temperature-programmed desorption study of the reaction of ... · temperature-programmed desorption...

22
Temperature-Programmed esorption Study of the Reactio Water and Epitaxial Graphen on Silicon Carbide KAREN PORTER-DAVIS CHAMBLEE CHARTER HIGH SCHOOL STEP-UP PROGRAM 2013 THE ORLANDO GROUP GEORGIA INSTITUTE OF TECHNOLOGY

Upload: others

Post on 13-Jul-2020

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene

on Silicon Carbide KAREN PORTER-DAVIS

CHAMBLEE CHARTER HIGH SCHOOL

STEP-UP PROGRAM 2013

THE ORLANDO GROUP

GEORGIA INSTITUTE OF TECHNOLOGY

Page 2: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Benefits of Nuclear Power   -­‐Much  less  greenhouse  gases  released     -­‐Produce  more  electric  power  for  less  cost     -­‐Technology  already  understood  

However….  

Plant  Vogtle  in  Waynesboro,  GA.  Two  new  reactors  will  start  producing  electricity  2016  and  2017.    First  new  reactor  built  in  US  in  30  years.  (NRC  approved  4  to  1  in  Feb.  2012)  AP1000  reactors  with  ZIRLO  cladding.  

Page 3: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Safety and Fuel-Cladding   Disaster  at  Fukushima  1  Nuclear  Power  Plant  in  March  of  2011  has  brought  concern  over  the  safety  of  nuclear  power.  

  The  tsunami  waves  destroyed  cooling  system  and  caused  the  reactors  to  overheat.  

  Zircaloy  fuel-­‐cladding  oxidized  and  produced  hydrogen  gas.     Hydrogen  gas  led  to  explosions  in  reactors.     Need  for  longer-­‐lasZng  materials  for  fuel-­‐cladding  that  are  able  to  hold  up  to  loss-­‐of-­‐cooling  accidents  (LOCA).  

Page 4: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Fuel-Cladding

NUCLEAR  FUEL  ASSEMBLY  Zirconium  alloys  are  used  as  cladding  materialh?p://www.miningweekly.com/arFcle/network-­‐advances-­‐beneficiaFon-­‐and-­‐rd-­‐2012-­‐11-­‐02  

h?p://crisasantos.com.br/com/nuclear-­‐rods-­‐melFng  

cladding  

Fuel-­‐cladding  is  used  to  separate  the  radioacZve  fuel  from  the  coolant  so  the  neutrons,  gamma  rays  and  alpha  and  beta  parZcles  that  are  created  during  the  fission  process  are  not  released  into  the  environment.    

Page 5: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Fuel-Cladding   There  are  several  factors  to  consider  when  deciding  on  the  type  of  Fuel-­‐Cladding  material  but  most  notably:     1)    Transparency  to  neutrons     2)    High  Thermal  ConducZvity     3)    Low  Thermal  Expansion  Coefficient  

  4)    Chemical  CompaZbility     5)    Mechanical  Strength  

Page 6: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Current Materials for Fuel-Cladding   MeeZng  the  aforemenZoned  requirements  Zirconium  (Zr)  and  alloys  of  Zr  (Zircaloy  and  ZIRLO)  are  the  most  used  fuel-­‐cladding  materials.  

  However,  at  high  temperatures  and  high  energy  radiaZon  exposure  (like  LOCA)  exothermic  reacZons  of  Zr  with  water/steam  yield  hydrogen  in  great  amounts  which  could  lead  to    

  1)    Hydrogen  Embriblement  

  2)    ProducZon  of  hydrogen  gas  

h?p://www.bing.com/images/search?q=hydrogen+gas+explosion+nuclear+reactors&FORM=HDRSC2#view=detail&id=14AB280C0A377C6DE796707775601E56B1935EC3&selectedIndex=0  

