s i n asymmetric syn theses have appeared. These i n c l u d e polymer ic phase t r a n s f e r ca ta lys t s [65 ] o r c h i r a l polymers used i n asymmetric a d d i t i o n [66-691 o r a l k y l a t i o n r e a c t i o n s [70-711. More r e c e n t l y , much a c t i v i t y has been concen t r a t ed on polymer-ass i s ted asymmetric r educ t ions [28, 48-49].

The s o l i d - p h a s e a p p r o a c h seems t o b e i d e a l l y s u i t e d f o r numerous a symmet r i c r e a c t i o n s i n which t h e c h i r a l a u x i l i a r y remains una f fec t ed i n t h e o v e r a l l p rocess a s c h i r a l mo lecu le s a r e o f t e n v a l u a b l e commodities f o r which r e c y c l i n g i s a v e r y p r a c t i c a l requirement. Attachment of t h e c h i r a l mo ie t i e s t o i n s o l u b l e r e a c t i v e polymers ensu res t h a t t h e i r r ecove ry w i l l be q u a n t i t a t i v e and may t h e r e f o r e f a c i l i t a t e t h e i r use. Th i s reasoning had c o n t r i b u t e d t o t h e

Page 7: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

Reactive polymers 359

development of a number of c h i r a l po lymers f o r asymmetr ic r e d u c t i o n s , E a r l y work on polymer- bound l i t h i u m a luminium h y d r i d e c h i r a l complexes [73-751 h a v i n g a f f o r d e d r e s u l t s which were v a s t l y i n f e r i o r t o t h o s e o b t a i n e d w i t h many low m o l e c u l a r weight complexes, we under took a thorough s t u d y of t h e r e a c t i o n [28] . The c h i r a l a u x i l i a r y chosen f o r t h i s s t u d y was c r o s s - l i n k e d p o l y s t y r e n e c o n t a i n i n g ( l R , 2 S ) - e p h e d r i n e bound t h r o u g h n i t r o g e n t o some of i t s p- m e t h y l e n e - s u b s t i t u t e d a r o m a t i c r i n g s . The c h i r a l r e a g e n t i s p r e p a r e d by s u c c e s s i v e t r e a t m e n t of a s o l u t i o n of l i t h i u m a luminium h y d r i d e i n e t h e r w i t h 2 m o l a r e q u i v a l e n t s of a n a c h i r a l phenol and 1 e q u i v a l e n t of t h e polymer. The r e s u l t i n g complex i s t h e n used i n t h e s t o i c h i o - metric r e d u c t i o n of a p r o c h i r a l k e t o n e such as ace tophenone (Fig.10).

Q + LiAIH4 t

F i g . 10. Asymmet r i c h y d r i d e r e d u c t i o n u s i n g a polymer ic c h i r a l a u x i l i a r y .

-4 ,CH~CH+- I

9, \ -7-Q

P h-C- C H, II 0 * up to

9 7 % e e

F i g . 11. Asymmetric r e d u c t i o n w i t h a polymer ic c h i r a l borane complex,

A s e r i e s of e x p e r i m e n t s w i t h v a r i o u s p o l y m e r s h a v i n g d i f f e r e n t d e g r e e s of f u n c t i o n a l i z a t i o n (DF) showed c l e a r l y t h a t t h e r e e x i s t e d a n i n v e r s e r e l a t i o n s h i p b e t w e e n p o l y m e r DF a n d e n a n t i o s e l e c t i v i t y . T h i s i s due t o t h e i n t e r a c t i o n of r e a c t i v e s i tes i n t h e h i g h e r c a p a c i t y polymers f o r which s e l e c t i v e f o r m a t i o n of t h e d e s i r e d c h i r a l complex is n o t f a v o r e d . T h i s r e s u l t s i n b i n d i n g of t h e h y d r i d e t o s e v e r a l r a t h e r t h a n t o a s i n g l e c h i r a l c e n t e r , a s wel l a s i n t h e f o r m a t i o n of o t h e r f u l l y a c h i r a l h y d r i d e m o i e t i e s w i t h a c o n c o m m i t a n t l o s s o f s e l e c t i v i t y . H o w e v e r , a t l o w e r d e g r e e s of f u n c t i o n a l i z a t i o n , t h e p o l y m e r - b o u n d s p e c i e s b e h a v e i n d e p e n d e n t l y o f one a n o t h e r a s i s t h e c a s e w i t h s o l u b l e c o m p l e x e s f o r m e d w i t h N - benzyl -ephedr ine and good s e l e c t i v i t y i s observed .

A b e t t e r s y t e m f o r p o l y m e r - a s s i s t e d a s y m m e t r i c r e d u c t i o n s h a s been s t u d i e d e x t e n s i v e l y by I t s u n o e t a l . [ 481. I n t h i s w o r k i t was f o u n d t h a t t h e asymmetric r e d u c t i o n o f p r o c h i r a l k e t o n e s w i t h complexes formed from c e r t a i n polymer-bound c h i r a l amino a l c o h o l s and borane g a v e e x c e l l e n t r e s u l t s as t h e sys tem i s f r e e from t h e t y p e of m u l t i p l e b i n d i n g i n t e r a c t i o n s w h i c h a r e p r e v a l e n t w i t h l i t h i u m a l u m i n i u m h y d r i d e complexes, A t y p i c a l r e a c t i o n scheme (Fig . 11) i n v o l v e s t h e f o r m a t i o n of a n a c t i v e complex by r e a c t i o n of t h e c h i r a l polymer w i t h two m o l a r e q u i v a l e n t s of b o r a n e . T h i s r e a g e n t c a n r e d u c e a r o m a t i c k e t o n e s w i t h o p t i c a l y i e l d s a p p r o a c h i n g 100% [76-771. An i n t e r e s t i n g e x t e n s i o n of t h e method i s i t s a d a p t a t i o n t o a c o n t i n u o u s f l o w sys tem where borane and k e t o n e are s u p p l i e d c o n t i n u o u s l y t o a s p e c i a l l y d e s i g n e d c o l u m n f i l l e d w i t h t h e c h i r a l p o l y m e r w h i c h i s c o n s t a n t l y r e g e n e r a t e d i n t h e p r o c e s s [78] . The same polymer-bound borane complex can be used i n t h e r e d u c t i o n of oxime e t h e r s t o o p t i c a l l y a c t i v e a m i n e s ; h e r e a g a i n o p t i c a l y i e l d s a p p r o a c h 100%. A l t h o u g h t h e e x a c t s t r u c t u r e s of t h e c h i r a l complexes i n v o l v e d i n t h e r e d u c t i o n of oxime e t h e r s a r e no t c l e a r , t h e f o l l o w i n g o b s e r v a t i o n s [49 , 791 p r o v i d e some i n s i g h t i n t h e r e a c t i o n :

