real variable methods in fourier analysis (north-holland mathematics studies 46)

407

Upload: miguel-de-guzman

Post on 22-Dec-2016

271 views

Category:

Documents


16 download

TRANSCRIPT

Page 1: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)
Page 2: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

REAL VARIABLE METHODS IN FOURIER ANALYSIS

Page 3: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 4: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

NORTH-HOLLAND MATHEMATICS STUDIES 46

Notas de Matematica (75) Editor: Leopoldo Nachbin

Universidade Federal do Rio de Janeiro and University of Rochester

Real Variable Methods in Fourier Analysis

MIGUEL DE GUZMAN Universidad Complutense de Madrid Madrid, Spain

1981

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NEW YORK OXFORD

Page 5: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

0 Nortli- Holland Publishing Compuny, 1481

All rights reserved. No part of this publication may be reproduced. stored in a retrievalsystem. o r transmitted, in any form or by any means, eleclronic, mechunical, photocopying, recording

or otherwise, without the prior permission of the copyright owner.

ISBN: 0 444 86124 6

publisher^:

AMSTERDAM'NEW YORK O X F O R D NORTH-HOLLAND PUBLISHING COMPANY

Sole distributors for the U.S.A. and Canurlu:

5 2 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 ELSEVIER NORTH-HOLLAND, INC.

Library of Congress Cataloging in Publication Data

Guzdn, Miguel de, 1936- Real variable methods in Fourier andysis.

(Notas de m t d t i c a . 75) (North-Holland

Bibliography: p. Includes index. 1. Fourier analysis. 2. Functions of real

mathematics studies ; 46)

variables. 3. Operator theory. I. Title. 11. Series. W.N86 no. 75 LQ403.51 510s [515'.24331 8022545 ISBN 0-444436124-6

PRINTED IN THE NETHERLANDS

Page 6: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

Dedicated to

ALBERTU P. CALVERbN

and

ANTON1 ZYGMUNV

Page 7: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 8: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

PREFACE

The work presented he re i s centered around t h e s t u d y o f some o f t h e r e a l v a r i a b l e methods newly developed i n a n a t u r a l way f o r t h e t rea tmen t o f d i f f e r e n t problems i n F o u r i e r A n a l y s i s , p a r t i c u l a r l y f o r problems r e l a t e d t o t h e p o i n t w i s e convergence of some i m p o r t a n t ope ra to rs . s tand these ques t i ons i s t h e corresponding maximal o p e r a t o r and so t h e methods presented here concern t h e genera l S te in -N i k i s h i n theo ry , t h e genera l and s p e c i a l techniques t h a t can be used t o deal w i t h d i f f e r e n t types o f o p e r a t o r s , t he c o v e r i n g methods o r i g i n a t e d i n d i f f e r e n t i a t i o n ' t heo ry , methods connected w i t h t h e theo ry of s i n g u l a r i n t e g r a l ope ra to rs , F o u r i e r m u l t i p l i e r s , . . .

t r y t o desc r ibe , i n a c o n t e x t as s imp le as p o s s i b l e , some o f t h e main i deas around a p a r t i c u l a r t o p i c . h a u s t i v e i n g i v i n g r e s u l t s . On t h e o t h e r hand we have t r i e d t o p r e s e n t those methods i n a c t i o n and i t i s under t h i s l i g h t t h a t t h e a p p l i c a t i o n s o f those methods t h a t we show as samples i n t h e book have t o be understood. The main aim o f o u r e x p o s i t i o n t h e r e f o r e i s t h a t t h e reader who f o l l o w s our work can l o c a t e t h e r i g h t p l a c e which each one o f t h e techniques and methods we p r e s e n t occupies i n t h e modern F o u r i e r A n a l y s i s . t ime he w i l l be a b l e t o a c q u i r e a f i r s t f a m i l i a r i z a t i o n w i t h those techniques by see ing some o f t h e i r most i m p o r t a n t a p p l i c a t i o n s .

I n t h e f i e l d we a re go ing t o e x p l o r e t h e r e a r e many i n t e r e s t i n g open problems. I have t r i e d t o emphasize some o f t h e ones t h a t a r e connected w i t h t h e aspects o f t h e t h e o r y we s h a l l s tudy . i n t h e t e x t i s g i v e n a t t h e end.

perhaps be meaningless f o r t h e t o t a l l y n o n - i n i t i a t e d , b u t t hey may be o f some use f o r t h e reader who i s acqua in ted w i t h t h e fundamentals o f r e c e n t F o u r i e r Ana lys i s .

Chapter 1 cons ide rs i n an a b s t r a c t way t h e most i m p o r t a n t problem we deal wit- o f t h e p o i n t w i s e convergence o f a sequence of o p e r a t o r s . The Banach p r i n c i p l e , which i s a p a r t i c u l a r form o f t h e u n i f o r m boundedness p r i n c i p l e , i s t h e s t a r t i n g p o i n t o f o u r s tudy . The f i n i t e n e s s a.e. o f t h e assoc ia ted maximal ope ra to r leads t o t h e convergence a.e. o f t h e sequence o f ope ra to rs ,

t he modern m m e n t s o f N i k i s h i n , Maura is and G i l b e r t . T h e i r work i s more e a s i l y understood under t h e l i g h t o f i t s g e n e t i c g rowth and so we p re - sen t f i r s t t h e r e s u l t s o f A. Calderbn, S t e i n and Sawyer, acco rd ing t o which

The key t o under-

Our work has an i n t r o d u c t o r y c h a r a c t e r . I n each chap te r we s h a l l

Our goal i s t o p r e s e n t methods, n o t t o be ex-

A t t h e same

A l i s t o f t h e ones ment ioned

The f o l l o w i n g i n d i c a t i o n s about t h e con ten ts o f t h e whole work w i l l

I n Chapter 2 we s h a l l f o l l o w t h e l i n e o f t hough t which has l e a d t o

v i i

Page 9: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

v i i i PREFACE

the f in i t eness a.e. of the maximal operator i s equiva len t , under some par- t i c u l a r circumstances, t o the weak type of the same maximal opera tor . The r e s u l t s of Nikishin, Maurais and Gi lber t extend and simplify the previous theorems i n t h i s di rec t ion .

study of t h e m a l opera tor , such as those of covering and decomposition of functions, i n t e rpo la t ion , ex t rapola t ion , majorization, 1 i nea r i za t ion , summation, ... Some of them a r e of constant use i n t h i s type of Analysis. The method of i n t e rpo la t ion , i n pa r t i cu la r , has developed i n t o a f u l l branch of Analysis. We present here some of t h e most important results and r e f e r t o the specialized modern monographs f o r fu r the r information.

allow the use of a pa r t i cu la r method which seems t o be of i n t e r e s t . order t o see whether the maximal onerator i n question i s of weak type (1 , l ) i t su f f i ces t o study i t s ac t ion on f i n i t e sums o f Dirac de l t a s . This i s the main theorem of Chapter 4 , where some consequences and extensions a re given.

For the type (2,2) of an operator there a r e special techniques ava i lab le , such a s the Fourier transform and the lemma of Cotlar. Also the method of ro t a t ion i s useful i n order t o extend a one-dimensional i n - equa l i ty t o more dimensions. These methods a r e presented in -- Chapter 5 .

t a i n very bas i c operators, t he Hardy-Littlewood maximal operator and i t s var ian ts . other operators of grea t i n t e r e s t , such a s the Calderbn-Zygmund opera tors and the diverse operators o f approximation of t he i d e n t i t y . Also their behaviour i s intimately r e l a t ed t o the d i f f e r e n t i a t i o n of i n t eg ra l s .

c o n n e c t i o n m e n coverings, d i f f e ren t i a t ion and several extensions of the Hardy-Littlewood maximal operator.

a t i on p r o p m f some bases of i n t e rva l s and rec tangles i n R2. This study has been g rea t ly enriched by the important recent cont r ibu t ions of Cbrdoba, R. Fefferman, Stromberg and o thers .

measurable s e t s , f i r s t developed by Besicovitch, t h a t a r e most re levant f o r the study of some of t he problems t h a t a r i s e i n a natural way i n d i f f e ren - t i a t i o n theory and i n other a reas of Fourier Analysis.

i d e n t i t y , viewedin t h e i r re la t ionship w i t h d i f f e r e n t i a t i o n theory.

in tegra l operators. The methods presented i n previous chapters a r e suc- ces s fu l ly p u t t o work i n order t o obta in , i n a very easy way, the c l a s s i ca l results about the Hilbert transform and the Calderbn-Zygmund theory.

the poss ib i l i t y of applying the Fourier transform t o ce r t a in problems

Chap te r 3 considers some of the general techniques which ease the

Convolution operators , of paramount importance i n Fourier Analysis, In

Chapters 6 throuqh 9 a r e c lose ly connected w i t h the study of cer-

Their importance stems from the f a c t t h a t they control many

Chapter 6 shows the most important general r e s u l t s about the

Chapters 7 and 8 deal w i t h the special covering and d i f f e r e n t i -

Chapter 9 describes some of the fea tu res of t he theory of l i n e a r l y

Chapter 10 deals w i t h d i f f e r e n t types of approximations of the

Chapter 11 unfolds the main theorems i n the theory of s ingular

The r ecen t work of Nagel, RiviGre, S te in and Wainger have shown

Page 10: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

PREFACE i x

r e l a t e d t o d i f f e r e n t i a t i o n and t o some analogues o f t h e H i l b e r t t r a n s f o r m a long curves i n n-dimensional Euc l i dean space. T h e i r methods, o f which some examples a r e presented i n Chapter 12, a r e of g r e a t i n t e r e s t .

F i n a l l y , Cha t e r 13 p resen ts some a p p l i c a t i o n s o f t h e methods of d i f f e r e n t i a t i o n t h e o r y -5 o Chapter 8 t o s o l v e some problems about F o u r i e r m u l t i p l i e r s : r e s u l t s o f Cbrdoba and R. Fefferman.

There are, o f course, many o p i c s o f c u r r e n t F o u r i e r A n a l y s i s which have been l e f t out , such as H b spaces, f u n c t i o n s o f bounded mean o s c i l l a t i o n (8MO) , we igh t t heo ry , A.P. Ca lde rbn ' s theorem on t h e Cauchy i n t e g r a l ... monographs and some o t h e r s seem t o be s t i l l i n a v e r y f l u i d shape, which makes t h e i r e x p o s i t i o n r a t h e r d i f f i c u l t .

C. Fef ferman's theorem on t h e u n i t d i s k and t h e more r e c e n t

Some o f these t o p i c s have been r e c e n t l y t r e a t e d i n competent

T h i s book i s e s s e n t i a l l y s e l f - c o n t a i n e d f o r t hose who know t h e fundamentals o f t h e Lebesgue i n t e g r a l and o f F u n c t i o n a l A n a l y s i s . I have t r i e d t o make i t a c c e s s i b l e and easy t o read. The background and t h e m o t i v a t i o n i s l o c a t e d , o f course, i n t h e modern F o u r i e r Ana lys i s . A s h o r t i n t r o d u c t i o n t o it, l i k e Hardy and Rogosinsk i [19441 w i l l s u f f i c e t o under- s tand t h i s m o t i v a t i o n . It i s , however, q u i t e c l e a r t h a t t h e more t h e reader knows o f works such as Zygmund 119591, Ste in-Weiss [19711, S t e i n [19701, t h e more he w i l l p r o f i t f rom t h i s book.

T h i s work i s t h e f r u i t o f severa l courses and seminars o rgan ized a t t h e Un ive rs idad Complutense de Madrid. I wish t o acknowledge t h e h e l p and s t i m u l u s I have rece ived , among so many hours o f work and d i s c u s s i o n , f rom my f r i e n d s and co l l eagues : M.T. C a r r i l o , A. Casas, A. Cdrdoba, P. Ci fuen tes , J. Garcia-Cuerva, S . Garcia-Cuesta, A. G u t i & r r e z , M.T. Manlrguez, B.Lz. Melero, R. Moreno, R. Moriydn, I. Pera l , E. RodrTguez, J..L. Rubio de F ranc ia , B. Rubio Segovia, A. Ruiz, A. de l a V i l l a , M. Wal ias. I thank a l s o P i l a r A p a r i c i o f o r h e r h e l p i n t y p i n g my manuscr ip t .

MIGUEL DE GUZMAN

Page 11: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 12: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

TABLE OF CONTENTS

DEDICATION V

PREFACE v i i

CHAPTER 1 : P O I N T W I S E CONVERGENCE OF A SEQUENCE OF OPERATORS

1.1. F i n i t e n e s s a.e. and c o n t i n u i t y i n measure o f t h e maximal o p e r a t o r

1 . 2 . C o n t i n u i t y i n measure a t 0 E X o f t h e maximal o p e r a t o r and a.e. convergence

CHAPTER 2 : FINITENESS A.E. AND THE TYPE OF THE MAXIMAL OPERATOR

2 .1 . A r e s u l t o f A.P. Calder6n on t h e p a r t i a l sums o f t h e F o u r i e r s e r i e s o f f E L 2 ( T )

2.2 Commutat iv i ty o f T* w i t h m i x i n g t r a n s f o r m a t i o n s . P o s i t i v e ope ra to rs .

2.3. Commutat iv i ty o f T* w i t h m i x i n g t r a n s f o r m a t i o n s . The theorem o f S t e i n

2.4. The theorem o f N i k i s h i n

The theorem o f Sawyer

CHAPTER 3 : GENERAL TECHNIQUES FOR THE STUDY OF THE MAXIMAL OPERATOR

3:l . Reduct ion t o a dense subspace

3.2. Cover i ng and decomposi t i on

3.3. Kolmogorov c o n d i t i o n and t h e weak t y p e o f an o p e r a t o r

3.4. I n t e r p o l a t i o n

3.5. E x t r a p o l a t i o n

3.6. M a j o r i z a t i on

3.7. L i n e a r i z a t i o n

3.8. Summation

CHAPTER 4 : ESPECIAL TECHNIQUES FOR CONVOLUTION OPERATORS

4.1. The t y p e (1,l) o f maximal c o n v o l u t i o n o p e r a t o r s

4.2. The t ype (p,p), p > l , o f maximal c o n v o l u t i o n o p e r a t o r s

1

8

11

13

14

19

23 29

35 35 39 50 54 60 63 66 68

73 74 88

x i

Page 13: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

x i i TABLE OF CONTENTS

CHAPTER 5 : ESPECIAL TECHNIQUES FOR THE TYPE (2,2)

5.1. F o u r i e r t r a n s f o r m

5.2. C o t l a r ' s lemma

5.3. The method o f r o t a t i o n

CHAPTER 6 : COVERINGSy THE HARDY-LITTLEWOOD MAXIMAL OPERATOR AND DIFFERENTIATION. SOME GENERAL THEOREMS.