Hydrogen  Gas  explosion  at  Fukushima  Dai-­‐ishi    

h?p://www.machinerylubricaFon.com/Read/573/moisture-­‐contaminaFon-­‐targets  

Page 7: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Additional Materials for Fuel-Cladding   Promising  research  into  Silicon  Carbide  (SiC)  as  a  replacement  for  fuel-­‐cladding     Epitaxial  Graphene  (EG)  on  SiC  meets  the  thermal  and  mechanical  needs  for  fuel-­‐cladding  and  since  graphene  has  a  hydrophobic  nature  it  is  thought  to  be  less  reacZve  to  steam  and  therefore  less  likely  to  produce  hydrogen.     Single-­‐layered  graphene  has  not  been  fully  tested  under  extremely  high  temperatures  or  under  condiZons  that  mimic  LOCA.  

Page 8: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Epitaxial Graphene   Mono-­‐layered  graphene  in  a  2-­‐D  honeycomb  arrangement  of  carbon  atoms     Studied  for  its  electrical,  chemical,  thermal  and  mechanical  properZes.     Epitaxial  means  that  the  graphene  is  grown  on  a  surface  of  a  crystal  material  and  mimics  the  arrangement  of  that  substrate.     Sample  from  Dr.  de  Heer’s  group  using  a  “Confinement  Controlled  SublimaZon”  to  grow  high  quality  layers  of  EG  on  SiC.  

Epitaxial  Graphene  on  Silicon  Carbide  h?p://cnx.org/content/m29187/latest/    

Page 9: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Raman Spectroscopy

J.  Phys.  Chem.  C  2008,  112,  10637–10640.  Copyright  2008  American  Chemical  Society;  h?p://www3.ntu.edu.sg/home/yuFng/papers/nano%20research-­‐review%20graphene.pdf  

Used  to  detect  low  frequency  modes  in  a  sample.  InelasZc  scabering  (KE  is  not  conserved)  

h?p://www-­‐che.engr.ccny.cuny.edu/courses/che5535/lecture5/sld002.htm  

Page 10: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Raman Data of EG on SiC The  sample  of  EG  on  SiC  showed  the  characterisZc  G  (1500  –  1620  cm¯ˉ¹)  and  2D  (2700-­‐2750  cm¯ˉ¹).    SiC  was  subtracted.  

Wavenumber  (cm¯ˉ¹)  

Intensity

 (arbitrary  un

its)   2  D  peak  

G  peak  

Page 11: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Monitoring Desorbed molecules of EG on SiC

  To  test  the  thermal  stability  of  the  sample  the  desorpZon  defects  were  measured  with  a  special  interest  in  hydrogen  gas.  

  Temperature  Programmed  DesorpZon  (TPD):    the  technique  of  observing  desorbed  molecules  from  a  surface  as  the  surface  temperature  is  increased  via  a  mass  analyzer.    

  Quadrupole  analyzer  commonly  used.  

  As  desorpZon  occurs  ions  are  released  into  the  chamber  and  guided  to  the  quadrupole.  

  The  ions  move  through  the  electric  field  formed  by  the  rods.    The  strength  and  frequency  of  the  field  dictates  if  an  ion  of  a  parZcular  mass  will  pass  through  the  rods  and  therefore  counted  by  the  detector  or  collides  into  a  nearby  surface.  

Page 12: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

TPD   Designed  and  created  by  Orlando  Group     Ultra  High  Vacuum  chamber  (1.4  E-­‐8  Torr)  

  Sample  stage  with  thermocouple  abached  to  a  thin  tantalum  wire  acZng  as  a  spring  clip,  allowing  direct  contact  with  the  sample.  

  Nitrogen  chamber  to  keep  out  pump  oil  and  other  impuriZes.  

  Temperature  range  500°C  to  1000°C  (5  minute  intervals)  

  Temperature  controlled  by  adjusZng  current  7  A  –  19/20  A  

  Empty  chamber,  SiC  ,  EG  on  SiC    (with  and  without  water  –  dose  set  for  2.5  E  -­‐10  A.  