- The r e d u c t i o n i s much f a s t e r w i t h t h e amino a l c o h o l - b o r a n e t h a n w i t h borane a l o n e . - The p r o d u c t d o e s n o t b ind t o t h e complex a l l o w i n g t h e u s e of a f l o w system. - The c h i r a l complex need n o t be p r e s e n t i n s t o i c h i o m e t r i c amount i f a f low-sys tem i s

Page 8: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

360 J. M. J. FRECHET eta/.

used, ra t ios of o v e r 1 O : l h a v e produced s a t i s f a c t o r y r e s u l t s . These r e s u l t s are e x t r e m e l y e n c o u r a g i n g and s u g g e s t t h a t i n d e e d c h i r a l po lymers may h a v e a promis ing f u t u r e as a u x i l i a r i e s i n asymmetric r e a c t i o n , T h i s i s p a r t i c u l a r l y t r u e f o r r e a c - t i o n s i n which t h e p r o d u c t d o e s n o t remain a t t a c h e d t o t h e s o l i d c h i r a l complex as t h e s e may be a d a p t e d t o f l o w systems.

Regenerability in the design of polymeric reagents or protecting groups R e g e n e r a b i l i t y i s a v e r y i m p o r t a n t c o n s i d e r a t i o n i n t h e d e s i g n of a r e a c t i v e polymer used as r e a g e n t o r p r o t e c t i n g group i n o r g a n i c s y n t h e s i s [21] . T h i s is p a r t i c u l a r l y i m p o r t a n t as, w i t h a few n o t a b l e e x c e p t i o n s s u c h as t h e p o l y v i n y l p y r i d i n e s [80-821 most p o l y m e r i c r e a g e n t s are n o t r e a d i l y a v a i l a b l e . F o r e x a m p l e , s e v e r a l y e a r s a g o , we h a d p r e p a r e d a p o l y m e r i c s i l y l a t i o n r e a g e n t 4-( c 1 i l o r o d i m e t h y l s i l y l ) p o l y s t y r e n e by r e a c t i o n of ( 1 i t h i o ) p o l y s t y r e n e w i t h a n e x c e s s of d i c h l o r o d i m e t h y l s i l a n e [14] . Though t h i s r e a g e n t c o u l d be used e f f e c t i v e l y i n t h e p r o t e c t i o n of a l c o h o l s o u r r e s u l t s were n o t r e p o r t e d as w e found t h e p o l y m e r i c r e a g e n t l a c k i n g i n i t s a b i l i t y t o be r e g e n e r a t e d . The main problem was t h e s t r u c t u r a l d e s i g n of t h e r e a g e n t whereby s i l i c o n was bound d i r e c t l y t o t h e a r o m a t i c r i n g s of t h e s t y r e n i c backbone. A s p h e n y l - s i l i c o n bonds a r e n o t o r i o u s l y l a b i l e t o e l e c t r o p h i l e s , r e g e n e r a t i o n of t h e r e a g e n t c o u l d n o t be c a r r i e d o u t w i t h o u t o b s e r v i n g a d r a s t i c l o w e r i n g of t h e s i l i c o n c o n t e n t of t h e polymer. T h i s problem can be remedied by u s i n g a d i f f e r e n t d e s i g n f o r t h e r e a g e n t i n which s i l i c o n i s n o t e i t h e r l i n k e d d i r e c t l y t o a p h e n y l r i n g o r p l a c e d i n a l a b i l e b e n z y l i c p o s i t i o n . T h i s was accompl ished [ 4 7 ] by p r e p a r i n g c r o s s l i n k e d beads of 4-[3-(phenyldimethyl- s i l y 1 ) p r o p y l ] p o l y s t y r e n e by s u s p e n s i o n p o l y m e r i z a t i o n of t h e c o r r e s p o n d i n g monomer w i t h s t y r e n e a n d d i v i n y l b e n z e n e t h e d e g r e e of f u n c t i o n a l i z a t i o n o f t h e f i n a l p o l y m e r b e i n g a f u n c t i o n of t h e monomer f e e d r a t i o . I n t h i s c a s e t h e l a b i l i t y of t h e p h e n y l - s i l i c o n bond of t h e p e n d a n t g r o u p i s u s e d t o a d v a n t a g e i n t h e s u b s e q u e n t c r e a t i o n of t h e a c t i v e c e n t e r by c l e a v a g e w i t h a c i d t o y i e l d t h e d e s i r e d s i l y l a t i o n r e a g e n t . T h o u g h c l e a v a g e t o y i e l d a c h l o r o d i m e t h y l p r o p y l pendant group is p o s s i b l e w e o p t e d f o r t h e n o v e l t r i f l u o r o a c e t y l s i l y l group as s i l y l a t i n g s p e c i e s . T h i s a f f o r d s a polymer which r e a c t s w e l l w i t h a l c o h o l s and c a n be used f o r t h e i r t emporary p r o t e c t i o n (F ig . 12). R e c y c l i n g a f t e r c l e a v a g e of t h e a l c o h o l i s done e a s i l y and q u a n t i t a t i v e l y t h r o u g h t r i f l u o r o a c e t y l a t i o n o r t h e more u s u a l c h l o r i n a t i o n . I n e i t h e r c a s e n o l o s s o f s i l i c o n i s o b s e r v e d u p o n r e p e a t e d r e c y c l i n g . T h i s e x a m p l e i s i n t e r e s t i n g a s it i l l u s t r a t e s a d e s i g n where n o v e l c h e m i s t r y on a s o l i d polymer was d e v e l o p e d w i t h o u t t h e need f o r p r i o r "analogous" s o l u t i o n exper iments .