6.1. Some n o t a t i o n

6.2. Cover ing lemmas i m p l y weak t y p e p r o p e r t i e s o f t h e maximal o p e r a t o r and d i f f e r e n t i a t i o n

6.3. From t h e maximal o p e r a t o r t o c o v e r i n g p r o p e r t i e s

6.4. D i f f e r e n t i a t i o n and t h e maximal o p e r a t o r

6.5. D i f f e r e n t i a t i o n p r o p e r t i e s i m p l y c o v e r i n g p r o p e r t i e s

6.6. The h a l o problem

CHAPTER 7 : THE B A S I S OF INTERVALS

7.1. The i n t e r v a l b a s i s 4 2 does n o t have t h e V i t a l i

7.2. D i f f e r e n t i a t i o n p r o p e r t i e s o f g 2 . p r o p e r t y .

i n e q u a l i t y f o r a b a s i s which i s t h e C a r t e s i a n p roduc t o f another two

7.3. The h a l o f u n c t i o n o f 6 ) ~ . Saks r a r i t y theorem

7.4. A theorem o f B e s i c o v i t c h on t h e p o s s i b l e va lues o f t h e upper and lower d e r i v a t i v e s w i t h r e s p e c t

7.5. A theorem o f Marst rand and some g e n e r a l i z a t i o n s

7.6. A problem o f Zygmund so l ved by Mor i ydn

7.7. Cover ing p r o p e r t i e s o f t h e b a s i s o f i n t e r v a l s . A theorem o f Cdrdoba and R. Fef ferman

7.8. Another problem o f Zygmund. S o l u t i o n by Cdrdoba

It does n o t d i f f e r e n t i a t e L 1 Weak t y p e

t o 82

CHAPTER 8 : THE B A S I S OF RECTANGLES

8.1. The Perron t r e e

8.2. A lemma of Fefferman

8.3. The Kakeya problem

8.4. The B e s i c o v i t c h s e t

8.5. The Nikodym s e t

8.6. D i f f e r e n t i a t i o n p r o p e r t i e s o f some bases o f r e c t a n g l e s

8.7. Some r e s u l t s concern ing bases o f r e c t a n g l e s i n lacunary d i r e c t i o n s

9 1

9 1

92

96

103

104

105

114

118

136

149

159

160

160

165

171

177

182

184

193

199

201

207

209

210

215

224

233

Page 14: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

TABLE OF CONTENTS x i i i

CHAPTER 9 : THE GEOMETRY OF LINEARLY MEASURABLE SETS

9.1. L i n e a r l y measurable s e t s

9.2. Dens i t y . Regular and i r r e g u l a r s e t s

9.3. Tangency p r o p e r t i e s

9.4. P r o j e c t i o n p r o p e r t i e s

9.5. Sets o f p o l a r l i n e s

9.6. Some a p p l i c a t i o n s

CHAPTER 10: APPROXIMATIONS OF THE IDENTITY

10.1. Radi a1 k e r n e l s

10.2. Kernels non - inc reas ing a long rays

10.3. A theorem o f F. Zo

10.4. Some necessary c o n d i t i o n s on t h e k e r n e l t o d e f i n e a good approx ima t ion o f t h e i d e n t i t y

CHAPTER 11: SINGULAR INTEGRAL OPERATORS

11.1. The H i l b e r t t r a n s f o r m

11.2. The CalderBn-Zygmund o p e r a t o r s

11.3. S i n g u l a r i n t e g r a l ope ra to rs w i t h g e n e r a l i z e d homogenei t y

CHAPTER 12: DIFFERENTIATION ALONG CURVES. A RESULT OF STEIN AND WAINGER

12.1. The s t r o n g t y p e (2,2) f o r a homogeneous cu rve

12.2. The t y p e (p,p) l<p<m o f t h e maximal o p e r a t o r

12.3. An a p p l i c a t i o n . D i f f e r e n t i a t i o n by r e c t a n g l e s determined b y a f i e l d o f d i r e c t i o n s

CHAPTER 13: MULTIPLIERS AND THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

13.1. The c h a r a c t e r i s t i c f u n c t i o n o f t h e u n i t d i s k . A theorem o f C. Fefferman

13.2. Polygons wi th i n f i n i t e l y many s i d e s

13.3. The maximal o p e r a t o r w i t h r e s p e c t t o a c o l l e c t i o n o f r e c t a n g l e s . A theorem o f A. CBrdoba and R. Fef ferman

REFERENCES

A LIST OF SUGGESTED PROBLEMS

241

242

245

252

258

268

276

281

282

286

292

296

305

306

313

327

337

338

348

350

359

362

368

371

379

389

391 INDEX

Page 15: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 16: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 1

POINTWISE CONVERGENCE OF A SEQUENCE OF OPERATORS

There a r e q u i t e a number o f i m p o r t a n t problems i n F o u r i e r A n a l 1

s i s and i n o t h e r areas i n which a sequence ( o r g e n e r a l i z e d sequence ) o f

ope ra to rs a r i s e s i n a n a t u r a l way.

i) I f f E L1([0,2x)), f p e r i o d i c o f p e r i o d 2 ~ r , t h e p a r t i a l

sums

F o u r i e r s e r i e s can be i n t e r p r e t e d as t h e a p a l i c a t i o n o f t h e oDera to r

t o t h e f u n c t i o n f. E q u i v a l e n t l y Sk f ( x ) = Dk * f ( x ) = 1 where Dk(x) , t h e D i r i c h l e t k e r n e l , i s d e f i n e d by

Sk

f ( x - y ) D k ( y ) d y TI

-Ti

s i n ( k t T ) x 1

Dk(X) = X TI s i n - 2

ii) I n an analogous way, t h e Cesaro sums

S,f(x) -t S l f ( X ) -t .,. -t S k f ( X ) O k f ( X ) =

k + l

can be i n t e r p r e t e d as t h e a p p l i c a t i o n o f t h e o p e r a t o r ak t o f. I f fk

i s t h e F e j 6 r k e r n e l , d e f i n e d by

1

2n( k + l ) Fk (x ) =

1

Page 17: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2 1. POINTWISE CONVERGENCE OF O P E R A T O R S

We know t h a t A r f ( x ) = Pr * f ( x ) where Pr(x), t h e Poisson k e r n e l of parameter r , i s

1 1 - r2

2n 1 - 2 r cos x + r 2 Pr(x) = -

i v ) If f E L1(Rn) , B(0,r) = Cx e Rn : 1x1 6 r I

i s t h e mean va lue o f f ove r B (x , r ) which i s cons ide red i n t h e t h e o r y

o f d i f f e r e n t i a t i o n o f i n t e g r a l s .

v ) I n a more genera l way , i f k E L1(Rn)),

-n x \ k ( y ) d y = 1, kE(x ) = E k(,) f o r E > 0, then

a r e t h e opera to rs considered i n t h e s t u d y o f t h e approx ima t ions o f t h e

i den t i t y . i f 1x1 2 E

0 , i f 1x1 < E

v i ) I f f E L’(R”) and hE(x) =

Page 18: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

1.0. INTRODUCTION

then

i s t he truncated ( a t E ) Hilbert transform.

v i i ) If k i s a complex valued function defined on Rn--COI such t h a t

then, f o r f 8 L 1 ( R n ) , Calder6n-Zygmund transform of the function o f s ingular in tegra l opera tors .

KEf(x) = k E * f ( x ) i s the truncated ( a t E )

f , considered i n t h e theory

The most natural question in a l l these s i t u a t i o n s i s :

( A ) Tv dind vu.t W h d h a , Oh u n d a which a d d i t i v n d nvn &vial

c v n d i t i v a vn 5 v h an t h e vpehatvlrn Th ,the cornuponding bequence Tk6 (x ) cvnuagen 6vh e v a y x O h denvot eVt?hy x and whdt ahe t h e p m ~ Weh ad the,& h L i 2 .

This i s , i n a l l the cases we have considered, a t the same time the most d i f f i c u l t question. In many of them, because of t h i s d i f f i c u l t y , the theory s t a r t e d w i t h a l e s s ambitious program:

( B ) Tv 5ind o u t w h e t h a , V R u n d a which a d d i t i v n d nvn .&ivial

cvnd&..LvnA vn 4 ah On t h e vpadtvhn T k . t h e CvntLupanding oeyuence 04 ~ u n C ; t i v a ~~6 cvnuenga i n Avme opace LP.

Question B has in many of t he above presented s i t u a t i o n s a r a the r simple so lu t ion . Suppose t h a t we know t h a t T k i s l i n e a r , t h a t

Page 19: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

4 1. POINTWISE CONVERGENCE OF OPERATORS

we can show, f o r example, t h a t , i f

1 1 T k f 1 1 6 c Ilf 1 1 w i t h c independent o f f and k , and t h a t f o r

g E t o (Rn) t o , say, Tg. L e t us prove t h a t { T k f l i s t hen a Cauchy sequence i n L2(Rn)

and so T k f w i l l converge i n L2(Rn) . We can w r i t e , f o r f ego (Rn),

f E L2(Rn), Tk f E L2(Rn)

converges i n L2(Rn)

and t h a t

we a r e a b l e t o show t h a t Tkg

Hence, g i v e n E > 0, we can f i r s t choose f E t o m n ) such t h a t

2c ] I f - g 112 6 E/2 and, once g i s f i x e d , k o such t h a t , i f

p,q > k o , L2 (R') .

1 1 Tpg - Tqg 6 4 2 . So I T k f } i s a convergent sequence i n

Th is would s o l v e q u e s t i o n (B) and would l e a v e unanswered q u e s t i o n

L e t us t a k e a c l o s e r l o o k

d l i k e t o (A ) . What can we do t o th row some l i g h t on it?

a t i t s meaning. Assume, as be fo re , t h a t Tk i s l i n e a r . We wou

be a b l e t o prove, f o r example,that, f o r and X > 0, f E L1(Rn)

[ A ( f , X ) I = ( t x e R n : l i m sup I T f ( x ) - T q f ( x ) ( > X PY9 -+

P 1 = o

T h i s would g i v e us t h e convergence o f { T k f ( x ) ) a t a lmost eve ry x E Rn.

Assume t h a t we know t h a t , f o r g e

converges. Then, if h = f - g,

0(Rn) and f o r each x E Rn , { T p g ( x ) l

and so t h e problem i s reduced t o prove t h a t A(h,X) i s o f sma l l measure

i f h i s o f sma l l L' - norm. Assume t h a t we can p rove t h a t , f o r each

f i x e d X > 0,

T h i s would s o l v e ou r prob em.

Page 20: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

1.0. INTRODUCTION 5

However, the s e t A(f,A) has a r a the r unhandy s t ruc tu re and so one can think of subs t i t u t ing i t by some o ther eas i e r t o handle.

I t i s qu i t e c l ea r t h a t

l A ( f , A )

and t h a t t h e oper t o r T* defined by T*f(x) = s u p lTkf (x ) [ has a r a t k k

e r simple s t ruc tu re . We may hope tha t we wi l l be able t o prove now t h a t I A * ( f y A ) I + 0 as 1 1 f 1 1 1 -f 0 , and t h i s wi l l as well give us our desired almost everywhere convergence of {Tkf} .

So we a r e led t o consider t he operator T* defined by

which i s ca l led the maxim& a p e h a t a h associated t o {Tk } . I f {Tk} i s a n ordinary sequence, k = 1,2,..., T*f i s c l ea r ly measurable. I f k i s not countable one has t o prove t h a t T*f i s anyway measurable or e l s e t o deal with the outer measure o f tT*f > A I . The operator T* i s such t h a t f o r each f and x, T*f(x) a 0 and, i f the Tk a r e l i n e a r , we can wr i t e

The relevance of t he operator T* stems from the r o l e i t plays in the pointwise convergence proofs, as ind ica ted , and in the information i t furnishes about the l i m i t , when i t e x i s t s .

Assume, f o r example, in the l a s t mentioned s i t u a t i o n , t h a t we can prove t h a t f o r each f 6 L 1 ( R n )

with c independent of f 6 L’(Rn)). Then we obtain f o r each X 0 ,

Page 21: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6 1. POINTWISE CONVERGENCE OF OPERATORS

and so ICT*f > X 11 -f 0 as

where convergence r e s u l t . Furthermore i f t h e l i m i t i s Tf,

II Tf III C IIT*f IIi X c I1 f I I 1 .

1) f ] I 1 -f 0. Thus we o b t a i n t h e a lmos t e v e r y

O f course, in o r d e r t o o b t a i n t h e a lmost everywhere convergence,

c o n d i t i o n (*) i s somewhat super f l uous and sometimes f a l s e . I t i s good

enough t o know t h a t

f o r each f e L1@) and f o r each X > 0 , w i t h c independent of f and X . O r even j u s t t o know t h a t f o r each 31 > 0

When (**I ho lds one says t h a t T* i s o f weak t ype (1,l) .

C o n d i t i o n (***) j u s t says t h a t T* i s cont inuous i n measure

a t o f rom L t o ?V .

Observe t h a t c o n d i t i o n (**) can be e q u i v a l e n t l y expressed by

s a y i n g t h a t

I n f a c t (**) t r i v i a l l y i m p l i e s (**) ' and, i f we have (**I' and

1 1 f 1 1 1 > 0, we can w r i t e

Our f i r s t t a s k w i l l be t o e s t a b l i s h some equiva lences between

a.e. - convergence and p r o p e r t i e s of T* and t o c l e a r up a - l i t t l e th.e r o l e

t h e f u n c t i o n @ ( A ) p l a y s i n t h e whole bus iness.

The genera l s e t t i n g i n which we w i l l p l ace ou rse l ves i s t h e

Genahae o e t t i n g . ( a ) We c o n s i d e r (Q,F,p) , a measure space

f o l l o w i n g :

t h a t w i l l be i n some cases o f f i n i t e measure and i n some o t h e r s + f i n i t e .

Page 22: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

1.0. INTRODUCTION 7

(b ) We denote by “I t h e s e t of r e a l ( o r complex) va lued measuc

a b l e func t i ons d e f i n e d on n , t h a t a r e f i n i t e u-a.e.

( c ) Wi th

f rom Q t o R ( o t t o t ).

X we denote a Banach space of measurable f u n c t i o n s

( d ) The sequence { T k I w i l l be an o r d i n a r y sequence of opera-

t o r s f r o m X t o . I n many cases t h e r e w i l l be no problem i n assum-

i n g k t o be a cont inuous parameter.

j u s t t o s a t i s f y t h e f o l l o w i n g cond

we have

ITk(X1 fl ’ 1 2 f 2 ) 6 1 x 1 1

(e) Each T k w i l l be assumed t o be l i n e a r and i n some cases

t i o n : f o r fl, f 2 e X , X 1 , 1 2 E lR ,

( f ) With T* we des ign t h e maximal o p e r a t o r , i . e . f o r f E X

and x e fi ,

(9) We denote by T t h e 1 imi t o p e r a t o r , i .e.

T f = l i m T k f k+m

when i t e x i s t s i n some sense.

(h) F i n a l l y f o r X > 0, $(A) w i l l be

$ ( A ) = sup u { x E R : T * f ( x ) } f ex

Page 23: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8 1. POINTWISE CONVERGENCE OF OPERATORS

1.1. FINITENESS A.E. AND CONTINUITY I N MEASURE OF THE MAXIMAL OPERATOR

The f i r s t i m p o r t a n t r e s u l t we s h a l l s tudy i s a genera l p r i n c i p l e

due t o Banach. Roughly s t a t e d : The com%ukty .in meanme ad each one 06 the ope ha to^ oa a @miey YJRu a ~LnCteneoh cmclump-tivn on the cahhanpond i n g maxim& opehatoh -impfie0 the continLLity .in meanwre at 0 0 6 the maL i m & opeha tuh .itnd4. T h i s s tatement , o f course, has a l l t h e f l a v o u r o f

a u n i f o r m boundedness p r i n c i p l e , and so i t i s .

s imp le a p p l i c a t i o n o f t h e genera l u n i f o r m boundedness theorem and t h i s i s

t h e way we f o l l o w here.

[1970 , pages 1-4 1 .

It can be o b t a i n e d by a

Fo r an a l t e r n a t i v e p r o o f one can see A.Gars ia

I n o r d e r t o p r e s e n t t h e theorem as a p a r t i c u l a r case o f t h e

u n i f o r m boundedness p r i n c i p l e , we endow t h e l i n e a r space '"I (a) p-measurable p-a.e. f i n i t e f u n c t i o n s (where f u n c t i o n s t h a t c o i n c i d e

p-a.e. a r e t h e same) w i t h a d i s t a n c e t h a t w i l l d e f i n e i n "I ( 0 )

t h e topology o f t h e convergence i n measure.

p(Q) < m and f o r f E ??I (R) l e t us s e t

o f a l l

More s p e c i f i c a l l y , l e t

I t i s an easy e x e r c i s e t o check t h a t d:/)n(R) + [ 0 , m ) i s a quasi-norm

i n t h e sense o f Yosida [1965 , p.30 I . A l s o i t i s easy t o show t h a t f o r

a sequence { fnI E and f e "m , we have fn -f f (p-measure) i f and

o n l y i f d ( f - f n ) -f 0.

For a s u b l i n e a r o p e r a t o r T f r o m a normed space X t o 'hl (R) one a l s o shows e a s i l y t h a t t h e f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t .

(a ) The o p e r a t o r T : X -' M(R) i s cont inuous a t 0 E X

(b ) The f u n c t i o n 4 : (0,m) -f [O,m) d e f i n e d by

Page 24: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

1.1. FINITENESS A.E. AND CONTINUITY 9

tends to 0 as X tends to a.

Of course, if T is linear, then (a) is equivalent to the

continuity of T on X .

ng statements are

I > h } + O a s X t m

Likewise, let (TcOaeA be a family of sublinear operators from

X to W (R). Then one easily shows that the follow

a1 so equi Val ent

For the theorem that follows we shall use the following form of

the uniform boundedness principle, that can be seen in Yosida [1965, p.681:

L e I ( X , i l 1 1 ) be a Banach npace and (Y,d) a quai-named

k%mu~ A ~ U C ~ . L ~ A be a ~amieq o p e h a t a u &horn X to Y A&

dying doh each f, g e X -

d(Ta(Af)) = d(ATaf)

7 6 the A & {Taf : a e A} c Y bounded doh each f E X, ,then

lim d(Taf) = 0 u n i ~ a m L q in a e A. I l f l l - . 0 We recall here that the fact that a set ScY is bounded means that for

each neighborhood U of the origin there is an E > 0 such that E S c U.

With these preliminaries the proof of the following theorem is

straightforward.

Page 25: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10 1. POINTWISE CONVERGENCE OF OPERATORS

1.1.1. TtlEOREM. lei {TkIF=l be a bequence o d hubfineah op- e l d u r n dhom X, a Banach hpace, t o "@l (a) w i t h u ( Q ) < m. h w n e

t h a t each Tk LA conLLnuvlLs and that t h e maxim& opeha2vh T* dedined

doh f E X and x E R an

A huch thud T * f 6 %I doh each f, i .e. T* f A ~.ivLite u-a.e. Then

T* A d o continuouA at 0 , and thenedahe

- Phaod. For n = 1,2,3,. . . we de f ine t h e t r u n c a t e d ( a t n) max-

ima l ope ra to r T i i n t h e f o l l o w i n g way. For f E X and x e n

C l e a r l y T i i s s u b l i n e a r , cont inuous f r o m X t o and s i n c e

0 & T;f(x) c T * f ( x ) f o r each x e a , we have d(T*,f) c d ( T * f ) f o r

each f.

Therefore t h e uni form boundedness p r i n c i p l e a p p l i e s and {T*,) i s equi-

cont inuous a t 0, i . e .