  Quadrupole  analyzer     Quadera  sooware  

Page 13: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

Thermal Programmed Desorption Sample  stage  

Vacuum  Chamber  

Quadrupole  

Water  Source  

Orla

ndo  Grou

p  Ge

orgia  InsFtute  of  T

echn

ology  

Page 14: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

TPD Data of H2

0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

0   0.2   0.4   0.6   0.8   1   1.2  

Time  (s)  

Ion  Cu

rren

t  Inten

sity  (A

)  

0.00E+00  

2.00E-­‐11  

4.00E-­‐11  

6.00E-­‐11  

8.00E-­‐11  

1.00E-­‐10  

1.20E-­‐10  

0   500   1000   1500   2000   2500   3000   3500   4000   4500   5000  

Run  1  Empty  Chamber_H2O  

Run  1  SiC_H2O  

Run  1  EG  on  SiC_H2O  

Run  1  EG  on  SiC_No  H2O  

Page 15: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

TPD Data of CO2

0.00E+00  

1.00E-­‐11  

2.00E-­‐11  

3.00E-­‐11  

4.00E-­‐11  

5.00E-­‐11  

6.00E-­‐11  

7.00E-­‐11  

0   500   1000   1500   2000   2500   3000   3500   4000   4500   5000  

Run  1  Empty  Chamber_H2O  

Run  1  SiC_H2O  

Run  1  EG  on  SiC_No  H2O  

Run  1  EG  on  SiC_H2O  

Time  (s)  

Ion  Cu

rren

t  Inten

sity  (A

)    

Page 16: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

TPD Data of CO

0.00E+00  

1.00E-­‐11  

2.00E-­‐11  

3.00E-­‐11  

4.00E-­‐11  

5.00E-­‐11  

6.00E-­‐11  

0   500   1000   1500   2000   2500   3000   3500   4000   4500   5000  

Run  1  Empty  Chamber_H2O  

Run  1  SiC_H2O  

Run  1  EG  on  SiC_No  H2O  

Run  1  EG  on  SiC_H2O  

Time  (s)  

Ion  Cu

rren

t  Inten

sity  (A

)  

Page 17: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

TPD overlay of CO and CO2

0.00E+00  

2.00E-­‐11  

4.00E-­‐11  

6.00E-­‐11  

8.00E-­‐11  

1.00E-­‐10  

0   500   1000   1500   2000   2500   3000   3500   4000   4500   5000  

Run  1  EG  on  SiC_H2O  

Run  1  EG  on  SiC_H2O  

Time  (s)  

Ion  Cu

rren

t  Inten

sity  (A

)  

CO    

CO2    

Page 18: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

FINAL THOUGHTS   Graphene  appears  to  not  react  with  water  at  high  temperatures  to  produce  hydrogen  gas  

  More  research  on  EG  on  SiC  in  LOCA  condiZons  

  Further  quanZfy  and  characterize  the  TPD  tested  sample  

  1)    High  ResoluZon  Transmission  Electron  Microscopy  

  2)    Raman  spectroscopy  

  Future  DirecZon     1)  Wrapped  EG  around  Zircaloy    

  2)  Grow  Chemical  Vapor  Deposited  (CVD)  on  Zircaloy  

  TesZng  both  in  TPD  chamber  to  analyze  H2  desorpZon  

Page 19: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

ACKNOWLEDGEMENTS   I  would  like  to  thank  the  following  people  and  groups  for  this  rewarding  opportunity:     NaZonal  Science  FoundaZon  (NSF)     Dr.  Leyla  Conrad  and  the  STEP-­‐UP  Program     Giovanni  DeLuca     Dr.  Thomas  Orlando     The  Orlando  Group  

Page 20: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

References   Azevedo,  C.R.F.  “SelecFon  of  Fuel  Cladding  Material  for  Nuclear  Fission  Reactors”,  Engineering                    Failure  Analysis,  Volume  18,  Issue  8,  December  2011,  Pages  1943-­‐1962,  ISSN  1350-­‐6307,  10.1016/j.engfailanal.2011.06.010.  2  July  2013.  (h?p://www.sciencedirect.com/science/arFcle/pii/S1350630711001531)    