+CH,- CH+ I

+CH,- CH-)- I

CF,COOH R- OH

Me- Si-Me Me- &-Me Me- Si-Me I 0-R

I OCOCF,

t C F,COOH

F i g . 12 . Regenerable s i l i c o n - c o n t a i n i n g p o l y m e r i c p r o t e c t i n g group.

Use of reactive polymers in the determination of reaction mechanisms A s c r o s s l i n k e d p o l y m e r s remain i n s o l u b l e t h r o u g h o u t t h e c o u r s e of r e a c t i o n s i n which t h e y are i n v o l v e d , t h e i r c o n f e r t h e i r i n s o l u b i l i t y t o any r e a c t i v e s p e c i e s which becomes a t t a c h e d t o them d u r i n g r e a c t i o n . T h i s phenomenon can be u s e f u l i n h e l p i n g t o d e t e r m i n e t h e n a t u r e of c e r t a i n r e a c t i v e i n t e r m e d i a t e s i n complex c h e m i c a l r e a c t i o n s . For example, s e v e r a l g roups h a v e used t h e " three-phase test" i n v o l v i n g two r e a c t i v e p o l y m e r s suspended i n t h e same medium t o d e t e r m i n e whether c e r t a i n i n t e r m e d i a t e s are f r e e o r bound i n some chemica l r e a c t i o n s [83- 851.

In t h e c o u r s e o f o u r d e v e l o p m e n t o f new p o l y m e r - b o u n d c a t a l y s t s f o r asymmetric a d d i t i o n r e a c t i o n s , we h a v e used t h e i n s o l u b i l i t y of t h e p o l y m e r i c c a t a l y s t t o d e t e r m i n e t h e mechanism of t h e a d d i t i o n r e a c t i o n . The tes t r e a c t i o n we s t u d i e d was t h e a d d i t i o n of d i e t h y l z i n c t o b e n z a l d e h y d e [ 861; t h i s r e a c t i o n i s c a t a l y z e d by a v a r i e t y o f a l c o h o l s a n d a m i n e s a n d we c h o s e t o tes t f i r s t t h e a p p l i c a b i l i t y of t h e polymer-bound e p h e d r i n e d e s c r i b e d ea r l i e r [28]. W h i l e o u r work was i n p r o g r e s s , s e v e r a l r e p o r t s f rom o t h e r l a b o r a t o r i e s on similar d i e t h y l - z i n c a d d i t i o n r e a c t i o n s u s i n g s o l u b l e c a t a l y s t s a p p e a r e d [87-881. Our f i n d i n g s conf i rmed t h a t t h e polymer-bound e p h e d r i n e as w e l l as o t h e r polymer-bound amino a l c o h o l s c o u l d be used e f f i c i e n t l y as ca ta lys t s i n t h i s asymmetr ic a d d i t i o n r e a c t i o n b u t t h e mechanism proposed by o t h e r s [ 8 8 ] d i d n o t m a t c h o u r o b s e r v a t i o n s w i t h t h e i n s o l u b l e c a t a l y s t . Here a g a i n , t h e

Page 9: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

Reactive polymers 36 1

i n s o l u b l e n a t u r e of t h e c a t a l y s t f a c i l i t a t e s t h e e x p l o r a t i o n of t h e r e a c t i o n mechanism as t h e d i s t i n c t p h a s e s which can be s e p a r a t e d from t h e r e a c t i o n m i x t u r e a t d i f f e r e n t s t a g e s of t h e r e a c t i o n p r o v i d e e x c e l l e n t c l u e s as t o t h e n a t u r e of t h e o v e r a l l p r o c e s s , I n t h i s c a s e , o u r r e s u l t s show a two z i n c s p e c i e s mechanism i n which t h e i n i t i a l l y formed polymer-bound z i n c complex o n l y acts t o b ind t h e a l d e h y d e i n a c h i r a l e n v i r o n m e n t w h i l e a l k y l t r a n s f e r o c c u r s i n e n a n t i o s e l e c t i v e f a s h i o n f rom unbound d i e t h y l z i n c .

Development of high activity polymeric supernucleophilic catalysts The d i s c o v e r y of t h e r e m a r k a b l e a c c e l e r a t i o n of a c y l a t i o n r e a c t i o n s by N , N - d i m e t h y l a m i n o - p y r i d i n e catalysts [89 ] h a s l e d t o t h e r a p i d deve lopment of numerous o t h e r ca ta lys t s w i t h similar s t r u c t u r e s [go]. A s t h e s e ca ta lys t s are r e l a t i v e l y c o s t l y and are used i n a p p l i - c a t i o n s where t h e i r c o m p l e t e removal f rom r e a c t i o n medium a f t e r r e a c t i o n may be r e q u i r e d , t h e y are i d e a l c a n d i d a t e s f o r a t t a c h m e n t t o i n s o l u b l e polymer s u p p o r t s . P r e v i o u s work by s e v e r a l g r o u p s [91-951 h a s conf i rmed t h e f e a s i b i l i t y of t h i s approach b u t t h e p o l y m e r s which h a v e been r e p o r t e d t o - d a t e o f t e n l a c k e d i n r e a c t i v i t y , s t a b i l i t y , o r p h y s i c a l p r o p e r t i e s . We h a v e p r e p a r e d and s t u d i e d a number of new ca t a ly t i c s t r u c t u r e s , b o t h low m o l e c u l a r weight and p o l y s t y r e n e - b a s e d [24, 26-27] and succeeded i n producing i n s o l u b l e p o l y m e r i c ca ta lys t s (F ig . 13) p o s s e s s i n g both h i g h r e a c t i v i t i e s and good c h e m i c a l s t a b i l i t y .