Observe t h a t , i f p(R) = m , we can s e l e c t c R w i t h

~(6) < - and, i f we d e f i n e

&i) = sup p 1 x E 6 : T * f ( x ) > X 1 I l f I1 6 1

then w i t h t h e same hypo thes i s of t h e theorem we a l s o o b t a i n

Page 26: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

1.2. CONTINUITY AND A.E. CONVERGENCE 11

1.2. CONTINUITY I N MEASURE AT 0 E X OF THE MAXIMAL OPERATOR AND A.E. CONVERGENCE

We a l r e a d y know t h a t t h e f i n i t e n e s s a.e. o f t h e maximal oper-

a t o r i m p l i e s i t s c o n t i n u i t y i n measure a t 0 e X . We s h a l l now see t h a t

t h i s c o n t i n u i t y i m p l i e s t h e closedness i n X o f t h e s e t o f elements f

o f X i n which t h e sequence T k f converges a.e. I n most i n t e r e s t i n g

cases i t i s easy t o e s t a b l i s h such a convergence f o r some s e t dense i n X

and so we o b t a i n t h e a.e. convergence f o r a l l f u n c t i o n s i n X. For t h e

theorem t h a t f o l l o w s i t i s n o t necessary t o assume t h a t X i s complete.

1 .2 .1 . THEOREM. L e A I T k ) be a sequence 06 &hean. opehatom 6hom X, a named Apace, t o 'hl (n). h b w n e t ha t t h e ma&& opehdtoh T*

h cow%nuouh in memwte &am X t o at 0 e X . Then t h e be;t E ad

d e m e h f 06 x dolt which {Tkf} CUnvmgtA at a.e. x e R iA doseed i n X .

Phood. L e t f E X and cons ide r g E E. Then f o r any a > 0 - we have

P I X e R : l i m sup ITmf(x) - T n f ( x ) [ > CL 1 = m,n -+a

= PIX E R ; l i m sup \ T m ( f - g ) ( x ) - T n ( f - g ) ( x ) J > ~1 } G m,n +a

G 211 I x 8 R :

Since @ [h) J- 0

f e E.

as I ] f - g 1 1 J- 0 we see t h a t i f f E t hen

1.2.3. COROLLARY. 16 ,the space X 06 t h e p h e c e h g Theohem .h a nomed subspace oh %'t and id doh each g e E Me have Tkg(x ) -+g (x )

at a . e . x e R , then we &o have doh each f E , T k f ( x ) -+ f ( x ) at

Page 27: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

1. P O I N T W I S E CONVERGENCE OF OPERATORS

LI C X E fi : lirn sup k + -

= FIX E R : I i r n s u p k +-

a < ~ C X 6 0.: T * ( f - g ) ( x ) > 7 ) + V { X e n : I ( f - g ) ( x ) l > a 1 2

b u t t h i s tends t o cero as g -f f ( h ) ,

Page 28: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 2

FINITENESS A.E. AND THE TYPE OF THE MAXIMAL OPERATOR

As we have seen i n Chapter 1, the mere f a c t t h a t , f o r each f E X ,

T * f ( x ) x E R , can g i v e us t h e a.e. conver-

gence r e s u l t i n many cases. However, once we cons ide r t h e o p e r a t o r T* i t

i s o f i n t e r e s t i n many c i r cuns tances t o have more i n f o r m a t i o n about i t ,

f i r s t o f a l l i n o r d e r t o g a i n some more knowledge about t h e l i m i t o p e r a t o r

T.

i s f i n i t e f o r a lmos t eve ry

Acco rd ing t o t h e o b s e r v a t i o n a f t e r Theorem 1.1.1. we know t h a t

i f T * f ( x ) i s f i n i t e a t a lmost each x e R f o r each f e X, then, even

when < ~0 , and we s e t , f o r X > 0, u(R) = m , l'f we f i x E c . n , u(c)

we have $(A,;) -+ 0 as + m . Now we s h a l l see t h a t , i f we assume a l i t t l e more about t h e

o p e r a t o r s

f e X

h a v i o u r o f t h e f u n c t i o n $(A) and so about t h e t ype o f t h e o p e r a t o r T*

(hence, about t h a t o f t h e l i m i t o p e r a t o r T ) .

CTk) , then t h e a lmost everywhere f i n i t e n e s s o f T*f , f o r each

,, p e r m i t s us t o deduce a more q u a n t i t a t i v e knowledge abou t t h e be-

We r e c a l l t h a t f o r a s u b l i n e a r o p e r a t o r S f r o m nn? ( Q ) t o

W(R) ( i . e . such t h a t f o r f l y f n e m(Q), h l , X p e R , S ( A l f l + Xz fz ) ( x ) 6 I h l I I S f l ( x ) l + IX21 ISf,(x) l) , we say t h a t i t i s o f

( s t r o n g ) t ype (p,q) , 1 6 q c 00,

we have S f e Lq(R) and

1 c q 6 m, when f o r each f e LP(Q)

II Sf II q c c I I f l l p

13

Page 29: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

14 2. FINITENESS AND THE TYPE

w i t h c > 0 independent o f f. I t i s s a i d t o be o f weak t ype (p,q) a

1 6 p c m , 1 6 q < m , if t h e r e e x i s t s c > 0 such t h a t f o r each X > 0

and each 'f E Lp one has

u C x e R :

Type (p,qf , q < m i m p l i e s weak t y p e (p,q), s i n c e f o r X >O, A X = I l S f l > 11

But t h e converse i s n o t t r u e i n genera l .

A l l f ou r s e c t i o n s o f t h i s Chapter f o l l o w t h e same p a t t e r n . Some

leads us t o u s e f u l i n f o r - a d d i t i o n a l assumption about t h e o p e r a t o r s

m a t i o n about T*. S e c t i o n 2.1., a l i n e o f t hough t i n i t i a t e d i n a theorem

o f A.P. CalderBn, serves as m o t i v a t i o n f o r t h e f o l l o w i n g ones. S e c t i o n 2.2.

p resen ts a theorem of Sawyer, m o d i f i c a t i o n o f t h e one o f S t e i n p resen ted

i n Sec t i on 2.3. Very r e c e n t l y N i k i s h i n has o b t a i n e d a q u i t e genera l and

power fu l v e r s i o n o f t h e r e s u l t s o b t a i n e d p r e v i o u s l y i n t h i s d i r e c t i o n . I n

S e c t i o n 2.4 we p resen t s imp le p r o o f o f one o f t h e main theorems o f N ik i sh in .

TI:

2.1. A RESULT OF A.P. C A L D E R ~ N ON THE PARTIAL SUMS OF THE FOURIER SERIES OF f E L 2 ( T ) .

Some y e a r s b e f o r e the s o l u t i o n by Car leson [19661 of t h e c o n v e r

gence problem f o r t h e F o u r i e r s e r i e s o f a f u n c t i o n f o f L2 (T ) Zygmund

[ 1959 , Iap.165 ] p resen ted an i n t e r e s t i n g r e s u l t o f CalderBn abou t t h e

p o i n t w i s e convergence o f t h e p a r t i a l sums o f t h e F o u r i e r s e r i e s o f a f u n 2

t i o n f e L 2 ( T ) . The i d e a behind i t i s t h e k e r n e l o f t h e i m p o r t a n t g e n e r

a1 theorem o f E.M.Stein [ 19611 and o f t h e theorem o f Sawyer [ 19661 pre-

sented i n t h e f o l l o w i n g s e c t i o n s .

Page 30: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2.1. A RESULT OF A.P. CALDERON 1 5

2.1.1. THEOREM ?oh f pehio&c 06 pehiod 2a and i n N 1 ckeikX be t h e N-th pan t i ae nm 06

-N L2([0,2a]) Le2 SNf (x ) =

? v w ~ L e h benien. L e 2 S* be t h e comapunding maximal opehatoa, i . ~ .

S * f ( x ) = sup I S N f ( x ) l .Then SNf(x) conwagen a.e. a ~ s N -+ m i6 and

only .id S* LA 06 weak t y p e . (2,Z). N

- Pkoud. From t h e genera l theorem 1.1.1. o f Chapter 1, we e a s i l y

deduce t h a t convergence a.e. o f SNf f o r each f and a.e. f i n i t e n e s s

o f S * f ( x ) f o r each f a r e e q u i v a l e n t . The a d d i t i o n a l i n f o r m a t i o n here

r e f e r s t o t h e t y p e of S*. Of course, if S* i s of weak t y p e (2 ,2) t h e n

S * f ( x ) < m a.e. f o r each f e L2 . The d i f f i c u l t y c o n s i s t s i n p r o v i n g

t h a t if S*f(x) < m a.e. f o r each f E L 2 then S* i s . o f weak t y p e (2,2).

Assume t h a t S* i s n o t of weak t y p e (2,2) , i .e. f o r each C > 0

t h e r e e x i s t s fC, I [ fC1I2 = 1 and A c > 0 such t h a t

we can choose CN * m , pN t r i g o n o m e t r i c po l ynomia l s w i t h 1 1 p N ( ( 2 = 1,

AN > 0, such t h a t

We have > - cN 2Tr and so A N -f m ,

We a r e go ing t o c o n s t r u c t , by means of {Ak} a new sequence

{ A N r w i t h Nk nondecreasing such t h a t k k = l

To do t h i s we f i r s t choose C > Z1 . We have CN: / 1;: 6 2a. N:

Page 31: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

16 2. F IN ITENESS AND THE TYPE

We choose kl copies o f t h e same number, k l be ing such t h a t

< 2n. The k l f i r s t terms o f t h e new sequence a r e going CN:

1 < k l 72- N:

t o be

N;

N; Now we choose N; > NP such t h a t CN* 1 z 2 and cons ide r ~2 < 2 .

we choose k2 copies o f t h e same number, k2 be ing such t h a t

< 2~ . The f o l l o w i n g k2 terms w i l l be N*2

C

1 c k 2 ~ A:

,k, N;

A , A , . * a , A N; N;

And so on. We e a s i l y check t h a t f o r t h i s sequence t X N 1 k

We s h a l l now a p p l y t h e f o l l o w i n g lemma t h a t we p rove l a t e r .

2 . 1 . 2 LEMMA. L e 2 {Ek) be a hequence o d meanwLabLe bubo&

u s T nuch t h a t C l E k l = a. Thcn thehe exA& { x k l C T ouch t h a t

demoht L V U L ~ x e Y L& in LndiniteRy many 0 6 the h& Exk + E k ) .

We choose xk accord ing t o t h e lemma. We a l s o choose n a t u r a l

numbers mk SO r a p i d l y i n c r e a s i n g t h a t t h e t r i g o n o m e t r i c po l ynomia l s

eimkX pN ( x ) do n o t have t r i g o n o m e t r i c monomia k

f o r m t h e s e r i e s

s o f t h e same o r d e r . We

1

l N k

-

Page 32: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2.1. A RESULT OF A.P. CALDERON 17

and so t h e above s e r i e s i n t h e F o u r i e r s e r i e s o f a f u n c t i o n f i n L 2 .

If x - X k e Ek , t h e n S*pNk ( X - x k ) > k N k by t h e d e f i n i t i o n o f E k y

and so some complete b l o c k a r b i t r a r i l y advanced i n t h e t a i l o f t h e F o u r i e r

s e r i e s S i s i n abso lu te va lue b i g g e r than 1. Since a lmos t each x i s

i n i n f i n i t e l y many o f t h e s e t s xk f Ek x t h e s e r i e s S i s n o t convergent . T h i s proves t h e theorem.

t h i s means t h a t a t a lmost ever,y

P m o d ad Lemma. 2.1.2. L e t XI x z . . . , XkY . . . L e t US

Such p o i n t s a r e

e s t i m a t e t h e measure o f t h e p o i n t s which a r e i n f i n i t e l y many o f t h e s e t s

xk f E k .

m m m

IJ (xk + Ek) ] ' = I J 0 ( x k f E n ) ' n = l k=n n = l k=n

We w ish t o prove t h a t f o r some p a r t i c u l a r s e l e c t i o n o f t h e p o i n t s

t h i s s e t i s o f n u l l measure. F o r t h i s i t i s s u f f i c i e n t t o p rove t h a t f o r

some sequence {xk3 we have, f o r each n

{ x k }

m

I 0 (xk f E k ) ' I = 0 k=n

L e t x l k be t h e c h a r a c t e r i s t i c f u n c t i o n o f E;C . Consider t h e f u n c t i o n D. , I

X ( t ) c h a r a c t e r i s t i c f u n c t i o n o f f' ( x k f E k ) ' . We have k = l

, t as v a r i a b l e s and w r i t e xP

Consider X I , X Z , ...

Page 33: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

18 2. FINITENESS AND THE TYPE

TI

* I",- x --TI i;' t=-TI x l ( t + x ) * + * x P i ( t + x Fi ) d t d x l . . .dx P1 xp 1- 1 =-TI

So there e x i s t s a p 1 s u f f i c i e n t l y b i g so t h a t

So we can choose X I , X Z , ... X p

P We now choose i n the same way x

, such t h a t

1 < ?

+ly ... , x such t h a t P 2

And so on. SO f o r each n , I I' ( x k + E k ) ' 1 = 0 k = n

Page 34: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2.2. THE THEOREM OF SAWYER 19

2.2. COMMUTATIVITY OF T* WITH M I X I N G TRANSFORMATIONS. POSIT I V E OPERATORS, THE THEOREM OF SAWYER.

CalderBn's theorem has been extended i n s e v e r a l d i r e c t i o n s , f i r s t

by S t e i n [1961] and then by Sawyer 1119661 . Sawyer's theorem i s con-

c e p t u a l l y s i m p l e r t han S t e i n ' s and so w i l l be presented f i r s t . Once t h e

p a t t e r n o f t h e p r o o f o f CalderBn's r e s u l t has been understood, t h e theorems

o f Sawyer and o f S t e i n a r e more t r a n s p a r e n t .

The s e t t i n g here w i l l be t h e f o l l o w i n g :

( a ) (R,F,p) w i l l be a measure space w i t h u ( R ) = 1.

(b ) {TkI i s a sequence o f l i n e a r ope ra to rs f r o m some Lp(s2),

1 i p c m, t o W(R) , t h a t a r e cont inuous i n measure.

( c ) Each T k i s assumed t o be p o s i t i v e , i . e . i f f > 0 , then Tkf 2 0.

( d ) We assume t h a t t h e r e i s a f a m i l y of mappings

f rom R t o R t h a t a r e measure p rese rv ing , i,e,, i f

A c. R , A € 3 , then S i l (A ) E > mappings i n t h e f o l l o w i n g sense:

( S ) o a s I

and u(S,l(A)) = u(A). ( e ) We a l s o assume t h a t ( S a ) cI I i s a mixing damily o f

I f A,B 6 > and p > 1, then t h e r e e x i s t s Sa such t h a t

u (A (1 S i l ( B ) ) 4 P ~ ( A ) u ( B ) .

(Observe t h a t i f Sa were such t h a t

u(A o Shl ( 5 ) ) = u(A) u ( B )

t h e r e A and Sil(B)

r e q u i r e so much. The f a m i l y Sa "mixes" t h e measurable s e t s o f R i n

t h e above sense).

would be p r o b a b i l i s t i c a l l y independent. We do n o t

( f ) We a l s o assume t h a t t T k l and (Sa) a E I commLLte i n

t h e f o l l o w i n g sense:

I f f E LP(R) and Saf(x) = f (Sax) , t h e n f o r each

Tk , Sa, Tk Sa = Sa Tk , i . e . f o r each f 6 LP(n) and x E R ,

Page 35: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

20 2. FINITENESS AND THE TYPE

With these n o t i o n s we can s t a t e and prove Sawyer's theorem.

( a ) T* A 06 wuLk t y p e (p,p)

(b ) FUR. each f E LP(R) T * f ( x ) < , a.e.

Fo r t h e p r o o f o f t h e theorem we s h a l l f o l l o w t h e p a t t e r n of t h e

p r o o f o f Ca lde rbn ' s theorem.

1 emma.

So we f i r s t prove t h e same t y p e o f a u x i l i a r y

Pmod 06 t h e lemma 2.2.2. Consider t h e s e t s S i l ( A k ) , where

t h e mappings S k a r e y e t t o be chosen. The s e t o f p o i n t s i n f i n i t e l y

many o f t h e s e t s S i l ( A k ) i s

m

Our goal i s t o prove t h a t f o r each f i x e d n p ( f'i

prov ided the Sk a r e c o n v e n i e n t l y chosen. S ince 1 p (Ak) = m ,

we can choose p1 such t h a t

S i l ( A ' k ) ) = 0 k=n oo

n= 1

Page 36: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2 . 2 . THE THEOREM OF SAWYER 21

By the m i x i n g property of ( S a ) a 6 I , we can choose S 1 , S p y . . . ,S , such t h a t P1

We then choose p 2 such tha t

a n d then S , ... , S , such t h a t pi p2

And so on. Clearly we have for each n

This proves the lemma.

Phaad ad ,the. Theaheni 2 . 2 . 1 . Assume T* i s not of weak type (p,p). Then, i f we f i x a sequence ck 4 00 , c k > 0 , t he re e x i s t s a sequence { f k I C L p , f k a 0 and a sequence X k > 0 such tha t

, A k = {T*gk > 1 I . We can wr i t e fk Let us ca l l g k =

Page 37: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

22 2. FINITENESS AND THE TYPE

L e t hk be a n a t u r a l number such t h a t 1 6 hk u(Ak) c 2. We t a k e

hk copies A i , A; , ... , A;k o f Ak.