  Burgess,  J.  “10  Pros  and  Cons  of  Nuclear  Power:    Discovery  Channel”.    Discovery      Communica;ons,  LLC.  2013.  Web.  22  July  2013.  <  h?p://dsc.discovery.com/tv-­‐shows/curiosity/topics/10-­‐pros-­‐cons-­‐nuclear-­‐power.htm>  

  Carpenter,  David.    “Comparison  of  Pellet-­‐Cladding  Mechanical  InteracFon  for    

  Zircaloy  and  Silicon  Carbide  Clad  Fuel  Rods  in  Pressurized  Water  Reactors”.    Department  of  Nuclear  Science  and  Engineering:    Massachuse?s  InsFtute  of  Technology.  Cambridge,  MA.  11  December  2011.    

         Congressional  Research  Service.  (2012).  Fukushima  Nuclear  Disaster.  Washington  D.C.:  Holt,  M.,  Campbell,  R.J.,  and  NikiFn,  M.B.  Retrieved  July  22,  2013  from  h?p://www.fas.org/sgp/crs/nuke/R41694.pdf  

  Deeson,  Eric.  (2007).  Collins  Internet-­‐Linked  Dic;onary  of  Physics.  London:    HarperCollins  Publishers  Ltd.     Dunn,  Peter.  ”Silicon  Carbide  Cladding  Proves  its  Me?le”.    Spotlight  on  NSE  Research.  Department  of  Nuclear  Science  and  Engineering:    Massachuse?s  InsFtute  of  Technology.  30  July  2011.  Web.  23  July  2013.  <  h?p://web.mit.edu/nse/pdf/spotlights/2010/KohseCarpenterSpotlight.pdf>  

Page 21: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

References    “Epitaxial  Graphene”.    Materials  Research  Science  and  Engineering  Center  Website.    Georgia  InsFtute  of  Technology.  2009.  Web.  22  July  2013.  <h?p://www.mrsec.gatech.edu/epitaxial-­‐graphene>  

   Field,  Daniel  Alexander.  “Temperature  Programmed  Desorp;on  of  Graphene  Oxide  Under  Ultra-­‐High  Vacuum”.    Texas  State  University-­‐San  Marcos.    San  Marcos,  TX.    December  2008.  

   “Fuel  and  Cladding”.DoITPoMS:  Dissemina;on  of  IT  for  the  Promo;on  of  Materials  Science.  Cambridge  University.  nd.  Web.  27  June  2013.  h?p://www.doitpoms.ac.uk/tlplib/nuclear_materials/fuel.php?printable=1  

   "Fukushima  nuclear  accident  update  log,  updates  of  15  March  2011".  IAEA.  15  March  2011.  Web.  23  July  2013.  h?p://www.iaea.org/newscenter/news/2011/fukushima150311.html  

   “Fukushima  Accident”,  World  Nuclear  Associa;on,  England  and  Wales.  26  June  2013.  Web.  2  July  2013.<h?p://www.world-­‐nuclear.org/info/Safety-­‐and-­‐Security/Safety-­‐of-­‐Plants/Fukushima-­‐Accident-­‐2011/>  

   “How  Nuclear  Plants  Generate  Electricity”.    The  Nuclear  Energy  InsFtute.    26  November  2008.    Web.    22  July  2013.  <  h?p://alternaFveenergy.procon.org/view.answers.php?quesFonID=001268>  

   “Hydrogen  Embri?lement”.  Corrosion  Doctors.  Kingston  Technical  Sowware.  2013.  Web.  23  July  2013.  <  h?p://www.corrosion-­‐doctors.org/Forms-­‐HIC/embri?lement.htm>  