T h i s s t u d y a l s o c o n f i r m s t h a t t h e small b u t c l e a r l y d e t e c t a b l e d i f f e r e n c e s i n r e a c t i v i t y b e h a v i o r between t h e p o l y m e r s and model c a t a l y s t s i n s o l u t i o n c a n be a t t r i b u t e d d i r e c t l y t o t h e microenvi ronment which e x i s t s w i t h i n t h e p o l y m e r i c catalysts. Even a t modera te d e g r e e s of f u n c t i o n a l i z a t i o n r e a c t i v e sites are l o c a l l y more c o n c e n t r a t e d i n t h e polymer t h a n would be t h e case i n a homogenous s o l u t i o n . T h i s i n c r e a s e s t h e l o c a l p o l a r i t y a t t h e s i t e of reac- t i o n , which, i n t u r n , a f f e c t s a t t a c k of t h e a l c o h o l on t h e charged i n t e r m e d i a t e and c a u s e s a small b u t d e t e c t a b l e d r o p i n polymer c a t a l y t i c a c t i v i t y when compared t o t h e f r e e models i n s o l u t i o n . S i m i l a r l y , i n a less f a v o r a b l e p o l a r r e a c t i o n medium t h e polymer shows a r e l a t i v e e n h a n c e m e n t i n i t s a c t i v i t y when c o m p a r e d t o t h e f r e e c a t a l y s t a s t h e l o c a l ( s t y r e n i c ) envi ronment of t h e c a t a l y t i c s i tes p r o v i d e s a ' p o l a r i t y s h i e l d ' which c a n n o t be i m i t a t e d i n homogeneous medium. O v e r a l l , t h i s s t u d y c o n f i r m s t h e p o t e n t i a l u s e f u l n e s s of p o l y m e r i c a c y l a t i o n c a t a l y s t s and t h e i m p o r t a n c e of s p a c e r groups and microenvi ronment c o n s i d e r a t i o n s i n t h e s t r u c t u r a l d e s i g n of t h e catalysts.

+cH~- YH +- +H,- CH I -)-

I N-C H,

Me b H OH

F i g . 14. New p h e n o l i c s e p a r a t i o n media

F i g . 13. S u p e r n u c l e o p h i l i c c a t a l y s t r e s i n s

New reactive polymers as media for HPLC column packings Though a l a r g e v a r i e t y o f s o r b e n t s f o r HPLC h a v e b e e n d e s c r i b e d i n r e c e n t y e a r s , t h e v a s t m a j o r i t y of t h e s e a r e based on i n o r g a n i c matriccs such as s i l i ca . Numerous s o r b e n t s c o n t a i - n i n g bound o r g a n i c g r o u p s h a v e been p r e p a r e d [96 ] b u t a l l s i l i c a - b a s e d media s u f f e r f rom t h e same l i m i t a t i o n which i s t h e i r l a c k of s t a b i l i t y a t h i g h pII. T h i s h a s l e d t o t h e deve lopment of more c h e m i c a l l y i n e r t polymer-based s o r b e n t s s u c h a s t h e m a c r o p o r o u s s t y r e n e - d i v i n y l - benzene r e s i n s [97 ] , ion-exchange r e s i n s [98-991, o r a v a r i e t y of m e t h a c r y l i c r e s i n s [loo- 1021. W i t h v e r y f e w n o t a b l e e x c e p t i o n s , l i t t l e w o r k h a s b e e n d o n e i n t h e s p e c i f i c deve lopment of r e a c t i v e r e s i n s s u i t a b l e f o r HPLC though t h e r e may be s i g n i f i c a n t a d v a n t a g e s i n t h e i r u s e f o r s p e c i a l i z e d s e p a r a t i o n s as materials w i t h v e r y s p e c i f i c i n t e r a c t i o n s and e x c e l l e n t c h e m i c a l r e s i s t a n c e c o u l d r e s u l t .

We h a v e u n d e r t a k e n [ 451 t h e d e v e l o p m e n t of m a c r o p o r o u s r e s i n s b a s e d on s t y r e n e monomers c o n t a i n i n g f r e e p h e n o l i c groups. These materials are e x p e c t e d t o show i n t e r e s t i n g p r o p e r t i e s i n t h e i r i n t e r a c t i o n s with a v a r i e t y of s u b s t r a t e s of d i f f e r e n t a c i d i t i e s . I n v i e w of t h e c o m p l i c a t i o n s which arise i n t h e f r e e - r a d i c a l p o l y m e r i z a t i o n of v i n y l - p h e n o l s , t h e monomers we c h o s e a1 1 h a d t h e i r p h e n o l i c h y d r o x y l s p r o t e c t e d as t h e t - b u t y l o x y c a r b o n y l (t-BOC) d e r i v a t i v e . As was s e e n above , t h i s t-BOC p r o t e c t i n g group i s removed eas i ly by a c i d o r b a s e h y d r o l y s i s o r by t h e r m o l y s i s n e a r 190°C. I n g e n e r a l , p u r i f i c a t i o n of smal l 5-10pm b e a d s a f t e r t h e i r p r e p a r a t i o n by s u s p e n s i o n p o l y m e r i z a t i o n o r a f t e r t h e i r c h e m i c a l m o d i f i c a t i o n