Thus

and so, by t h e lemma, t h e r e a r e

j = 1,2,,..,

o f t h e s e t s

SJk B (Sa) a B I , k = 1,2,...,

such t h a t a lmost each x 6 R i s i n i n f i n i t e l y many hk ’ . (SJk)-’ (A;) .

D e f i n e t h e f u n c t i o n

. . F(x) sup “k ’Jk gJk (x)

k = 1 , 2 , . . . j=1,2,,. . h k

Where gJk f gk and ak > 0 i s go ing t o be chosen i n a moment.

Then

Thus, s i n c e t h e SJk a r e measure p r e s e r v i n g

4 m

6 2 1 - . k = l ‘k

If ck = Zpk and ak = Zk” , we g e t ak 4 m and \IF \ I D i m .

Because o f t h e p o s i t i v i t y o f each Tk , we have , f o r each

k , j , x i

Page 38: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2 . 3 . A THEOREM OF STEIN

. . T*F(x) a T* ak SJk gJk ( x ) = ak T* S: g: ( x )

By t h e commutat v i t y o f { T k I w i t h (Sa) a 6 I , we eas

23

-1 I f x 6 [ Sjk ] [ A d ] , then T*F(x) > ak . Since a lmos t

each x E R belongs t o i n f i n i t e l y many o f t h e s e t s [ Sjk1-l [ A d ] and

ak 1. m , we g e t

T*F(x) = , a.e.

The o t h e r i m p l i c a t i o n o f t h e theorem i s obv ious

2 . 3 . COMMUTATIVITY OF T" WITH M I X I N G TRANSFORMATLONS. THE THEOREM OF STEIN.

The f o l l o w i n g r e s u l t o f S t e i n [1960 i s on t h e one hand more

genera l t han t h e p reced ing one, s i n c e t h e o p e r a t o r s we c o n s i d e r a r e n o t

p o s i t i v e , and on t h e o t h e r hand l e s s genera l s i n c e i t s a p p l i c a b i l i t y i s

r e s t r i c t e d t o LP(n ) w i t h 1 < p c 2. The techn ique o f p r o o f , t h e

use o f t h e Rademacher f u n c t i o n s , i s q u i t e i n t e r e s t i n g and p e r m i t s us t o

d ispense w i t h t h e p o s i t i v i t y o f t h e opera to rs .

m

The Rademacher f u n c t i o n s { r k ( t ) } a r e d e f i n e d on [0,1) k= 1

i n t h e f o l l o w i n g way

Page 39: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

24 2. F IN ITENESS AND THE TYPE

. . . . . . . . . . . . . . . . . . . . . .

The properties we are going to use here of these functions are the following:

1 i6 k = j

0 0 i d k # j

1

(1) J r , ( t ) r j ( t ) d t =

doll t i n a b e t o 1 2 ’ -

Property

n c I k = l

pk r k ( t ) be a n y . t i n e a h camb&aLLon 06

Bk e R , and 1 c h 5 n . Then

- (1) i s obvious. For ( 2 ) i t i s sufficient t o ob serve t h a t 5 Bk r k ( t ) has the same sign as @h rh ( t ) in a

k h 1 se t of measure n o t less that .

2.3.1. THEOREM . l e i (n,&,u) be a meanme npace wLth

~ ( n ) = 1. L e t CTkI be a hequence 06 f i n e m opmato~h 6 h a m OOme

Page 40: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2.3. A THEOREM OF STEIN 25

Pfiood. We j u s t need t o prove t h a t ( a ) i m p l i e s ( b ) , s i n c e t h e

o t h e r i m p l i c a t i o n i s obv ious. Our e x p o s i t i o n f o l l o w s t h a t o f A.Garsia

[1970, ch.1 ] .

Assuming t h a t T* i s n o t o f weak t y p e (p,p) we s h a l l p rove

t h a t $(A) 1. 0 as A > Q) , where

Thus, by t h e theorem 1.1.1, ( a ) cannot h o l d .

We f i r s t assume p = 2 . The case 1 & p & 2 i n v o l v e s a m ino r

t e c h n i c a l d i f f i c u l t y t h a t w i l l be d e a l t w i t h a t t h e end.

I f T* i s n o t of weak t ype (2,2,) , g i v e n H > 0 , t h e r e

e x i s t s f > 0 , j/f l l z s 1 and A > 0 s x h t h a t

L e t

t h e f u n c t i o n f by d i f f e r e n t mappings S so t o i n c r e a s e t h e measure

o f t h e s e t where T* o f t h e f u n c t i o n so ob ta ined i s b i g g e r than X

Since we would l i k e t o m a i n t a i n smal l t h e norm o f t h e f u n c t i o n , we d i v i d e

such sums by a cons tan t M t h a t w i l l be c o n v e n i e n t l y f i x e d l a t e r . I f

t h e o p e r a t o r s T k were p o s i t i v e , as i n Sawyer‘s theorem, t h e T* o f

t h e sums would be n o t l e s s than t h e sums o f t h e T* o f t h e added f u n 5

t i o n s . Since t h i s i s n o t t h e case, we i n t r o d u c e t h e Rademacher f u n c t i o n s

i n o r d e r t o s h u f f l e t h e f u n c t i o n s t o be added. I n t h i s way, by p r o p e r t y

( 2 ) o f t h e Rademacher f u n c t i o n s , we hope t o a r r i v e a t t h e same r e s u l t as

i n t h e p r o o f o f Sawyer’s theorem.

A = { x : T * f ( x ) z A }. Our aim i s t o add up many t rans fo rms o f

So we proceed i n t h e f o l l o w i n g way.

Page 41: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

26 2, FINITENESS AND THE TYPE

With some mappings Sk , k = 1,2,3,...,n t h a t w i l l be chosen

i n a moment, we d e f i n e

f k

Observe t h a t i f x 6 Ak

x ) = f ( S k x ) and Ak = S i l ( A )

t hen Sk x 6 A and so

T * f k ( x ) = T * f (Skx) > A

We now d e f i n e , f o r x E R, t E [O,l),

where M i s t o be f i x e d l a t e r .

Because o f t h e o r t h o g o n a l i t y o f Erk(t)l we can w r i t e

and so

Hence, i f J- = 1 we g e t M2

3 and s o t h e r e i s B [D,1) , IBI z a such t h a t , i f t E B , I1 F ( * , t ) 112 1.

Observe now t h a t if x E Ah , 1 c h 6 n, then T* fh (x ) z X and so, by p r o p e r t y ( 2 ) of t h e Rademacher f u n c t i o n s , f o r x E A,, t h e r e

e x i s t s a s e t

T*F(x,t) > . L x c [O,l) , l L x l > 1 , such t h a t if t E Lx , then

x

Page 42: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2.3. A THEOREM OF STEIN 27

n

k= 1 Hence we can a l s o say t h a t , i f x e A* = IJ Ak , t h e r e e x i s t s

1 Ix = B f I Lx [0,1) , / I x ( a , such t h a t , i f t e Ix , we have

simul t aneous ly

n L e t us t r y t o e s t i m a t e p (A* ) . We have p(A*) = 1 - 1-1

But, i f we choose c o n v e n i e n t l y S k , we know t h a t

Hence

1 So, i f we take n such t h a t 2 a n p (A ) > 1, then p(A*) > . Thus, i t i s c l e a r t h a t t h e measure, i n t h e p roduc ts space R x l 0 , l ) o f t h e s e t

{ ( x , t ) : x e A* , t e Ix I

i s b i g g e r than . There fo re t h e r e e x i s t s t* e l 0 , l ) 1

such t h a t PIX e A* : t* e I x 1 > . I f we cons ide r F ( * , t * ) we have 1 1 F ( - , t * ) I I z c 1 and a t

t h e same t ime

x 1 1 - 1 t X 6 R : T*F(x,t*) > R ) > .

L e t us observe t h e r e l a t i o n s we have between t h e d i f f e r e n t

cons tan ts .

Page 43: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

28 2. FINITENESS AND THE TYPE

X J F T So we o b t a i n A > i . e

1 Thus i t i s c l e a r t h a t $(q) > 8 f o r each TI > 0 and t h i s i s what

we wanted t o prove.

F i n a l l y , when 1 & p 6 2 , t h e process o f t h e p r o o f i s t h e same

u n t i l we a r r i v e t o t h e d e f i n i t i o n o f

NOW, i f 1 &

, we can 2 - and - P 2-P

p L 2 , by H o l d e r ' s i n e q u a l i t y w i t h exponents

w r i t e

l n P 6 - c I f k W

Mp k = l

and t h e remainder o f t h e p r o o f con t inues as be fo re . (For t h e l a s t ine-

q u a l i t y i n t h e above chain, one proves t h a t i f al B a2 > ... 2 ak > > ... > an > 0 and c1 > B > 0 , then

and one takes CI = 2, f3 = p ) .

Page 44: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2.4. THE THEOREM OF NIKISHIN 29

2.4. THE THEOREM OF NIKISHIN.

In 1970 Nikishin published a very general extension of t he theorem of S te in . Like the theorems previoulsy presented in t h i s Chapter the N i k i s h i n theorem gives a weak type r e s u l t f o r t he maximal operator s t a r t i n g from i t s f i n i t eness a . e . The theory has been fu r the r developed by Maurey [1974] . For a c l e a r and thorough exposit ion of this recent theory we r e f e r t o a forthcoming monograph by Gi lber t . present a version of one of t he main theorems of Nikishin. i s inspired in t h a t of Gi lber t J.L.Rubio de Francia [1979] , in a very luc id paper.

Here we sha l l Our exposit ion

119791 , w i t h some modifications due t o

Let (X,u) , (Y,w) two o - f i n i t e (pos i t i ve ) measure spaces. We sha l l consider operators T : L p ( X , u ) + h ( Y , w ) from Lp(X,p)

t o the space (Y ,w) of a . e . f i n i t e measurable functions from Y

t o R endowed with the metric of the convergence i n measure.

We sha l l say tha t T : L p ( X , u ) +w(Y,w) i s &niMeahizable I b u p W n e n n in Nik ish in ' s terminology), when f o r each f o e Lp(X) there i s a fineat operator such t h a t

" f 0

I u f o f o I = I Tfol w-a.e. and

f o r each f a L p ( X ) , I u f I c lTfl w-a.e. 0

That T i s l i nea r i zab le means therefore t h a t t he re i s a family ( u ) of l i n e a r operators such t h a t T majorizes

each one of them a n d , f o r each f o , T coincides in absolute value with the corresponding u p rec ise ly a t f o .

f 0

foa L q X )

"Li neari zabl e" imp1 i e s "absol u te ly homogeneous" , i . e . /T(hf)l = 1x1 / T f / , since

Page 45: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

30 2. FINITENESS AND THE TYPE

M o t i v a t i o n and t y p i c a l example o f t h i s d e f i n i t i o n i s t h e t run -

ca ted maximal o p e r a t o r TG o f a sequence { T k I o f l i n e a r o p e r a t o r s

f rom Lp(X) t o w ( Y ) . For a f i x e d g E Lp(X) we choose

t h e measurable f u n c t i o n such t h a t 6, : Y + [1,N] ,

T i g(Y) = IT$N(y) g ( y ) l

o p e r a t o r u f ( y ) = T g

and d e f i n e , f o r f 6 Lp!X), t h e l i n e a r

f ( y ) f rom LP(x) t o ‘yh ( Y ) . We $N(Y)

6 T i f (y) . c l e a r l y have 1 u g g ( y ) l = ] T i g ( y ) [ and I llg f ( y )

There fo re Ti i s l i n e a r i z a b l e .

The N i k i s h i n theorem can now be s t a t e d i n the f o l l o w i n g terms.

2.4.1. THEOREM ( N i k i s h i n ) . L e t T : Lp(X,p) + w ( Y , v )

1 c p a, be e-inemizable and conLLnuau6 -in m m m e at 0. LeA

q = i n f (p,2) . Then t h e m e&& Cp E m ( Y , v ) , Cp 0 a.e.,nuch

t h a t h u t e m h f E Lp(X,p) and 60/r each X > 0

Remmh. The theorem means t h a t if we weigh t h e space Y by

means o f 0 , i .e . i f we change i t s measure element dv by ch dv

then t h e c o n t i n u i t y i n measure f rom Lp(X) t o m ( Y ) i m p l i e s t h e

weak t ype (p,q) of T.

P t a u d . Since Y i s a - f i n i t e , one e a s i l y sees t h a t i t

s u f f i c e s t o prove t h e theorem under t h e c o n d i t i o n

s i m p l i c i t y we assume

v(Y) < m . For

v(Y) = 1.

The p r o o f w i l l be performed i n t h r e e s teps .

( i ) The c o n t i n u i t y i n measure o f T a t 0, as we know,implies

t h e f o l l o w i n g r e l a t i o n : There e x i s t s c ( h ) G 0 as h .f such t h a t

Page 46: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2.4. THE THEOREM OF N I K I S H I N 31

( 1 f 11 6 1 i m p l i e s v { y E Y : ( T f ( y ) ( > A 1 6 c (X) . From t h i s

c o n t i n u i t y we s h a l l deduce t h e ( a p p a r e n t l y s t r o n g e r ) c o n d i t i o n : Z h a e

and A > 0 . Set A = I y E Y : sup ( T f k ( y ) ( > X 1 . l t k 6 M

I f y a A then t h e r e i s some fko such t h a t lT f k ( y ) l > A . L e t 0

u = u be t h e corresponding l i n e a r o p e r a t o r (T i s l i n e a r i z a b l e )

0 f k

such t h a t

For y E A we s e t I ( y ) 2 I t 6 [0,1) : I U (1 r k ( t ) f k ( Y ) ) I > X

M I ( y ) C (t E [O,1) : IT( 1 r k ( t ) f k ( Y ) ) I > 1 ' I * ( Y )

1

a r e t h e Rademacher f u n c t i o n s . We s h a l l t ry rk 1

where t h e f u n c t i o n s

t o p rove t h a t ( I * ( y ) l > F . We d e f i n e :

C l e a r l y

I I l ( Y )

I I ( Y ) I we have

[0,1) = I l ( y ) u I z ( Y ) u 1 3 ( y ) , I,i fl I. = 0 if i # j and

= I I2 (y ) l . On t h e o t h e r hand I ( y ) t I z ( y ) U I 3 ( y ) and so 1 1 > 7 . There fo re , s i n c e f o r each y E A (I*(y)l 2 ,

by F u b i n i ' s theorem, i f m i s t h e Lebesgue measure on [0,1),

J

Page 47: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

32 2. FINITENESS A N D THE TYPE

1

v (B m ( E l ) G A -'I2 1 / / C r k ( t ) f I P d t 6 M p Y q p / 2

0 ' P

where the l a s t inequal i ty holds by v i r tue of the property t h a t t he Rademacher functions s a t i s f y , a s we sha l l see a t t he end of the proof.

A1 so

because of the continuity of T . I f we s e t ;(A) = 2Mp,q h-p /2 t 2 ~ 0 , ~ ' ~ )

we obtain the inequal i ty (*) t h a t we wished.

( i i ) We now sha l l prove tha t there e x i s t s EC Y , v(E) > 0,

such t h a t T E defined for f e L p ( X ) ( v- weighted) weak type

a s TEf = (Tf) XE i s o f

( p , q ) , i . e . a

This i s &OAZ the inequal i ty of the theorem.

1 Take R > 0 such t h a t E(R) < 7 , where ;((A) i s the function defined in step ( i ) . Assume t h a t (**) does not hold. For each F C Y , with v (F ) > 0 there e x i s t s then F c F and g e L p

-

Page 48: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2.4. THE THEOREM OF N I K I S H I N 33

- such t h a t v(T) > Rq 1 1 glI; and I T g ( y ) l > 1 on F. By Z o r n ’ s

lemma, t h e r e e x i s t s a d i s j o i n t sequence {Fjl J and C g j l c Lq such t h a t

, v(Fj) > 0 , C v(F.) = 1

Since C Rq l / g j 11; < 1 we o b t a i n , by s t e p (i)

( i i i ) By us ing a g a i n Zo rn ’ s lemma and ( i i ) we o b t a i n

E j C Y , U E . = Y , E j d i s j o i n t such t h a t J

m

We now d e f i n e @(y) = 1 c 1 *-j XE ( y ) and t h i s f u n c t i o n s a t i s - 1 J j

f i e s t h e s tatement o f t h e theorem.

For t h e i n e q u a l i t y about t h e Rademacher f u n c t i o n s t h a t we have

used i n s t e p ( i ) one can appeal t o t h e K h i n c h i n e ’ s i n e q u a l i t y

(See S t e i n [1970] , Appendix 0 ) . With t h i s we have

Page 49: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

34 2. FINITENESS AND THE TYPE

I f p > 2, then q = 2 and we have, by M inkowsk i ' s i n t e g r a l

i n e q u a l i t y :

I f p < 2 , then q = p and we have (by t h e i n e q u a l i t y

Page 50: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 3

GENERAL TECHNIQUES FOR THE STUDY OF THE MAXIMAL OPERATOR

I n t h e p reced ing chap te rs we have seen t h a t under t h e c o n d i t i o n

o f t h e f i n i t e n e s s a.e. o f T * f f o r each f E X we s o l v e t h e a.e.

convergence problem and t h a t i f something more i s known abou t t h e opera-

t o r s Tk , we a r e even a b l e t o determine t h e t ype o f t h e o p e r a t o r T*.