   “IntroducFon  to  Spectroscopy”,  NASA’s  Imagine  the  Universe;  High  Energy  Astrophysics  Science  Archive  Research  Center.    05  Sep  2006.  Web.    02  July  2013.    <h?p://imagine.gsfc.nasa.gov/docs/teachers/lessons/xray_spectra/background-­‐spectroscopy.html>  

   Kim,  H.H.,  Kim,  J.H.,  Moon,  J.Y.,  Lee,  H.S.,  Kim,  J.J.,  and  Chai,  Y.S.  “High-­‐temperature  OxidaFon  Behavior  of  Zircaloy-­‐4  and  Zirlo  in  Steam  Ambient”.    Science  Direct.  Journal  of  Material  Science  and  Technology.  2010,  26  (9),  827-­‐832.  Web.  23  July  2013.  <  h?p://www.jmst.org/fileup/PDF/2009241.pdf>  

      

Page 22: Temperature-Programmed Desorption Study of the Reaction of ... · Temperature-Programmed Desorption Study of the Reaction of Water and Epitaxial Graphene on Silicon Carbide KAREN

References    Kulesa,  Craig.  “What  is  Spectroscopy”,  Arizona  State  University.  4  Feb  1997.  Web.  3  July  2013.                                                                <h?p://loke.as.arizona.edu/~ckulesa/camp/spectroscopy_intro.html>  

   “Mass  Spectrometer:    Analyzer”.    Huygens  Probe  Gas  Chromatography  Mass  Spectrometer.  NASA.  nd.  Web.  23  July  2013.  <  h?p://huygensgcms.gsfc.nasa.gov/MS_Analyzer_1.htm>  

  Ni,  Z.,  Wang,  Y.,  Yu,  T.,  and  Shen,  Z.  “Raman  spectroscopy  and  Imaging  of  Graphene”.  Tsinghua  Press  and  Springer-­‐Verlag.  28  August  2008.  Web.  23  July  2013.  

  Nuclear  Regulatory  Commission.  (2011).  What  happened  at  Fukushima:    A  Technical  Perspec;ve.  San  Ramon,  CA:    Lobscheid,  C.  Retrieved  July  22,  2013  from  <h?p://eetd-­‐seminars.lbl.gov/sites/eetd-­‐seminars.lbl.gov/files/Fukushima1_Technical_PerspecFve_LBL_EEDT_04052011-­‐1.pdf  >  

   Porter-­‐Davis,  Karen.    Interview  with  Dr.  Thomas  Orlando.  School  of  Chemistry  and  Biochemistry.  Georgia  InsFtute  of  Technology.    Atlanta,  Georgia.  June  2013.  

   Porter-­‐Davis,  Karen.    ConFnuous  interview  with  Giovanni  DeLuca.  Department  of  Physics.  Georgia  InsFtute  of  Technology.    Atlanta,  Georgia.  Summer  2013.  

   “Raman  Spectroscopy:  Tutorial”,  Laboratory  of  Photo-­‐induced  Effects  VibraFonal  and  X-­‐ray  Spectroscopies.    Physics  Department,  University  of  Parma.    2007  Web.  2  July  2013.  h?p://www.fis.unipr.it/phevix/raman_tutorial.html  

   “Raman  Spectroscopy”.  Andor.  nd.  Web.    26  June  2013.<  h?p://www.andor.com/learning-­‐academy/raman-­‐spectroscopy-­‐an-­‐introducFon-­‐to-­‐raman-­‐spectroscopy>  

   Serway,  Raymond  A.,  and  Jerry  S.  Faughn.    Holt  Physics.    AusFn,  Texas:    Holt,  Rinehart  and  Winston,  2000.  

   Toon,  J.  “Growing  Graphene:  “Confinement  Controlled  SublimaFon”  Produces  High  Quality  Graphene  on  Silicon  Carbide  by  Controlling  Silicon  EvaporaFon”.  Research  News:    Electronics  &  Nanotechnology.    Georgia  InsFtute  of  Technology.  22  September  2011.  Web.  22  July  2013.