Page 10: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

362 J. M. J. FRECHET ef a/.

( i . e . d e p r o t e c t i o n ) i s a v e r y t e d i o u s o p e r a t i o n . I n t h i s i n s t a n c e h o w e v e r , t h e u s e o f a t h e r m a l l y l a b i l e p r o t e c t i n g group f a c i l i t a t e s g r e a t l y t h e p r e p a r a t i o n of HPLC-grade beads as no p u r i f i c a t i o n i s r e q u i r e d a f t e r removal of t h e t-BOC groups s i n c e a l l t h e by-products of t h e d e p r o t e c t i o n a r e gaseous. The v a r i a b l e s which c o n t r o l t h e s i z e , s u r f a c e area, pore s i z e , and pore s i z e d i s t r i b u t i o n f o r bead polymers h a v e been e x p l o r e d i n d e t a i l i n an e x c e l l e n t s t u d y by S v e c and coworkers [ l o 2 1 d e a l i n g w i t h g l y c i d y l m e t h a c r y l a t e - e t h y l e n e d i m e t h a c r y l a t e r e s i n s . Though n o t d i r e c t l y a p p l i c a b l e t o a l l monomer sys tems t h e i r f i n d i n g s are e x t r e m e l y u s e f u l and may b e a d a p t e d i n t h e d e t e r m i n a t i o n o f t h e r e l a t i v e p r o p o r t i o n s o f t h e v a r i o u s components i n t h e p o l y m e r i z a t i o n mixture , t h e c h o i c e of porogen, etc. Using such t e c h n i q u e s and a v a r i e t y of o t h e r t-BOC p r o t e c t e d d e r i v a t i v e s of 2 , 6 - d i a l k y l - 4 - v i n y l - p h e n o l s a number of new 5-10pm s i z e h i g l y p o r o u s p o l y m e r i c a d s o r b e n t s of v a r i o u s a c i d i t i e s (F ig .14) h a v e b e e n p r e p a r e d and shown t o be e f f e c t i v e i n HPLC s e p a r a t i o n s .

Other developments in reactive polymers R e a c t i v e polymers are i n c r e a s i n g l y f i n d i n g new a p p l i c a t i o n s as s p e c i a l t y materials i n a g r e a t v a r i e t y of a p p l i c a t i o n s w h i c h c a n n o t b e d i s c u s s e d h e r e . T h e s e i n c l u d e among o t h e r s , new g e n e r a t i o n s of membrane m a t e r i a l s which show e x c e l l e n t c h e m i c a l o r s i z e s e l ec t iv i ty , polymer- a s s i s t e d t r a n s p o r t s y s t e m s , s p e c i a l t y b i n d e r ma te r i a l s , p h o t o r e s i s t s a n d o t h e r i m a g i n g systems [ 1 0 3 ] , photo- o r e l e c t r o c o n d u c t i v e materials, e t c . A s t h e s e i n c r e a s e i n impor tance t h e f i e l d of r e a c t i v e polymers w i l l c o n t i n u e t o e v o l v e and grow i n many new d i r e c t i o n s .

Acknowledgements F i n a n c i a l s u p p o r t o f t h i s r e s e a r c h by t h e N a t u r a l S c i e n c e s a n d E n g i n e e r i n g R e s e a r c h C o u n c i l o f C a n a d a i s g r a t e f u l l y a c k n o w l e d g e d .

REFERENCES

1. 2. 3 . 4 .

5 . 6 . 7 .

8 .

9 .

10 * 11. 1 2 .

13.

1 4 . 15. 1 6 .

1 7 . 18.

19.

20.

2 1 . 22 *

2 3 . 2 4 . 2 5 . 2 6 .

2 7 . 2 8 .

F. H e l f f e r i c h , I o n E x c h a n g e , McGraw H i l l , N . Y . ( 1 9 6 2 ) . B . A . Adams a n d E . L . H o l m e s , J . Chem. S O C . I n d . , 2, 1 T ( 1 9 3 5 ) . K . W . P e p p e r , H . M . P a i s l e y a n d M . A . Y o u n g , J . Chem. S O C . , 4 0 9 7 ( 1 9 5 3 ) . R . M . W h e a t o n a n d D.F. H a r r i n g t o n , I n d . E n g . C h e m . , 4 _ 4 , 1 7 9 6 ( 1 9 5 2 ) . J . R . M i l l a r , D . G . S m i t h , W.E. Marr a n d T.R.E. K r e s s m a n , J . C h e m . S O C . , 2 1 8 ( 1 9 6 3 ) . R . B . M e r r i f i e l d , J . A m . Chem. S O C . , 85, 2 1 4 9 ( 1 9 6 3 ) . R . B . M e r r i f i e l d , An , 2 4 , 7 9 9 ( 1 9 8 5 ) . P. H o d g e a n d D.C. S y m e r - S u p p o r t e d R e a c t i o n s i n O r g a n i c S y n t h e s i s , W i l e y , N e w Y o r k ( 1 9 8 6 j . N . K . M a t h u r . C . K . N a r a n e . R.E. W i l l i a m s . P o l v m e r s as A i d s i n O r g a n i c

- I

C h e m i s t r , ’ A c a d e m i c P r e s s , N . Y . ( 1 9 8 O j . W.T. For ; ( E d i t o r ) , P o l y m e r i c R e a g e n t s a n d C a t a l y s t s , ACS S y m p o s i u m S e r i e s # 3 0 8 , A m e r i c a n C h e m i c a l S o c i e t y , W a s h i n g t o n ( 1 9 8 6 ) . D.E. B e r g b r e i t e r , C h a p t e r 2 i n r e f . 9 , 1 7 ( 1 9 8 6 ) .