I n t h i s chap te r we s h a l l t ry t o p r e s e n t some genera l methods t o

s i m p l i f y t h e s tudy o f t h e maximal ope ra to r .

t o t h e s tudy o f i t s a c t i o n on f u n c t i o n s wi th a much s i m p l e r s t r u c t u r e .

I n S e c t i o n 2 we p r e s e n t some methods t o deal d i r e c t l y w i t h some b a s i c

ope ra to rs by means o f cove r ings and decomposi t ions.

d i t i o n i n Sec t i on 3 c o n s t i t u t e s a n o t t o o wellknown b u t v e r y n i c e t o o l

t o s tudy t h e t y p e o f an opera to r .

I n S e c t i o n 1 we reduce i t

The Kolmogorov con-

The common f e a t u r e i n t h e techniques o f i n t e r p o l a t i o n and e x t r a

p o l a t i o n i s t h e f o l l o w i n g .

behaves w e l l on some spaces o f a c e r t a i n f a m i l y o f f u n c t i o n spaces. Can

one say any th ing about i t s behaviour on t h e i n t e r m e d i a t e spaces o f t h a t

f a m i l y ( i n t e r p o l a t i o n ) o r on t h e extreme cases o f t h a t family ( e x t r a p o l -

a t i on) ?

Assume t h a t we know t h a t an o p e r a t o r T

I n t h e techniques o f m a j o r i z a t i o n , l i n e a r i z a t i o n and summation

one t r i e s t o reduce t h e s tudy o f a d i f f i c u l t and comp l i ca ted o p e r a t o r t o

t h a t o f some o t h e r s t h a t a r e s i m p l e r o r b e t t e r known.

3.1. REDUCTION TO A DENSE SUBSPACE.

I t i s o f t e n t h e case t h a t t h e s t u d y of t h e maximal o p e r a t o r

i s much e a s i e r t o c a r r y o u t on f u n c t i o n s w i t h a s i m p l e s t r u c t u r e T* adapted t o t h e o p e r a t o r i n ques t i on . The f o l l o w i n g theorem shows t h a t

35

Page 51: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

36 3. GENERAL TECHNIQUES

i n many cases i t i s s u f f i c i e n t t o o b t a i n t h e t ype o f T* r e s t r i c t e d t o

such func t i ons i n o rde r t o have i t over an ampler domain o f f u n c t i o n s .

3.1.1. THEOREM. L e A (Q,F,p) be a meaute npace, (Q)

t h e neX a6 memutabkk 4eal ( o h cvmpLex) valued &nct ionb, X a n a m e d bpaCC v d 6unc~viont, i n %I (Q) and S a denbe nubdpace 06 X . LeR:

and

Then

mmuhe. L e A T* be thein. maximal opehha-tu4. F O J L

( a ) $ ( A ) = $,(A) d o 4 each A > 0.

( b ) Tn pcvLticuRan, 4 T* iA ob w a k t y p e (p,p) v u m S

6 ~ 4 dome p, 1 c p L m, Lt iA a6 w a k t y p e ( p , p ) (vum X).

( c ) Id T* iA v 6 t y p e (p,p) o v u S 6ua dome p, 1 c p 6 W,

Lt 0 06 t y p e (p,p) ( o v a X 1 .

P4ood. (a ) We have, o f course $ ( A ) 5 $ S ( A ) . We w i s h t o

prove $ ( A ) L ~ I ~ ( A ) . L e t a 2 0 and $(A) > c1 . We s h a l l show

t h a t $ s ( X ) > c1 . I n f a c t , if $ ( A ) > c1 , t h e r e e x i s t s then f e X , Ilf 1 1 6 1 , such t h a t

Consider T*N , def ined f o r h E X by T*Nh(x) = suplTkh(x) l

l & k h N

Page 52: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.1. REDUCTION TO A DENSE SUBSPACE 37

L e t us assume f i r s t t h a t t h e r e i s one N such t h a t

(*) > p { x E R : T*Nf (x ) > A 1 > ci

Choose Cgk} c S , Ilg,Jl c 1, gk + f ( X ) . Since

1 'd{x E R : T*iif(x) > 11 = l i m p ( x 6 R : T*Nf (x ) > A t I j + m J

and

we have f o r a s u f f i c i e n t l y b i g j

Since each Tk

member tends t o ze ro as k - fa, arid so f o r a s u f f i c i e n t l y b i g k

i s cont inuous i n measure, t h e f i r s t t e rm i n t h e l a s t

If t h e assumption ( * ) does n o t hold i t i s because f o r each N

we have e i t h e r

(1) p { x E R : T X N f ( x ) > 1 } c ci

o r e l s e

( 2 ) { x E R : T X N f ( x ) > A } = t o

I f we have (1) f o r each N , then

Page 53: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

38 3. GENERAL TECHNIQUES

and t h i s i s excluded. I f f o r some N we have (2), l e t us c o n s i d e r N o ,

t h e f i r s t N f o r which ( 2 ) ho lds . Take now a subse t 6 o f R such

t h a t

and proceed as be fo re .

(b)

( c ) L e t f a LP(o)

The s tatement (b) i s j u s t an a p p l i c a t i o n o f ( a ) .

and (gh I c s , gh -+ f(LP).

Then g, - gh -+ O(Lp) as s,h -f m and we have

Thus we o b t a i n

Since \ I T*(gh - g s ) ( [ + 0 as h,s -f 9 {T*gh-)

i s a Cauchy sequence i n Lp and so converges i n Lp t o a f u n c t i o n G. By

C a n t o r ’ s d iagonal process we can choose a subsequence Cyh> o f Egh)

such t h a t s imu l taneous ly

- and f o r each k, T k f ( x ) = l i m Tk gh(x) (a.e.)

So f o r each k we have a t a lmost eve ry x 8 R

Hence T * f ( x ) G G(x) a.e. and so

where C i s ’ t h e t ype cons tan t o f T* ove r S.

Page 54: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.2. COVERING AND DECOMPOSITION 39

3.2. COVERING AND DECOMPOSITION.

Cover ing and decomposi t ion techniques a r e among t h e most b a s i c

ones i n t h e s tudy o f t h e t ype o f t h e problems we a r e d e a l i n g w i t h . Cover-

i n g techniques a r e p a r t i c u l a r l y u s e f u l f o r t h e t rea tmen t o f t h e Hardy - L i t t l e w o o d maximal ope ra to r , one o f t h e most fundamental i n modern Analys is

and o f i t s g e n e r a l i z a t i o n s . We f i r s t p r e s e n t here i n paragraph A t h e

ve ry u s e f u l and i m p o r t a n t c o v e r i n g lemma o f B e s i c o v i t c h and r e f e r t o

Guzmdn [1975]

i n g lemmas.

f o r g e n e r a l i z a t i o n s o f i t and f o r some o t h e r types o f c o v e r

I n B we p resen t seve ra l examples o f t h e use o f t h e p r o p e r t i e s

o f t h e dyad ic c u b i c i n t e r v a l s f o r t h e p r o o f o f v e r y i m p o r t a n t r e s u l t s such

as Whi tney 's c o v e r i n g lemma, and t h e CalderBn - Zygmund decomposi t ion l e m

ma.

I n C we examine a c o v e r i n g theorem f o r convex s e t s o f wh ich

we s h a l l make use l a t e r on.

A. Bedicvvixch cvvcxing Lemma and t h e weak t y p e (1,1) a6 t h e

H ~ d y - L ~ e w v v d maximal v p a a t v h .

3.2.1. THEOREM. L d A C Rn be a bounded 6&. Fvh each

x e A we a t e given a dobed ba l l B ( x , r ( x ) ) wLth cedeti at x and

nadiud r ( x ) > 0. Then, 6hvm t h e coUecLivn ( B ( x , r ( x ) ) x A vne

cun chvvbe a sequence 0 6 b a L h { B R I buch t h a t

( i ) A c UBk

(ii) . I B k I can be d i6MbLLted into cn dequenced {BiI , Cn C B i I , ... CBk I each vne v a d i n j v i n t b m . Hehe cn h a c o w d a d

depending only vn n.

( i i i ) One h a 1 xB ( x ) c cn at each x e R n , i . e . t h e k

v v d a p v d t h e bad22 0 6 ( B k I h un i6vmly bvunded b y cn.

Pkvo6. We choose { B k I i n t h e f o l l o w i n g way. I f

a. = sup { r ( x ) : x e A 1 = - , then a s i n g l e b a l l w i t h s u f f i c i e n t l y

l a r g e r a d i u s i s enough. L e t us then assume a. > 00. We then t a k e

Page 55: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

40 3. GENERAL TECHNIQUES

3 xle A such t h a t r ( x l ) > B a n and B1 = B(xL,r(xl)). L e t us now

cons ide r al = sup { r ( x ) : x e A - B i I . We t a k e then x2e A - B,

such t h a t r ( x 2 ) > T al and B2= B ( x 2 , r ( x 2 ) ) , and so on. I n t h i s

way we o b t a i n a sequence {Bk) , t h a t can be f i n i t e o r i n f i n i t e . I f f i

n i t e , it i s so because A c UBk and so {Bk} s a t i s f i e s (i). I f i n f j

n i t e , we have r ( x k ) + 0 as k -+ m . I n f a c t , o the rw ise we would

have an i n f i n i t e number o f k's w i t h r ( x k ) > 01 > 0. I f we observe

t h a t t h e b a l l s

them a r e i n a bounded s e t I z e R n : d(z,A) c a. 3 , we e a s i l y see t h a t

t h i s i s impossib le . The re fo re r ( x k ) -+ 0 as k + m . I f

s e A - UBk # 0 , then r ( s ) > 0 and B ( s , r ( s ) ) has been unduly

over looked i n o u r s e l e c t i o n process. Hence A - LIBk = 0 and {Bk) s a t

i s f i e s ( i ) .

3

1 1 B(xk, 5 r ( x k ) ) = 7 Bk a r e d i s j o i n t and t h a t a l l o f

I n o r d e r t o prove ( i i ) l e t us f i x a Bh and ask ou rse l ves how

many Bk ls w i t h k < h i n t e r s e c t Bh. There a r e some such B k l s

w i t h cen te r xk such t h a t d(xh,xk) c 3 r ( x h ) , l e t us c a l l them o f t y p e

1, and t h e o the rs , o f t ype 2, such t h a t d(xh,xk) > 3 r ( x h ) . A l l o f them

a r e such t h a t r ( x k ) > r ( x h ) s i n c e k < h. Fo r a Bk o f t y p e 1 we

cons ide r Bk c o n c e n t r i c w i t h Bk and w i t h r a d i u s rfx,). For a Bk o f t ype 2 we j o i n i t s c e n t e r xk t o xh and on t h i s segment we take

t h e p o i n t x i a t d i s t a n c e 3 r ( x h ) f rom xh. We then cons ide r t h e b a l l 1

t h e b a l l s 5 Bk a r e d i s j o i n t and a l l con ta ined i n t h e b a l l B(xh,4r

There fo re they a r e i n number l e s s than

3

1 Y

ik o f c e n t e r x i and r a d i u s r ( x h ) . It i s now easy t o observe t h a t 1 -

'n. 4'/(+)" = 42n =

P r o p e r t y ( i i i ) i s , o f course, an i nmed ia te consequence o f (

There a r e many i n t e r e s t i n g v a r i a n t s o f t h i s lemma o f Besicov

For some o f them t h e reader i s referred t o Guzman [1975] . Wi th t h e ideas

o f t h e p r o o f o f t h e p rev ious theorem he shou ld t r y h i s hand a t t h e f o l l o w

i n g s i m i l a r statement.

3.2.2. THEOREM. Le , t A c R n be a bounded Foh each

x e A we m e given a cloned i v L t a v d I ( x ) , ( I ( x ) ) " f 0 , c e n t a e d at x i n nuch a &~m t h d id x e A , y e A t h e i n t a u & I ( x ) , I ( y )

me cornpahabee i n n i z e , i . e . id XhamLated t o be c e n t a e d CLZ 0 one .& confairzed in t h e otheh. Then, 6 m m t h e cokXeeection (I(X))~€A one can

Page 56: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.2. COVERING AND DECOMPOSITION 41

choone a nequence { I k ) nuch t h a t

( i ) A c UIk

( i i ) The nequence { Ik} can be cL&txLbuZed i n t o pn A &

quenca C I ~ 1 , 11; I , ... { I E ~ I , each o d them ad d b j o i n t i n t a u & . Hae pn depend o n l y on t h e dimenilion.

( i i i ) OW han 1 X I ( x ) ,< pn at M C ~ x E R ~ . k

Observe tha t the f a c t t ha t A i s bounded has been only used i n the proof of t o cope w i t h the case a. = sup { r (x) : x E A 3 = m

the theorem. One can permit A t o be unbounded assuming a. < . Also the f a c t t h a t the b a l l s i n the f i r s t theorem or the in t e rva l s i n the second a r e closed i s ra ther i r r e l evan t . One can assume them open o r w i t h p a r t of the boundary.

In order t o mark the way fo r the appl ica t ion of t h i s important lemma of Besicovitch we sha l l now show how the weak type (1,l) f o r t he Hardy-Littlewood maximal operator i s an easy consequence of i t .

One of t he var ian ts of the n-dimensional Hardy-Littlewood op e ra to r can be defined in the following way. For f E L’(Rn) and x a R n we s e t

Mf(x) = SUP

where Q runs over a l l open cubic in t e rva l s containing the point x. I t i s easy t o see t h a t Mf

i n g property : If f l , f 2 E L1(Rn) , A I , A 2 E R , i s measurable and t h a t i t s a t i s f i e s the follow-

then

We want t o show tha t there e x i s t s c > 0 such t h a t f o r each X > 0 and each f E LNn)

Page 57: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

42 3. GENERAL TECHNIQUES

I f x E A , then t h e r e e x i s t s a c u b i c i n t e r v a l Q c o n t a i n i n g

x such t h a t

I f we cons ide r t h e minimal open c u b i c i n t e r v a l Q* cen te red a t

x and c o n t a i n i n g Q, we have

Where cx depends o n l y on t h e dimension n.

I t i s a l s o easy t o see t h a t , s i n c e f a L' and X > 0, t h e

x 6 AX , i s f i n i t e . supremum o f t h e d iameters o f t h e cubes Q* , when

We app ly B e s i c o v i t c h lemma and o b t a i n CQ*,I such t h a t

Then we can w r i t e

T h i s proves t h a t M i s o f weak t ype (1 , l ) . Since M i s t r i v i a l l y o f

t y p e ( m , ~ ) , Marc ink iew icz i n t e r p o l a t i o n theorem t e l l s us t h a t M i s

of t ype (P,P).

(Observe t h a t i n p a r t i c u l a r we g e t

Th is f a c t w i l l be used l a t e r ) .

The f a c t t h a t M i s o f weak t y p e (1,l) t o g e t h e r w i t h t h e

t r i v i a l obse rva t i on t h a t , i f g e gNn) we have, for each x E Rn

Page 58: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.2. COVERING A N D DECOMPOSITION 43

and each sequence I Q k ( x ) I of cubic in t e rva l s containing x , such t h a t s(Q,(x)) -t 0

gives us the c l a s s i ca l theorem o f Lebesgue on d i f f e r e n t i a t i o n of i n t eg ra l s .

3.2.3. THEOREM. LeX f E L1(Rn) . T h e m &xh& a heX oh m m -

uht zmv Z c R n huch t h a t , each 2 $ Z and u c h hCqUencC { Q k ( x ) )

a6 cubic ivLtem& covLtaivcing x w L t h 6 ( Q k ( x ) ) -f 0 , one h a

Prroal;. We wish t o prove tha t fo r each A > 0

B u t , i f f = g + h w i t h g E e o (R') , we have

With C independent of f , g , h , A . Thus, given E > 0 , we choose h such t h a t

one proves

CJlhl[ < E . This proves t h a t / A A \ = 0 . In the same way A

Page 59: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

44 3. GENERAL TECHNIQUES

B. The dyadic cubeil and b#me uppficaA;iun6, Wkitney'o Lemma.

C d d a b n - Z ygmund decompob&on.

The use o f t h e dyad ic cub ic i n t e r v a l s i s a powerfu l t o o l f o r

many d i f f e r e n t purposes i n r e a l a n a l y s i s , as we s h a l l now see.

For t h e i n t r o d u c t i o n o f t h e dyadic C u b a i n R n , we f i r s t

1

w i t h i n t e g r a l coo rd ina tes . We

i s t h e un ion o f Zn d i s j o i n t cubes

cons ide r i n Rn t h e f a m i l y D O o f a l l h a l f - open c u b i c i n t e r v a l s

(open t o t h e r i g h t and c losed t o t h e l e f t ) o f s i d e l e n g t h equal t o

hav ing v e r t i c e s a t a l l p o i n t s of Rn

now s u b j e c t D o t o a homothecy o f c e n t e r 0 and r a t i o 2, f o r k E Z

and so o b t a i n Dk . Each cube o f D

The cubes o f D have s i d e l e n g t h 2J . I t i s c l e a r t h a t o f Dj-l . i f Qls D j and Q 2 € D k w i t h j s k , then e i t h e r Q1 i7 Q2 = 0 o r e l s e Q 1 c Q 2 .

j

j

We s h a l l use a l s o t h e f o l l o w i n g s imp le p r o p e r t y o f t h e dyad ic

cubes.