-

W.T. F o r ; , S . M o h a n r a n j , M. P e r i y a s a m y , B r i t . P o l y m . J . , 16, 1 7 9 ( 1 9 8 4 ) . F. S v e c , J . H r a d i l , J. C o u p e k , J . K a l a l , A n e , e w . ! 4 a k r o m o l . C h e m . , 48, 1 3 5 ( 1 9 7 5 ) . H. J a c o b e l l i , M. B a r t h o l i n , A . G u y o t , Angew.Makromo1. Chem., so, 31 ( 1 9 7 9 ) ; J . A p p l . P o l y m . S c i . , 23 , 9 2 7 ( 1 9 7 9 ) . M.J. F a r r a l l , J.M.J. F r b c h e t , J . O r g . C h e m . , 41, 3 8 7 7 ( 1 9 7 6 ) . H . M . R e l l e s , R . U . S c h l u e n z , J . % C h e m . S O C . , 96, 6 4 6 9 ( 1 9 7 4 ) . F. C a m p s , J . C a s t e l l s , M. F e r r a n d s , J. F o n t , T e t r a h e d r o n L e t t . , 1 7 1 3 ( 1 9 7 1 ) . D . B r a u n , M a k r o m o l . C h e m . , 30, 85 ( 1 9 5 9 ) . D . C . E v a n s , M . H . G e o r g e , J . A . B a r r i e , J. P o l y m . S c i . P o l y m . C h e m . E d . , 1 2 . 2 4 7 ( 1 9 7 4 ) . J.M.J. Frechet and M.J. Farrall, Chemistry and Properties of Crosslinked Polymers (S.S. Labana, Editor), p. 59, Academic Press (1977). w n Ethers and Phase-Transfer Catalysis in Polymer Science (L.J. Mathias and C.E. Carraher, editors), p . 1, Plenum Press (1984). J.M.J. F r b c h e t , T e t r a h e d r o n , 37, 6 6 3 ( 1 9 8 1 ) . T.M. F y l e s , C . C . L e z n o f f , J. W e a t h e r s t o n , C a n . J. C h e m . , 5 6 , 1 0 3 1 ( 1 9 7 8 ) . G . D . D a r l i n g a n d J . M . J . F r C c h e t , J . O r g . C h e m . , 2, 2 2 7 0 ( 1 9 8 6 ) . G . D . D a r l i n g , Ph.D. D i s s e r t a t i o n , U n i v e r s i t y o f O t t a w a ( 1 9 8 7 ) . E.H. U r r u t i , T. K i l p , M a c r o m o l e c u l e s , l7, 50 ( 1 9 8 4 ) . A . D e r a t a n i , G.D. D a r l i n g , D. H o r a k , J.M.J. F r b c h e t , M a c r o m o l e c u l e s , i n p r e s s ( 1 9 8 7 ) . A . D e r a t a n i , G . D . D a r l i n g , J.M.J. F r b c h e t , P o l y m e r , i n p r e s s ( 1 9 8 7 ) . J.M.J. F r b c h e t , E . B a l d , P . L e c a v a l i e r , J . O r g . C h e m . , 51, 3 4 6 2 ( 1 9 8 6 ) .

Page 11: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

Reactive polymers 363

2 9 . 3 0 . 31. 3 2 . 3 3 .

3 4 . 35. 3 6 .

3 7 . 38. 3 9 .

4 0 .

4 1 . 4 2 . 4 3 . 4 4 .

45 *

4 6 .

4 7 . 4 8 . 4 9 . 5 0 .

5 1 . 5 2 .

5 3 *

5 4 . 5 5 . 5 6 . 57 * 58. 5 9 .

6 0 . 6 1 . 6 2 . 6 3 .

6 4 .

6 5 .

6 6 .

6 7 . 6 8 .

6 9 . 7 0 .

7 1 .

7 2 .

J . I . C r o w l e y , H . R a p o p o r t , Acc. Chem. Res . , 9 , 135 ( 1 9 7 6 ) . 1 4 . A . K r a u s , A . P a t c h o r n i k , I s r . J . Chem. , 117 2 9 8 ( 1 9 7 8 ) . W.T. F o r d i n r e f . 9 , 247 ( 1 9 8 6 ) . M. T o m o i , W.T. F o r d , J . A m . Chem. S O C . , 103, 3 8 2 1 ( 1 9 8 1 ) . J. M a r c h , A d v a n c e d O r g a n i c C h e m i s t r y , W i l e y , N e w York ( 1 9 8 5 ) a n d r e f e r e n c e s t h e r e i n . M.L. H a l l e n s l e b e n , Angew. Makromol . Chem., 31, 1 4 7 ( 1 9 7 3 ) . G . M a n e c k e , A . Kramer, Makromol . Chem. , 1 8 2 , 7 0 1 7 ( 1 9 8 1 ) . !I. T o m o i , M . G o t s , H. K a k i u c h i , Y . N o g u c h i , M a k r o m o l . Chem. R a p i d C o m n u n . , 6, 3 9 7 ( 1 9 8 5 ) . J . H r a d i l , F . S v e c , P o l y m . B u l l . , 2, 2 6 5 ( 1 9 8 5 ) . J.:I.J. F r C c h e t , E . B a l d , F . S v e c , Reac t . P o l y m . , 1, 2 1 ( 1 9 8 2 ) .

S . I t s u n o , G . D . D a r l i n g a n d J.M.J. F r k c h e t , m a n u s c r i p t s u b m i t t e d f o r p u b l i c a t i o n . C . L . R a s t o n , G . S a l e m , J . Chem. S O C . Chem. Commun. ( 1 9 8 4 ) . H. B o n n e m a n , B . B o d s a n o v i c , R. B r i n k m a n n , D.W. He, B. S p l i e t h o f f , An ew. Chem; I n t . Eld. En l,., '22, 7 2 8 ( 1 9 8 3 ) . -Tetrahedron L e t t . , 2 5 , 3305 ( 1 9 8 4 ) . S . I t s u n o a n d J.M.J. F r C c h e t , u n p u b l i s h e d d a t a . M. V i v a s d e M e f t a h i a n d J.M.J. F r C c h e t , u n p u b l i s h e d d a t a . C i . H e i t z , Adv. P o l y m . S c i . , 23, 1 ( 1 9 7 7 ) . %.I. Z a c h a r i e v a , M . B l e h a , E . Z u r k o v a , F . M i k e s , J . K a l a l , Angew. f l a k r o m o l . Chem. , z, 2 0 1 ( 1 9 7 8 ) . 1d.A. Rolls a n d J.M.J. F r C c h e t , P o l y m . Mat. S c i . E n g . , 51, ( 1 9 8 7 ) , i n p r e s s . J.M.J. F r C c h e t , E. E i c h l e r , C . G . W i l l s o n , II. I t o , P o l y m e r , 2, 9 9 5 ( 1 9 8 3 ) . P . Z . L u , G . D . D a r l i n g a n d J.M.J. F r C c h e t , u n p u b l i s h e d d a t a . S . I t s u n o , J . S y n t h , O r g . Chem. J a p a n , 45, 1 0 1 ( 1 9 8 7 ) . S. I t s u n o , Y . S a k u r a i , K . I t o , A . l l i r a o , S . Nakahama , P o l v m e r , i n p r e s s . F. V i l l e d o n - D e n a i d e , P . L e c a v a l i e r , J.M.J. F r C c h e t , P o l y m . B u l l . , 15, 4 9 1 ( 1 9 3 6 ) . Y. J i a n g , J.M.J. F r C c h e t a n d C . G . M i l l s o n , P o l y m . B u l l . , 17, 1 ( 1 9 8 7 ) . I . C h i b a t a , L . B . W i n g a r d J r , ( E d i t o r s ) , I m m o b i l i z e d M i c r o b i a l C e l Is , A c a d e m i c P r e s s , New Y o r k ( 1 9 8 3 ) . I. C h i b a t a , I m m o b i l i z e d E n z y m e s : R e s e a r c h a n d D e v e l o p m e n t s , W i l e y , New York ( 1 9 7 8 ) . T . H . Mough, S c i e n c e , 223, 272 ( 1 9 6 4 ) . P . E . G a r r o u , Chem. R e v . , 85, 1 7 1 ( 1 9 3 5 ) . P . E . G a r r o u , C h a p t e r 5 i n r e f , 9 , 8 4 ( 1 9 8 6 ) . D . E . B e r g b r e i t e r , B . J . C h a n d r a n , J . A m . Chem. S O C . , 107, 4 7 9 2 ( 1 9 8 5 ) . V . N . R . P i l l a i , M . M u t t e r , T o p i c s i n C u r r e n t Chem. , 106, 1 1 9 ( 1 9 3 2 ) . E . C . B l o s s e y , D . C . N e c k e r s , A . G . T h a y e r , A.P. S c h a a p , J. A m . Chem. S O C . , - 9 5 , 5 3 2 0 ( 1 9 7 3 ) . D . C . T l e c k e r s , C h a p t e r 6 i n r e f . 9 , 1 0 7 ( 1 9 8 6 ) . G . W u l f f , A . S a r h a n , Angew. C h e n . I n t . E d . , ll, 3 4 1 ( 1 9 7 2 ) . G . W u l f f , C h a p t e r 9 i n r e f . 9 , 1 8 6 ( 1 9 8 6 ) . B. L e f e b v r e , R . A u d e b e r t , C . Q u i v o r o n , J. L i q . C h r o m a t o g r . , 1, 7 6 1 ( 1 9 7 8 ) . J . BouC, R . A u d e b e r t , C. Q u i v o r o n , J . C h r o m a t o g r . , 2 0 4 , 185 ( 1 9 3 1 ) . A . A . X u r g a n o v , A . B . T e v l i n , V . A . D a v a n k o v , J. C h r o m a t o g r . , 261, 2 2 3 ( 1 9 8 3 ) . Y. O l c a m o t o , J . S y n t h . , O r g . Chem. J p n , 4 2 , 9 9 5 ( 1 9 3 4 ) . Y . O k a m o t o , S . l l o n d a , I. O k a m o t o , I-!. Y u k i , S . M u r a t a , R . N o y o r i , I I . T a k a y a , J . Am. Chem. S O C . , 103, 6 9 7 1 ( 1 9 3 1 ) . Y . O l c a m o t o , X. S u z u k i , I<. H a t a d a , 1-1. Y u k i , J . A m . Chem. S O C . , 101, 4 7 6 9 ( 1 9 7 9 ) . E . C h i e l l i n i , R . S o l a r o , J . Chem. S O C . , Chem. Commun., 231, ( 1 9 7 7 ) . J. K e l l y , D.C . S h e r r i n g t o n , P o l v m e r , 25 , 1 4 9 9 ( 1 9 8 4 ) . J.M.J. F r k c h e t , J. K e l l y , D . C . S h e r r i n g t o n , P o l y m e r , 2 5 , 1 4 9 1 ( 1 9 3 4 ) . PI. K a w a n a , S . E m o t o , T e t r a h e d r o n L e t t . , 48, 4 3 5 5 ( 1 9 7 2 ) . S . C o l o n n a , 8. M o l i n a r i , S . B a n f i , S . J u l i a , J . M a s a n a , A . A l v a r e z , T e t r a h e d r o n , 3 9 , 1 6 3 5 ( 1 9 8 3 ) . M. K o b a y a s h i , D r i t . P o l y m . J . , l6, 2 0 5 ( 1 9 8 4 ) . P. I l o d g e , E. I o s h d e l , J. U a t e r h o u s e , J.14.J. F r C c h e t , J . Chem. S O C . , P e r k i n T r a n s . I , 2 3 2 7 ( 1 9 8 5 ) . C . R . M c A r t h u r , P.M. W o r s t e r , J . - L . J i a n g , C . C . L e z n o f f , C a n J . Chem. , g, 1 8 3 6 ( 1 9 8 2 ) . J.M.J. F r b c h e t , J. X a l g a s , D . C . S h e r r i n g t o n , R e a c t . P o l y m . , I, 2 2 7 ( 1 9 8 3 ) .

Page 12: Reactive polymers: design considerations, novel ...publications.iupac.org/pac-2007/1988/pdf/6003x0353.pdf · Reactive polymers: design considerations, novel preparations and selected

364 J. M. J. FRCCHET eta/.

73 . P. L e c a v a l i e r , E. D a l d , Y . J i a n p , J.M.J. F r B c h e t , P . H o d p e , R e a c t . P o l y m . 2, 3 1 5 ( 1 9 8 5 ) . S. I t s u n o , K . I t o , A . A i r a o , G . N a k a h a m a , J. C h e m . S O C . , P e r k i n T r a n s . I , 2 8 8 7 ( 1 9 8 4 ) . -

7 4 . J . H . L i u , K . K o n d o , 1. T a k e m o t o , N a k r o m o l . C h e m . , 184, 1547 ( 1 9 8 3 ) . 75 . H . S u d a , S . K a n o h , N . U m e d a , M . I k k a , !I. N o t o i , Chem. L e t t . 3 9 9 ( 1 9 8 4 ) 76. S . I t s u n o , M . N a k a n o , I(. M i y a z a l c i , 11. M a s u d a , K . I t o , A . E i r a o , S .

M a k a h a m a , J . Chem. S O C . P e r k i n T r a n s . I , 2039 ( 1 9 8 5 ) . 7 7 . S . I t s u n o . M. N a l t a n o , I(. I t o , A. H i r a o , H. O w a . N . K a n d a . S. N a k a h a m a .

i b i d . , 2615 ( 1 9 8 5 ) . .