3.2.4. THEUREM . LeL (9,) clcA be u g i v e n coUecLLon 06

dyadic c u b i c i n t a w a h . C 1 $ C2s .. . a d C u b a od (9,) ,cA 6ivLite. Then t h e muximd cubeil {Q,} 06 each u c e n d i n g c h a i n 0 6 (Q,) ahe d i n j o i n t and b a U 6 y UQ, = UQa .

The proof i s a t r i v i a l consequence o f t h e f a c t t h a t

Q j , Q,

Annunie t h a t ecrch abcending c h a i n

,€A

Pkood.

f o r each conple

d i s j o i n t o r e l s e one i s s t r i c t l y con ta ined i n t h e o t h e r .

o f d i f f e r e n t dyad ic cubes, e i t h e r t h e y a r e

AppLicaA;ian I . Wkitney'o covehing Lemma.

As a f i r s t a p p l i c a t i o n we prove t h e f o l l o w i n g usefu l c o v e r i n g

lemma due t o Whitney [1934].

3.2.5. .THEOREM . L e L G c Rn be a n open bt?X , G # R n , G # 0. Then t h a e exha2 a d i n j o i n t nequence {QkI 0 6 cubeil t h c d ahe obRdined by A t a n 6 W o n ad dyadic c u b i c in . tehv&, nuch t h a L

(i) G = U Q,

Page 60: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.2. COVERING AND DECOMPOSITION 45

d ( Q k y aG) whehe

2 6 T 6 y (ii) F o t ~ each k,

d denotec, t h e Euclidean dintance , 8G ,iA t h e boundmy 06 G and &(a,) ,the diameXeh o d 0,.

P t ~ o o d . We can assume, by pe r fo rm ing a t r a n s l a t i o n , i f necessary,

t h a t 0 E aG . For each x E G we t a k e t h e g r e a t e s t dyad ic cube

Q(x ) such t h a t x E Q ( x ) and

F o r Q ( x ) we c l e a r l y have

and i f Q* (x ) i s t h e " f a t h e r " o f Q ( x ) i n t h e dyad ic g e n e r a t i o n we have

d(x , aG) 6 3 6 ( Q * ( x ) = 6 6 ( Q ( x ) )

There fo re we can w r i t e

The (Q(X)),,~ s a t i s f y t h e f i n i t e ascending c h a i n c o n d i t i o n o f

s i n c e t h e cubes o f any i n f i n i t e ascending c h a i n f i n i s h t h e Theorem 2.4,

by be ing a t ze ro d i s t a n c e f rom 0 and t h i s c o n t r a d i c t s d ( Q ( x ) , aG) > k 2 6 ( Q ( x ) ) .

theorem.

We now app ly Theorem 3.2.4. and o b t a i n t h e s tatement o f t h e

I f we a p p l y i n t h e same v e i n t h e c o v e r i n g lemma 2.4. t o p rove

t h e weak t y p e o f

cubes we e a s i l y o b t a i n a r e v e r s e i n e q u a l i t y .

t h e Hardy -L i t t l ewood maximal o p e r a t o r r e l a t e d t o dyad ic

3.2.6. THEOREM . L e X f e Limn) and

Mf(x) = sup & I a ( x ) I f [ , whehe t h e sup A ,tatahen oweh u l l

Page 61: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

46 3. GENERAL TECHNIQUES

dyadic C u b a Q ( x ) c o n t a i n i n g x . Then, 6 a h each X > O , we have,i6

AX = { x : Mf(x) > A}

Phou6. For x E A h there i s a l a r g e s t dyadic in te rva l Q(x) If1 > A . Clearly hi Q ( x )

containing x such tha t

1 l Q ( x ) l < x 1 1 f 1 1 1 and so i t i s obvious t h a t f i n i t e ascending chain condition. We apply3.2.4. obtaining Q, d i s jo in t such tha t Ah = U Q, . Observe t h a t

( Q ( X ) ) ~ ~ ~ s a t i s f y the

where Qt i s the f a t h e r of Q,. W i t h these inequa l i t i e s the s t a t e m n t i s obvious.

A i y f i c a t i o n 2. C d d m 6 n - Zyqmund decompob&on lemma.

The following r e s u l t of CalderBn and Zygmund 119521, used by them in their c l a s s i ca l paper on s ingular i n t e g r a l s , has become a very important t oo l , useful i n many d i f f e r e n t contexts. I t can be given many d i f f e r e n t forms. Here we present the or ig ina l one, which r e f e r s t o the dyadic cubic in t e rva l s . For other l e s s geometrical var ian ts one can see Guzmdn [ 1975 , p. 16-17 3 .

3.2.7. THEOREM . L e X f E L1(Rn) , f 2 0 and A > 0 . Then

Rhme e h a 2 a bequence 0 6 d i b j o i n t dyadic c u b i c intmvab {Q,} duch t h d

( i i ) f ( x ) 6 A a t a . e . x 4 UQ,

Page 62: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.2. COVERING AND DECOMPOSITION 47

f ( x ) = g ( x ) t h ( x ) (Calder6n - Zygmund decomposi t ion)

we have

( a ) g ( x ) < PA f o r x E UQ,

( b ) g ( x ) 6 x f o r a.e. x 4 UQ,

P m o d . L e t A X be t h e s e t o f p o i n t s x a R n such t h a t

f > A where I . Q,(x)) is t h e sequence f ( x ) = l i m

o f decreas ing dyad ic cubes c o n t a i n i n g x. F o r each x E l e t Q ( x )

be t h e l a r g e s t dyad ic cube c o n t a i n i n g x such t h a t

1 a(Q,(x)) + O I Q k ( x ) l 'Qk(X)

The cubes

s i n c e I Q ( x ) l c 1 1 f / I 1 . We app ly Theorem 3.2.4. and o b t a i n Q, I s a t i s f y i n g ( i ) and ( i i ) .

(Q(x) lxeAX s a t i s f y t h e f i n i t e ascending c h a i n c o n d i t i o n ,

1

Remmk . Observe t h a t t h e same process o f t h e p r o o f i s v a l i d

t o o b t a i n t h e f o l l o w i n g v a r i a n t o f t h e theorem.

3.2.8. THEOREM . L e t Q be a cubic i r z t a v d ud Rn , f 6 L'(Q),

& /Q f 6 A * f L 0 , X > 0. AbbWe t h a t

Then . them exint a nequence 0 6 dyadic Aubcubu 0 6 Q , C Q, t h d dhe dinjoint and A a - t i A d y

( i i ) f ( x ) 6 A a t a.e. x 6 Q - UQ,

Page 63: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

48 3 . GENERAL TECHNIQUES

C . A c a v d n g theahem 6vh n u t & canvex b e h .

Later o n , when dealing with s ingular in tegra l operators i n ChaL t e r 11, we sha l l make use of the following in t e re s t ing covering r e s u l t .

3 .2 .9 . THEOREM , LeL (K,) be a ~a.mi.ly a4 campact canvex

bLd.5 0 6 Rn w s h nan-empty i n t d a t r and w i t h c e n t e ~ at t h e v h i g i n . Abbume

t h a t they m e n u t e d , i. e. 6vh any &a a6 them K,, , K,, , & h a

Kol, Ka, K,, Ka,.

L e t B c R n be any campact b& and ahume t h a t 6 a t each

i . e . ,the f i a m l a t i o n t o x a6 t h e b d

x e B we m e g iven an index a ( x ) e A . Camidetr, doh each x E B , xhe O& Ka(x). '

Cx = x + K

Then, @am ,the g iven caUecaXon ( C x ) x a B One can chavbe a

bQqUQMCe {C, 1 thcLt

t h a t may be 6ini te oh i n d i n i t e , 0 6 d i n j v i n t b&tA h u h k

B C U 5 C k 'k

whme 5 C x Lh t h e b e t abahined 6hom C x by a hamvthecy 0 6 ha.tLo 5 and

cedm x, t h e centeh 0 6 b y m m e h y 0 6 C,.

Phvro06. We sha l l give a sketch of t he proof. I t will be easy f o r the reader t o f i l l i n the d e t a i l s .

Assume f i r s t t h a t the index s e t A i s M and t h a t j h e NI,

J 'k j > h , implies K. C K h . We proceed t o choose our s e t s C . Take

x, such t h a t ,(XI) is as small as possible, i . e . C x l as big as pos- s ib l e . Take now X Z E B - 5 C, such t h a t ~ ( x z ) i s a s small as pos-

s i b l e , then x 3 e 6 - 1.J 5 C such t h a t a ( x 3 ) i s as small as POL

sible,and so on. t ha t B c U 5 C and t ha t C fl C, = !?j i f i # j .

'i 'i j The case of a general index s e t A can be eas i ly reduced t o the

2 1

i :1 'i I t i s e a s i l y proved, as in the previous covering resu l t s ,

previous one.

Page 64: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.2. COVERING A N D DECOMPOSITION 49

The following consequence of the preceding theorem i s i n t e r e s t ing and useful f o r the d i f f e ren t i a t ion of i n t eg ra l s and f o r the study o f

the approximations of the i d e n t i t y .

3.2.10. THEOREM. LQt (Ka) aaA be a l;amLLy 06 compact conuex he& a i n t h e pkecedincj theokem. F o l ~ each x 8 R n and a E A L e t UA

denote

K a ( x ) = x + Ka

and c o a i d a , d o t f E L j O c (Rn) , x 8 R n t h e maximd opetrcLtoh M

I f 1 K,(x)

Mf(x) = sup clEA

Then M i~ 0 4 weak Xype (1,l) w s h a t y p e cov~5Xant 5n .I& dependent oQ t h e 6~~nLLiey ( K a ) acA .

Ptrooh. Let A > 0 , f E L1(Rn) and l e t B be any compact subset of

C x e R n : Mf(x) > A }

For each x E B there i s a n a(X) such t h a t , i f we have

+ K C A X )

We apply the preceding theorem and obtain a d i s j o i n t sequence I C(x , ) 1 such tha t B c U 5 C(x,) . So we have

Page 65: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

50

There fo re

3. GENERAL TECHNIQUES

3.3. 'KOLMOGOROV CONDITION AND THE WEAK TYPE OF AN OPERATOR.

Weak t ype i nequal i ti es p r e s e n t c e r t a i n i m p o r t a n t disadvantages

w i t h respec t t o those o f s t r o n g type. The l a t t e r p e r m i t summation, i n t e

g r a t i o n and comparison processes t h a t cannot be c a r r i e d o u t w i t h t h e f o r

mer ones. T h i s o b s e r v a t i o n w i l l be b e t t e r understood w i t h some examples.

Assume t h a t i s a f a m i l y o f s u b l i n e a r o p e r a t o r s f rom

some LP(n) t o LP(n) , 1 6 p c m , which a r e o f s t r o n g t y p e (p,p) , w i t h constants ca . We cons ide r t h e o p e r a t o r T d e f i n e d on each

f B LP(n)

i s o f s t r o n g t ype (p,p).

i n e q u a l i t y t o o b t a i n

(Ta) , 0 < cx < 1,

by T f ( x ) = i [ T a f ( x ) [ da and we want t o s tudy wheter T 0

I t may be p o s s i b l e t o a p p l y M inkowsk i ' s i n t e g r a l

so, i f 1' ca da < m , then T i s o f s t r o n g t y p e (p,p). I f we o n l y

know t h a t each T

cable.

0

i s o f weak t y p e t h i s procedure i s n o t d i r e c t l y a p p l i -

Another i n t e r e s t i n g example, t h a t we s h a l l l a t e r use, i s t h e

f o l l o w i n g . Assume t h a t a c e r t a i n s u b l i n e a r o p e r a t o r L f rom some

Lpmn) , 1 < p < m t o (Rn) i s r e l a t e d t o ano the r one S i n

t h e f o l l o w i n g way. For each x E Rn and each f E Lp(Rn) t h e r e e x i s t s

an annulus:

Page 66: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.3. KOLMOGOROV

Q ( X ) = { z E R ~ : r

CONDIT I ON 51

such t h a t f o r each y f Q ( x ) we have I L f ( x ) l c ISf(y)l . Assume

t h a t S i s known t o be of s t r o n g t y p e (p,p). Can we say a n y t h i n g

about t h e t ype of L ? Yes, and ve ry e a s i l y . We i n t e g r a t e t h e above

i n e q u a l i t y ove r y 8 Q ( x ) and d i v i d e by I Q ( x ) l . Thus we g e t

where c depends o n l y on t h e dimension n and M i s t h e Hardy - L i t t l e w o o d maximal o p e r a t o r over b a l l s which i s o f t ype (p,p) . Hence

and so L i s of s t r o n g t y p e (p,p).

What can be s a i d if we j u s t know t h a t S i s o f weak t y p e (p,p)?

We s h a l l now see i n cases l i k e t h e p rev ious ones we can proceed i n t h e

same way s u b s t i t u t i n g t h e weak t y p e i n e q u a l i t y (p,p) by some o t h e r e q u i v

a l e n t s t r o n g i n e q u a l i t y which we s h a l l c a l l , f o l l o w i n g C o t l a r [1959] , t h e K a ~ o g o h o u con&an.

3.3.1. THEOREM . L e X T be a n u b f i n e a t o p e h d o h dhom (n) ,to (n). annume thcLt T A 0 6 weak .type (p,s) , 1 c p , s G

w a h con?s,tatarzt c . Then, . id 0 < 0 < s and A A any m e a o ~ ~ a b l e nubneX

0 6 f 6 h'l (n) , ,the ~ a U o w L n g

(Ko4hugotrov'n J LnequaLLty,

w s h @IJ& meanme, we have, d o h each

Page 67: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

52 3. GENERAL TECHNIQUES

0 < a < s , and d a h each f E LP(R) and each A c R wLth u(A) < m , Rhen T ad weak .type (p ,s) .

Phtood. L e t T be .of weak t y p e (p , s ) w i t h cons tan t c, i . e . f o r

each f 6 “ I ( R ) and each A > 0,

L e t 0 < a < s A c R p(A) < m and f o r g , measurable

f u n c t i o n d e f i n e d on R , c a l l

t h e d i s t r i b u t i o n f u n c t i o n o f g . Then

lTf l ‘ = u Ad-l W l T f l X (A) dA = u[ ION -t ] < A N 0

I l f IIS cs 3 dh - - im A S

c u p(A) dA + u N

I 1 f I 1 u(A)

I f we choose N = c t h a t makes minimal t h e l a s t member, we

o b t a i n Kolmogorov’s i n e q u a l i t y (*) ,

Assume now t h a t T s a t i s f i e s (*) f o r u < s . L e t f e %(a), h > 0, K c Q any measurable s e t o f f i n i t e measure con ta ined i n

{ I T f ) > A I . Then, i f we app ly t h e i n e q u a l i t y (*) , we g e t

Page 68: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.3. KOLMOGOROV CONDITION 53

Hence T i s o f weak t ype (p,s) . The r e l a t i o n between t h e cons tan ts o f

t h e weak t ype and t h e Kolmogorov i n e q u a l i t i e s a r e c l e a r f rom t h e compu-

t a t i o n s i n t h i s proof .

With this theorem one can e a s i l y hand le t h e p r e v i o u s examples,

even i f we s u b s t i t u t e t h e s t r o n g t ype f o r t h e weak t ype i n e q u a l i t y .

I n t h e f i r s t one, i f each T, i s o f weak t y p e (p,p) , 1 < p < , w i t h cons tan t c, , we can w r i t e , f o r each A w i t h v (A) < m y

i f l < ~ < p , ~ E L P

i .e.

Hence, s i n c e T f ( x ) = I' IT,f(x) I dx , 0

The second example, t o g e t h e r w i t h some o t h e r s , w i l l be t r e a t e d

i n S e c t i o n 6 when d e a l i n g w i t h t h e technique o f m a j o r i z a t i o n .

Page 69: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

54 3. GENERAL TECHNIQUES

3.4. INTERPOLATION.

The i n t e r p o l a t i o n methods have been e x t e n s i v e l y s t u d i e d and t h e r e

a r e severa l r e c e n t monographs about them. We s h a l l s t a t e here, w i t h o u t

p r o o f , two o f t h e most b a s i c r e s u l t s , t h e R iesz -Thor in theorem and t h e

Marc ink iew icz i n t e r p o l a t i o n theorem. F o r a more complete t rea tmen t t h e

reader i s r e f e r r e d t o Sadosky [1979] , t o Bennet and Sharp ley 1119791

and t o a fo r thcoming monograph by t h e two l a s t mentioned au tho rs . A l so

t h e book by S t e i n and Weiss [1971] c o n t a i n s a ve ry good chap te r on i n t e r -

po l a t i on.

We g i v e a l s o i n t h i s paragraph t h e p r o o f o f an i n t e r e s t i n g the-

[1959] , which i s a t t h e same t i m e a good example orem by S t e i n and Weiss

o f t h e technique o f l i n e a r i z a t i o n presented i n 3.7.

A . The R ienz - Thohin theorrun.

1 1 1 1 1 1 - = ( 1 - t ) - t t - , - = ( 1 - t ) - t t - P t Po P1 q t 90 q1

FwLthehmurre.,

l n ~ L V U X C W , i6 pt < m t h e opetratoh T can be uvLiyudy

extended t o t h e whoLe npaw LPt(fil) phenmving t h e l a ~ t i nequu ldy .