Chem. S O C . J p n , 5 9 , 3329 ( 1 9 8 6 ) .

Jpn, 60 , 395 ( 1 9 8 7 ) .

( 1 9 7 8 ) .

7 8 . S. I t s u n o , X. I t o , T . M a r u y a m a , N . K a n d a , A . H i r a o , S . N a k a h a m a , B u l l .

7 9 . S. I t s u n o , Y . S a l c u r a i , I(. I t o , A . A i r a o , S. M a k a h a m a , B u l l . C h e m . S O C ,

8 0 . J.M.J. F r B c h e t , J. W a r n o c k , M.J. F a r r a l l , J. O r g . C h e m . , 4 1 , 2 6 1 8 - 8 1 . J.M.J. F r B c h e t , M . V i v a s d e M e f t a h i , a r i t . P o l y m . J . , 16, 1 9 3 ( 1 9 8 4 ) . 8 2 . R e i l l e x r e p o r t s , R e i l l y T a r a n d C h e m i c a l C o . , I n d i a n a p o l i s . 8 3 . J . R e b e l : , F . G a v i n o , J . A m . Chem. S O C . , 97, 3453 ( 1 9 7 5 ) . 8 4 . J . R e b e l c , T e t r a h e d r o n , 3 5 , 723 ( 1 9 7 9 ) . 8 5 . 3. J. C o h e n , M . A . K r a u s , A . P a t c h o r n i k , J. A m . C h e m . S O C . , 99, 4 1 6 5

( 1 9 7 7 ) . 8 6 . N . O g u n i , T . O m i , T e t r a h e d r o n L e t t . , g , 2823 ( 1 9 8 4 ) . 87 . 14. K i t a m u r a , S . S u g a , X. Kawai , R . N o y o r i , J . A m . C h e m . S O C . , 108, 6 0 7 1

( 1 9 8 6 ) . 8 8 . 8 9 .

9 0 . 91 .

9 2 . 93 *

9 4 . 9 5 .

9 6 .

9 7 .

9 9 .

1 0 0 .

1 0 1 ,

9 8 .

A . A . S m a a r d i j k , H . W y n b e r g , J . O r g . C h e m . , 5 2 , 135 ( 1 9 8 7 ) . L.M. L i t v i n e n l c o , A . I . R i r i c h e n k o , D o k l . A k a d . Haul< SSSR, S e r . K h i m . , 1 7 6 , 9 7 ( 1 9 6 7 ) ; C h e m . A b s t r . , 68, 6 8 3 2 5 ( 1 9 6 8 ) . T S t e g l i c h , G . H o f l e , A n ~ e w . Chem. I n t . E d . E n g l . , 2, 9 8 1 ( 1 9 6 9 ) . E . F . V . S c r i v e n , M . T o m o i , Y . A i c a d a , il . K a k i u c h i , l * l a k r o m o l . C h e m . , R a p i d C o m m u n . , 3, 5 3 7 ( 1 9 8 2 ) . M . T o m o i , El. G o t o , i I . K a k i u c h i , M a k r o m o l . C h e m . , R a p i d C o m m u n . , - 6 , 3 9 7 ( 1 9 8 5 ) . F.11. i ‘ i e n g e r , D . J . M c C a n n , J . O r g . C h e m . , 2, 3 9 2 8 ( 1 9 8 5 ) . F. G u e n d o u z , R . J a c q u i e r , J . V e r d u c c i , T e t r a h e d r o n L e t t . , 3, 4 5 2 1 ( 1 9 8 4 ’ , . , -_- , _ E . J . D e l a n e y , L . E . Wood, I . M . K l o t z , J . Am. Chem. S O C . , 104, 799 ( 1 9 8 2 ) . L.J . M a t h i a s , R . A . V a i d z a , R . X . B l o o d w o r t h , J . c i . , P o l y m . L e t t . , 2 3 , 289 ( 1 9 8 5 ) . R.J. Hamilton and P . A . Sewell (Editors), Introduction to High Performance Liquid Chromatography, 2nd edition, p. 80-125, Chapman and Hall. London (1982). D.P.. L e e a n d J.H: K i n d s v a t e ; , A n a l . C h e m . , 5 2 , 2425 ( 1 9 8 0 ) . Y . 3 . Y a n g , F . N e v e j a n s , H . V e r z e l e , C h r o i n a t o r a h i a , 20 , 735 ( 1 9 8 5 ) . P . H a j o s , J . I n c z e d y , J . C h r o m a t o g r . , 2 0 1 , 2F3 T 1 9 8 O ) T

R . M a t s u d a , T. Yamamiya, M . T a t s u z a w a , A . E j i m a , W . T a l c a i , J- C h r o m a t o g r . , 173, 75 ( 1 9 7 9 ) . A . N . A g e e v , A . A . A r a t s k o v a , L . D . B e l y a k o v a , T.N. G v o z d o v i c h , A . V . K i s e l e v , Y . A . I . Y a s h i n , J. K a l a l , F. S v e c , C h r o m a t o g r a p h i a , l7, 545 ( 1 9 8 3 ) .

1.1. D r e s s l e r , J . C h r o m a t o g r . , E, 1 6 7 (1979).

1 0 2 . D. B o r a l c , F. S v e c , EI. B l e h a , J . K a l a l , A n g e w . M a k r o m o l . C h e m . , 2, 1 0 9 ( 1 9 8 1 ) .

1 0 3 . J.M.J. F r C c h e t , F. B o u c h a r d , E . E i c h l e r , F.M. I I o u l i h a n , T. I i z a w a , 5 . K r y c z k a , C . G . W i l l s o n , P o l v m . J . , 9, 3 1 ( 1 9 8 7 ) . C . G . l i i l l s o n , :-I. I t o , J.M.J. F r B c h e t , T.G. T e s s i e r , F.M. i i o u l i h a n , J. E l e c t r o c h e m . S O C . , 133, 1 0 1 ( 1 9 8 6 ) .