For t h e p r o o f we r e f e r t o Zygmund [1959] .

Page 70: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.4. INTERPOLATION 55

B . The Marrcinkiewicz themem.

3.4.2. THEOREM. LeA ( a l , Y l y ~ l ) and (QZ,S2,p2) be Awa mean -

W L ~ bpaCU und T

L "(a,) t L '(al). Annume t h a t T A v2; weah Z y p ~ ( p o , q o ) and (pl,ql)

ttrhetre

u nubadditcue opehcLtvh t h d A de6ined vn ,the npace P P

1 6 Po 6 - Y Po c P I . go # 91.

F O h O < t < l , L d

1 - ( 1 - t ) t - 1 t q1

- ( 1 - t ) + - t , P t Po P I 9 t qo

Then T A &a 0 2 ; t y p e (pt,qt)

For t h e proof we r e f e r t o Zygmund [1959] o r S t e i n [1970 1. I n t h e l a s t r e f e r e n c e one can see some r e c e n t g e n e r a l i z a t i o n s .

C. A thev tm vl; S t e i n and W ~ A .

For many opera to rs t h a t a r i s e i n a n a t u r a l way i t i s r e l a t i v e l y

easy t o prove t h a t t h e y v e r i f y a weak t y p e i n e q u a l i t y when r e s t r i c t e d t o

c e r t a i n types o f f u n c t i o n s (smooth, s imple, c h a r a c t e r i s t i c f u n c t i o n s o f

sets , . . . ) . For t h i s reason i t i s i n t e r e s t i n g t h e f o l l o w i n g theorem o f

E.M.Stein and G.Weiss [1959] t h a t a l l o w s t o i n t e r p o l a t e between such

types o f i n e q u a l i t i e s i n t h e s t y l e o f t h e Marc ink iew icz theorem.

L e t (n ,F ,p ) be a measure space and T : W(n) -+ ,W(n) a s u b l i n e a r ope ra to r . We say t h a t T i s o f hc%t.kicted weah type (p,q),

1 G p & m , 1 & q 6 m , when t h e r e e x i s t s a cons tan t

f o r each c h a r a c t e r i s t i c f u n c t i o n xE of a measurable s e t E c R

w i t h p ( E ) < and f o r each A < 0 we have

c > 0 such t h a t

Page 71: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

56 3. GENERAL TECHNIQUES

When one t r i e s t o i n t e rpo la t e , using the technique of t he proof of Marcinkiewicz theorem, i n order t o obtain an intermediate ha-tt icted type from the knowledge of two r e s t r i c t e d weak types, there i s no problem a t a l l , as the following lemma shows.

P4006. Let E be measurable, E t . We t r y t o prove -

w i t h At independent of E. We know

If we s e t .,(A) = i-~ { x e n

Because of t he inequa l i t i e s above

Xqt w ( A ) -+ 0 as A -P 0 and as A --t m.

TXE

Thus

Page 72: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.4. INTERPOLATION 57

If we integrate and s e t N = u(E)’ with the value

which makes minimal the l a s t term, then

However, when we try t o obtain the nonrestricted strong type by means of the preceding technique, the process does not work, since we need an estimate for w T f ( X ) for f E L P ( Q ) t h a t we do n o t have, a t least so direct ly as above. The diff icul ty can be obviated going over t o the dual space i n the following manner.

Assume now that the operator T : ’l/Yl (a) -t %(a) i s f i n m and of res t r ic ted type ( p t , q t ) ( as in the $onclusion o f the preceding lemma), 1 & pt < m , 1 < q t < m . On L q t ( Q ) , dual space of L q t , ye are going t o define an operator T* in the following way. Let f E ~ q t ( n ) anf for E c , V(E) i , we s e t

We then have

Page 73: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

58 3. GENERAL TECHNIQUES

Hence vf(E) is a s igned measure con t inuous w i t h r e s p e c t t o p . So by

t h e Radon - Nikodym

h z T* f e L1 such t h a t vf(E) = JE h . So, f o r each f e Lqt (n)

and each measurable E, u (E ) < m we have

theorem t h e r e is an e s s e n t i a l l y un ique f u n c t i o ?

Si.nce T i s l i n e a r f o r each s imp le f u n c t i o n s

1 ( T s ) f = \ sT*f

and so T* i s a s o r t o f a d j o i n t o f T. Now we can s t a t e t h e f o l l o w i n g

1 emma.

3.4.4. LEMMA. L d T be a in Lemma 3.4.3 and benididen

Lineah. LeR: T* be dedined an i n Ahe phecedcng &na. Then T* Lb 06

weah type. (q;; , p; 1 -

Then

1

The s e t EX i s t r e a t e d i n t h e same way and so we g e t t h e lemma.

Page 74: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.4. INTERPOLATION 59

These two lemmas p e r m i t us t o o b t a i n v e r y e a s i l y t h e f o l l o w i n g

theorem.

Prrood. We take to,tl such t h a t 0 < to < s < tl < 1. Then,

by Lemma 3.4.3, T i s o f r e s t r i c t e d t ype ( p t o y q to ) and (ptly qtl) . By Lemma 3.4.4, T* i s o f weak (qi, , p i , ) and (qC,,pil). By t h e

Marc ink iew icz theorem T* i s t hen o f s t r o n g t y p e ( q i , p:). Therefore

i t s a d j o i n t T* i s w e l l d e f i n e d and i s o f s t r o n g t y p e (ps,qs) . I f f E Lq5 and s i s a s imp le f u n c t i o n

j ( T * f ) s = j f ( T s ) = f (T**s) J

The re fo re T**s = Ts f o r s s imp le and so T i s o f s t r o n g t y p e (ps,qs).

The theorem o f S t e i n and Weiss has a drawback. I t r e q u i r e s t h a t

T be l i n e a r and so cannot be d i r e c t l y app l i ed , f o r example, t o maximal

o p e r a t o r s .

method t h a t we s h a l l see l a t e r , pe rm i t s us t o extend t h e r e s u l t t o t h i s

s i t u a t i o n .

The f o l l o w i n g c o n s i d e r a t i o n , an example of t h e l i n e a r i z a t i o n

m 3 . 4 . 6 . TffEOREM. L d {Tk} k=l be a sequence 0 6 f ineah opehatoh5

@om (a) t o 'm ( Q ) . ld T* be t h e i t maxim& opeh&oh. &Arne

t h a t T* ,LA oh rrena7hted weah t g p e n (po ,qo ) and (pl,ql) , w a h

1 6 P O ,i qo < m 1 6 p1 c q1 4 m , q o f q l . Then T* LA a15 s&vng Rgpe 1

91 - ( 1 - s ) t - s . 1 - ( 1 - 5 ) + - s , (ps,qs) w4xh 0 < s < 1 , - - -

Ps P o P1 9, 90

Prrood. L e t $ : Q -f N be any a r b i t r a r y measurable f u n c t i o n

F o r g E W(R) and x E R we d e f i n e Ti) g ( x ) = T $ ( x ) g ( x ) . The

Page 75: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

60 3. G E N E R A L TECHNIOUES

operator T so defined i s obviously l i nea r from ()"l (Q) t o ,h (n). We c lea r ly have, f o r each x E ~2 and g E % (Q),

$

T*. Hence T i s of r e s t r i c t e d weak types same constants as T* , i . e . with constants

by Theorem 3.4.5. T i s of strong type + J,

( p S , q , ) with constants independent of + .

Let now f E L p s . We choose @ : G. -f M measurable such t h a t T*f(x) c 2 IT f ( x ) I fo r each x 6 G. . ( t o do t h i s def ine @ ( x ) on the s e t I T j f ( x ) l > Z k ) .

with c independent of f . So T* i s o f strong type (ps,qs).

f i r s t consider Tfi defined by Tfif(x) = sup ITkf (x ) l . We obtain the

r e s u l t f o r Tfi obtain i t f o r T*.

L Cx 6 G. ' : 2 ktl > T*f(x) > Z k 1 as t he f i r s t j such t h a t

Thus we have 1 1 T*fl l c 2 1 1 TOfllqs 6 c I l f l /ps

In general we can

q S

Here we have t a c i t l y assumed T * f ( x ) # m . 1s k&N

and then a passage to the l i m i t as N + m allows us t o

3.5. EXTRAPOLATION

The aim of the extrapolation technique can be understoood in t h e following concrete example. Let T : k ( n ) + h ( n ) be a subl inear operator and assume t h a t we k n o w t h a t i t i s , f o r ins tance , of strong type ( p , p ) , P O < p < P I , with a constant depending on p , c ( p ) , i . e . f o r each f 6 Lp(n) ,

Assume tha t we have some more information about c ( p ) f o r example t h a t c ( p ) L A / ( p - p o ) ' f o r p c lose t o p o . Can we ex t r ac t

Page 76: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.5. EXTRAPOLATION 61

f rom t h i s s i t u a t i o n more i n f o r m a t i o n about t h e t ype of t h e o p e r a t o r T?

As an i l l u s t r a t i o n of t h e thechnique we p r e s e n t a r e s u l t of Yano

The method does n o t seem t o have been e x p l o i t e d v e r y e x t e n s i v e [ 1951 1. 1Y.

3.5.1. THEOREM. L e R M be a bubadditive, panLtLve, panL?Xue-

Ly homogeneow a p e h a t o h 64om %I ( n ) t o (n) . knwne t h a t

1 1 M f I l o o 6 1 1 fll, do4 each f E: Lm and t h a t thetre exint con&tm,tb c,

s > 0 nuch t h a t 604 each p E (1,2) and d o t each mmu/rabLe be,t 0 6 bounded meanme E , we have

Then, do4 each f E: L ( l + log+Ls) and do4 each mmwrabbe be,t 06 bounded m m m e X C we have

w i t h clrc2 independenX ad f, X.

As we can see, t h i s i s a s o r t of Kolmogorov c o n d i t i o n r e l a t e d

t o t h e space L ( l + log+L)' .

P4aud. We know t h a t f o r each K c n w i t h u (K ) <

we have

L e t us take f E L ( l + log+L)' , f > 0 , and c a l l

E o = IX f X : 0 < f ( X ) < 1)

Ek = { x 6 x : 2k-1 & f ( x ) < 2k1 f o r k = lY2,3,...

Page 77: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6 2 3. GENERAL TECHNIQUES

We can w r i t e

The sum o f t h e terms i n t h e s e r i e s above corresponding t o those

ek f o r w ich ek 6 3-k i s f i n i t e s i n c e

I f ek > 3-k t hen we have

and so

Hence

k+ 1 ~

2 k ( k + 1)' ek kt2 < 2 k ( k + l ) s ek3

By r e f i n i n g t h e p rev ious methods MoriyBn [1978 ] has ob ta ined

a r e s u l t o f e x t r a p o l a t i o n f o r p o > 1 s i m i l a r t o t h e p reced ing one o f

Yano.

Page 78: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.6. MAJORIZATION 63

3.5.2. TIfEOREM . L e t M be a d u b a d d i t i v e , p u ~ . i t i w e , ponLi5ve - Ly hamugeneaw ap-o4 6 m m i)n (a) ,to ,%‘I (n). Anbwne M a t

1 1 M f [ I oo < l l f l [ w c > 0 , and anbume ,that 6 0 4 each

K a6 baunded m m m e , we have

each f E Lm . L e t 1 < po < m, E > O , s > O , p E ( p o , p o + E ) and 6 0 4 each K c n,

Then, 6 0 4 each t > p o ( s + 1) - 1 Rhehe e x h ~ 2 ,that don each K C n 0 6 bounded mmute and don

- - c = C ( t , p o , E , S , C ) bUCh

each f 2 0 , f E M(n)

3.6. MAJORIZATION.

I f T , S a r e subl inear operators from k ( n ) t o w(n) and

ITf (x ) / L I S f ( x ) / , i t i s q u i t e c l e a r t h a t i f S i s , f o r example , f o r each f e ?X (0) and each x E R one knows t h a t

of weak type ( p , p ) , them so i s T .

Sometimes , and we sha l l l a t t e r s ee important examples, when dealing with s ingular in tegra l operators, this t r i v i a l majorization does not work, and one has t o appeal t o some o ther sub t l e r procedures. Here , as we sha l l see, the Kolmogorov condition plays an important ro l e . We t r y t o give the flavour o f the technique with two concrete b u t c h a r a c t e r i s t i c examples .

3.6.1. THEOREM L c t T and S be n u b f i n e a r apehaXo4~ 64om

%7 (Rn) w(’Rn) . AAAWAC t h a t T .& majahized by S -in ,the

6uUawLng heme. Foh each f a Wmn) and each x E Hn thehe exAi2

a hphetLicaX nheRe Q ( x ) = { z e Rn : r 6 I z - x ( c 2 r l w a h r depend-

Page 79: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

64 3. GENERAL TECHNIQUES

i n g on x and f duch t h a t d o t each y 8 Q ( x ) one hm

I T f ( x ) l 6 l S f ( y ) l

Then, i6 S LA 0 6 w a k t y p e ( p y p ) ( o h dome p ,1 c p < m , T i.6 &a 04 weak .type (p,p).

I

L

t e g r a t i n g over y 8 Q ( x ) and d v

have i f f e Lp(Rn)

Where Q* (x ) i s t h e min imal c u b i c i n t e r v a l cen te red a t x and conta in-

i n g Q x ) M i s t h e Hardy -L i t t l ewood maximal ope ra to r , and c i s a con-

s t a n t ndependent o f f and x. The re fo re y i f K i s any s e t o f f i n i t e

measure and A > 0 .

If we now r e c a l l t h e

t y p e i n e q u a l i t y (1,l) f o r M

[HA( < m , such t h a t AX

remark a t t h e end o f t h e p r o o f o f t h e weak

C HA and

i n 3.2.A , we see t h a t t h e r e e x i s t s H A Y

w i t h c independent o f HA, A, f , K. I f we now a p p l y Kolmogorov's ine-

q u a l i t y t o S q i t h exponent u

Page 80: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.6. MAJORIZATION

Hence

6 5

C** l A X l I H X I - ll f l l ( :

XP

w i t h c** independent o f f, X ,K . So T i s o f weak t y p e ( p , p ) .

3.6.2. THEUREM L& T and S be Xiuv n u b f i n e m o p e m i t v ~ dhom

(Rn) tv (Rn) . Annume Lhcd T A majvhized by S i n t h e dvL - Lowing oenhe, F 0 4 eclch x E Rn and edch f thehe exint ;two

cubic i n - t e t r u a h centmed CLt x, Q ( x ) and Q*(x ) , Q * ( x ) w a h diam&.te/r 4 .tima t h d t u,'J Q ( x ) , nuch t h d t do4 each y E Q ( x ) we have

Then, i d S vd weak t y p e ( p , p ) dvh bVme p , 1 < p < a, T

d e n v 06 weak type ( p , p ) .

Phovd . We proceed as be fo re , i n t e g r a t i n g ove r y E Q ( x ) and

d i v i d i n g by l Q ( x ) l , a f t e r hav ing taken t h e a - t h power o f t h e above

i n e q u a l i t y ,

I f we app ly t o S t h e Kolrnogorov's inequa

T f ( x ) l a c c 1Q(x)

U

i t y , we g e t

Page 81: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

66 3. GENERAL TECHNIQUES

Th is proves t h e theorem.

3.7. LINEARIZATION.

As we have o f t e n seen, many i n t e r e s t i n g o p e r a t o r s a r i s i n g i n a

n a t u r a l way i n t h e a.e. convergence t h e o r y a r e n o t l i n e a r . I m p o r t a n t re-

s u l t s of f u n c t i o n a l a n a l y s i s a re n o t a p p l i c a b l e t o them. The l i n e a r i z a t i o n

technique c o n s i s t s i n s u b s t i t u t i n g t h e n o n l i n e a r o p e r a t o r under s tudy by

another l i n e a r one t h a t i n a c e r t a i n sense m a j o r i z e s it. The use of per-

t i n e n t techniques o f l i n e a r f u n c t i o n a l a n a l y s i s may then p e r m i t us t o

o b t a i n t h e i n e q u a l i t y we l o o k f o r . We have a l r e a d y seen t h i s techn ique

work.ing i n t h e p r o o f o f N i k i s h i n ' s theorem and a l s o i n t h e e x t e n s i o n t o

maximal ope ra to rs of o f S t e i n and Weiss.

Now we sha

n ique which appears

t h e theorem on r e s t r i c t e d weak t ype i n t e r p o l a t i o n

1 p r e s e n t a s imp le example of t h e use o f t h i s tech-

n a paper o f Cdrdoba r1976 ]. A lso we g i v e some

re fe rences f o r more e l a b o r a t e a p p l i c a t i o n s o f t h e same technique.

If 18 i s a c o l l e c t i o n o f open s e t s i n Rn w i t h bounded measure,

we d e f i n e the Hardy -L i t t l ewood maximal o p e r a t o r M r e l a t i v e t o d3 i n

t h e f o l l o w i n g way. For f E Lloc (Rn)

I f ( y ) l d y if x e II B B B E 8 M f ( x ) =

I o

3.7.1. THEUREM . L e Z be a cof lect ion ad A & an above.

hbume t h a t t h e opehtratoh M o d type (p,p) doh A U t w p with

1 < p < a, i.e. doh f 6 Lp(Rn) , ( 1 M f l I p 6 c ( ( f ( l p w L t h c indepe~dent 06 f .

Page 82: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.7. LINEARIZATION 67

Then b b&&4& t h e dok%wLng covehing p k o p d y : Given any

dinAXe coReection C B k I k = l ol; be& 0 6 8 , AX pobbibee 20 choobe

@om them u hequence { R k } k = l 4 U C h t h a t :

H M

k = l k = l ( i ) I 1J Bk [ 6 c1 [ 0 Rk I , ( i . e . t h e Rk 's coven u good poh -

c o n 0 6 mhat 2he Bi( s coveh) .

o n m a i n Lq-noxm). ~ e t r e q = P p- l . The co~n;trcna2 c 1 ,c2 depend onLy on c and p .

Pmol ; . We choose R 1 = B1 . For R 2 we choose t h e f i r s t Bk 1

among BZyB3,...,B" such t h a t IBk 0 R1 1 c 7 I Bk I . Assume i t i s

67 = RZ . For R 3 we choose t h e f i r s t Bk f rom B s y B 9 , ... B,, such t h a t

I B k 0 ( R 1 11 R 2 ) 1 c 7 l B k l . And so on. So we g e t {Rk) k = l . For

each B t h a t has been l e f t o u t we have IB 0 1J R k 1 > IBI and so

1 N

1 N

Thus we have ( i ) .

We now p rove (ii). Observe f i r s t t h a t i f Ek = Rk - R j < k j '

1 lEkl 2 7 l R k l . then

t h e f o l l o w i n g way . For

We d e f i n e now a l i n e a r o p e r a t o r T : L p + L p i n

f B Lp ,

Observe t h a t I T f ( x ) l < M f ( x ) . There fo re T i s bounded w i t h a norm

m a j o r i z e d by c. I t s a d j o i n t w i l l be a l i n e a r o p e r a t o r S : Lq -f Lq

Page 83: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

68 3 , G E N E R A L TECHNIQUES

whose norm i s a l so majorized by c . B u t S can be eas i ly wr i t t en in e x p l i c i t form

We have

and so

This i s ( i i ) .

Other nice appl ica t ions of the l inea r i za t ion technique can be seen i n CBrdoba [1977] and a l so i n C.Fefferman [1973].

3.8. SUMMATION.

Later on and in d i f f e r e n t contexts we sha l l f ind ourselves i n We want t o study the type of an op- s i t ua t ions l i ke the following one.

e r a t o r T t h a t i t can be majorized by a sum of operators 1 ck T k with a simpler s t ruc tu re whose type we can e a s i l y determine. the type of T? I n general , the strong type does not o f f e r any d i f f i c u l t y , s ince 1 1 1 ‘Ck T k l I p 6 1 l C k l ~ ~ T k ~ ~ p . For the weak type we can a l so

sometimes obtain sa t i s f ac to ry r e su l t s .

and by means o f geometric or ana ly t i c considerations we f ind

What can we deduce about

k k

Let, f o r example T = 1 ck T k , and assume t h a t each T k i s uniformly of weak type (1,l) , i . e . , f o r each f e L ’ ( R n ) , h > 0 and

Page 84: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.8. SUMMATION

k = 1,2, ...

69

and t h e r e f o r e

The p rev ious example i s a p a r t i c u l a r case o f t h e f o l l o w i n g

theorem on summation o f weak t y p e i n e q u a l i t i e s . I t i s due t o E.M.Stein

and N.Weiss [1969] . We s t a r t w i t h a lemma.

3.8.1. LEMMA.

Suppode t h a t doh j = 1 2 3,. . . , on Ph doh which I I x : g j ( x ) > s } l 6 I

a nonnegative dunc-tition

d a h each s > 0 . Le,t { c . } J

gj

be a dequence od p o n h X v e numbem w a h C c j = 1 and J

m

Then, doh each s > 0 ,

Phood. F o r each j = 1,2,3, ... l e t us d e f i n e

g j b f if g j ( x ) < 7 S

S if g j ( x ) > 7 v . ( x ) = J

Page 85: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

70 3. GENERAL TECHNIQUES

S g j ( x ) if g j ( x ) > - 2 c j

if g j ( x l 6 - 2c S u . ( x ) = J

m.(x) = g . ( x ) - v . ( x ) - u j ( x ) J J J

L e t v ( x ) = c c . v . ( x ) , u ( x ) = C c . u . ( x ) , m(x) = c c . m . (x ) . J J J J J J Observe t h a t , for each x , we have v ( x ) i 4 and t h a t

L e t us w r i t e Aj(y) = I { x : g j ( x ) y I } f o r y > 0 . Observe t h a t

y X j ( y ) 6 1. Then we have, s i n c e -3.- > m . ( x ) J > S a t each x, j

2c

J

From t h i s we g e t { x : m(x) > - S 1 6 ___ 2(Kt1) , and f i n a l l y , 2 1 S

With t h i s lemma we e a s i l y a r r i v e t o t h e f o l l o w i n g theorem.

3.8.2. THEOREM. LeA {Tk}E=l be a Aequence 06 hubadd i t i ve

o p a a t o / r o &,om L ’ (Rn) t o r/l (Rn) t h a t me uni6omly 06 weak t y p e (1 , l ) .

Page 86: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3.8. SUMMATION 71

Page 87: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 88: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7

CHAPTER 4

ESPECIAL TECHNIQUES FOR CONVOLUTION OPERATORS

Many of the operators of i n t e r e s t i n Fourier Analysis a r e oper - a tors o f convolution type. the Introduction t o Chapter 1 as motivation fo r t h i s work a r e of such type.

I n pa r t i cu la r a l l operators which appear i n

We consider a sequence or generalized sequence of functions C k . 1 C L ’ ( Q ) ( ke rne l s ) where R wil l be here e i t h e r the n-dimensional

torus TTn o r R n (Q could be as well a l oca l ly compact group) and f o r a function f 6 L P ( Q ) , 1 < p 6 00, we def ine

J

K.f(x) = k . * f ( x ) J J

We ask about the convergence of K.f in L p o r pointwise. In order t o J t r e a t the convergence in L p we a r e to consider I I K . f l l as explained in the Introduction t o Chapter 1, and to study the pointwise convergence we a r e led t o inves t iga te the behaviour of

J P ’

K* defined by

K*f(x) = s u p I b . * f ( x ) l J j

The f i r s t and second sec t ions of this Chapter reduce the problem to the study of the action of the operators K j o r K* over f i n i t e sums of Dirac de l t a s concentrated a t d i f f e r e n t points of R ( f o r the weak or strong type (1 , l ) ) and over l i n e a r combinations of Dirac de l t a s ( f o r t he weak or strong type c re t i za t ion of the operators i n question, as we sha l l show l a t e r .

( p , p ) , 1 < p < m ) . This reduction permits t he dis-

A previous r e s u l t in t h i s d i rec t ion has been obtained by K.H.Mg and i s presented here as Theorem 4.13. The idea of charac te r - on [1976]

izing the weak type fo r the maximal convolution operator by means of t he Dirac de l t a s as i t appears in Theorem 4.1.1. belongs t o the author. The

Page 89: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

74 4. CONVOLUTION OPERATORS

extens ions and r e f i n e m e n t s t h a t f o l l o w have been o b t a i n e d by M . T . C a r r i l l o

[1979] .

4.1. THE TYPE ( l Y 1 ) OF MAXIMAL CONVOLUTION OPERATORS.

Convo lu t i on opera to rs a c t i n g over a sum o f D i r a c d e l t a s g i v e

a d i s c r e t e sum which i s , i n many cases , r a t h e r easy t o handle.

I f k 6 L ’ (R) , a1,a2,.. .,a,, B R , and 6h denotes t h e

D i r a c d e l t a concentrated a t ah then , i f

H H

h = l h = l K f ( x ) = K * ( 1 6 h ) ( X ) = 1 k ( X - a h )

We s h a l l say t h a t K 06 weak .type (1,l) aveh ~$Linite 6wnn

0 6 V&ac d& when t h e r e e x i s t s c > 0 such t h a t f o r each 1 > 0

and each

H

we have

For a maximal o p e r a t o r K* o f c o n v o l u t i o n opera to rs Kj o f

t h e k i n d desc r ibed i n t h e i n t r o d u c t i o n of t h i s Chapter one can w r i t e , if

Page 90: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

4.1. THE TYPE (1,l)

H

75

K * f ( x ) = sup I K . f ( x ) j J

and so K* i s o f weak t ype (1 , l ) over f

t h e r e e x i s t s c > 0 such t h a t f o r each

H f = 1 Ish

h = l

H = sup I 1 k . ( x - a h ) l

j h = l

n i t e sums o f D i r a c d e l t a s when

and each X > 0 ,

The main theorem i n t h i s s e c t i o n i s t h e

t i o n of t h e o r d i n a r y weak t ype (1 , l ) of K*.

f o l l o w i n g c h a r a c t e r i z g

Then K* & ad weak .type ( 1 , l ) i 6 and anLy .id K* ih a6 weak

.type (1 , l ) o v a & h X e nwnh ad QitLac dcLtuh.

l n o t h m W o h h (dahge;U;ing a b u t P h c delakhl K* ih 06 weak

.type (1,l) id and o n l y id t h e m ex.Ath c 0 nuch t h a t , d m each

dinite heL ad di6deh'en.t pointh a1,a2, ... , aH 6 R and d m each X > 0 ,

we have

P m a d . (A) We f i r s t prove i n f o u r s teps t h a t i f K* i s o f

weak t y p e (1 , l ) t ype (1,1).

over f i n i t e sums o f D i r a c d e l t a s , t hen i t i s o f weak

Page 91: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

76 4. CONVOLUTION OPERATORS

(1) Assume t h a t t h e r e e x i s t s c > 0 such t h a t f o r each

H

h = l f = 1 and X > 0 we have

H We want t o p rove i n t h e f i r s t p l a c e t h a t i f f = h=l 1 ch 6h

w i t h ch E Nl , then

H

I f f o r a f i x e d n a t u r a l number N we c a l l K;f(x) = sup K . f ( x ) l 6 j G N

then, s i n c e c l e a r l y

m

IJ { X : K$f(x) > X} = { x : K * f ( x N = l

i t is c l e a r t h a t i t w i l l s u f f i c e t o prove t h a t f o r each f i x e d N

w i t h c independent o f N . So we f i x an N .

Now f o r each k , 1 6 j G N , we take g E eD(Q) such t h a t j j

I l k j - g j l l l G n t e r . For each p o i n t ah 6 fi we choose ch p o i n t s b i , b t Y ... hh , a l l of them d i f f e r e n t . We then can w r i t e f o r each j

where TI > 0 w i l l be c o n v e n i e n t l y chosen a l i t t l e la ‘h

Page 92: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

4.1. THE TYPE (1,l) 71

Now f o r each c1 such t h a t 0 < c1 < A , we have

l { x :

c I I X : sup I c j c N

H Lh

By t h e hypo thes i s

H

‘h h = l c c - - - - - - - A - a

I f we prove t h a t , f o r a r b

can choose b;h and g

s tep (1).

t r a r y E > 0 , and a w i t h 0 < a < A , we

so t h a t I P < E , we a r e t h e n f i n i s h e d w i t h

Observe t h a t we can w r i t e

Thus we can s e t

Page 93: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

78

Now

4. CONVOLUTION OPERATORS

Hence , g iven E > 0 , c1 > 0 , we f i r s t choose g 6 t o ( ( n ) j

E H

j so t h a t l ] g j - k j I I 6 rl and - ‘‘ 1 ch & 7 . Observe t h a t t h e g

c I 1

a r e un i fo rm ly cont inuous. Once t h e g

c l o s e t o ah t h a t

have been f i x e d , we take b;h so j

Thus we g e t

( 2 ) From (1) we s h a l l e a s i l y prove t h a t i f f = 1 ch bh

I 2 < E and so we conclude t h e p r o o f o f s t e p (1). H

h= 1

w i t h ch > 0 then f o r each X > 0 we have H

T h i s i s obvious i f ch 6 Q . If ch E R , c h > 0 we can take H

F = 1 dh bh w i t h dh = ch + rh , rh smal l , dh 6 Q . Then, i f O < c 1 < X Y

h = l

Page 94: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

4.1. THE TYPE (1 , l ) 79

H

H

By choosing a p p r o p r i a t e l y rh one ge ts (*).

( 3 ) We want t o prove now t h a t K* i s of weak t y p e ( 1 , l ) o v e r

l i n e a r combinat ions o f c h a r a c t e r i s t i c f u n c t i o n s o f dyad ic i n t e r v a l s . I f

d = 1 ch xI w i t h Ih dyad ic i n t e r v a l and ch > 0 we want t o p rove

t h a t f o r each X > 0 and f o r any such d

H

h = l k

H

As b e f o r e , i t w i l l be s u f f i c i e n t t o prove t h a t if N i s f i x e d ,

F i r s t of a l l observe t h a t we can assume t h a t t h e s i z e o f each

Ih i s as smal l as we please. Otherwise we s u b d i v i d e each Ih and t h e

i n e q u a l i t y we want t o ' p r o v e i s independent of t h e number H o f dyad ic

i n t e r v a l s we have.

We now proceed as i n s t e p (1). For each k , 1 G j G N we j t ake g j E '$ o!n) such t h a t 11 k . - g.111 G n , where n > 0 w i l l be

c o n v e n i e n t l y chosen l a t e r . L e t

J J

H

h = l f = 1 'h 'h

where 6h i s t h e D i r a c d e l t a concen t ra ted a t ahy t h e l e f t extreme

Page 95: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

80 4. CONVOLllTION OPERATORS

p o i n t o f Ih.

Then, i f 0 < c1 < A , we can w r i t e

A l l we have t o do now i s t o prove t h a t t h e second te rm i n t h e

l a s t member can be made sma l l by an a p p r o p r i a t e c h o i c e o f g j and 1 Ih/.

We can w r i t e

There fo re we can s e t

Page 96: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

4.1. THE TYPE (1,l)

I n t h e same way

81

A1 so

Given E > 0 we f i r s t choose g such t h a t / / k . - g . l l l c rl , w i t h

so smal l t h a t

j J J

Then we choose

v i r t u e o f the above inequa l ty. Thus we g e t

I h so smal l t h a t I { x : Ag(x) > :I[ &:,what can be made i n

f o r d l i n e a r combinat ion o f c h a r a c t e r i s t i c f u n c t i o n s o f dyad ic i n t e r v a l s .

(4 ) We know (Theorem 3.1.1.) t h a t t h e r e s u l t i n ( 3 ) a l r e a d y

i m p l i e s t h a t K* i s of weak t ype (1,l). T h i s concludes t h e p roo f o f ( A ) .

H ( B ) Assume now t h a t K* i s of weak t y p e (1 , l ) . L e t f = fjh.

h = l

We take d i s j o i n t dyad ic i n t e r v a l s Ih c o n t a i n i n g t h e p o i n t s ah. L e t

. We know t h a t 1

and want t o prove t h a t f o r each f i x e d N

We w r i t e , f o r 0 < ct < x ,

Page 97: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

For t h e l a s t term we proceed as before i n (1).

t h a t

If g j 6 g,,(O), i s such

I l k j - g j ( l l b TI , we w r i t e

As before,one f i r s t chooses g j 6 9 ,,(n) c l o s e t o k j

Ih s u f f i c i e n t l y smal l . So we g e t l { K * f > A 3 1 C c lP= c: . i n L' and t h e

+

The method o f p r o o f o f t h e p reced ing theorem can be a p p l i e d t o

many o t h e r i n t e r e s t i n g s i t u a t i o n s . We j u s t s t a t e a t y p i c a l theorem t h a t

can be ob ta ined w i t h it.

Page 98: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

4 .1 . THE TYPE (1 , l ) 83

4.1.2. THEOREM . L&t C k j ? y = l be a nequence 0 6 &uatLtionn in

L ' ( f i ) and d o t f E L1(Q) dedine K.f(x) = k . * f ( x ) . J J

Then t h e open&^

a&y id they me unidotmLy 05 weak .type d-.

K j ahe uni~vhmly 06 weak t y p e (1 , l ) id and

(1,l) oven 6ivLite nmn a 6 Dhac

and X > 0 we have d a f i tach

I{x : lKjg

id and only i d d o t each f = H 2 6h we have

h = l

In the preceding theorems one can change weak type (1,l) f o r strong type (1 , l ) .

The theorem of K.H.Moon mentioned in the introduction of t h i s Chapter i s as follows.

THEOREM 4.1.3. kj*f(x) , K*f(x) = s u p I k . * f ( x ) / .Then K* LA ad weak t y p e (1 , l )

L e i C k j l y = l c L1(Q) and, d o t f 6 L ' ( f l ) , K . f ( x ) =

id and on ly id

nite uniann od dyadic inte,twP~.

J j J

K* LA ad W M ~ t y p e o v m c h a h a c t e ~ A L i c duneLivnn 04 8.i-

Ptoo6. After Theorem 4.1.1. a l l we have to do is t o show t h a t i f K* i s of weak type (1,l) over c h a r a c t e r i s t i c functions of f i n i t e un- ions o f dyadic in t e rva l s , then K* i s of weak type (1 , l ) over f i n i t e sums of Dirac de l t a s . B u t t h i s is e a s i l y done as i n (B) o f t he proof of the Theorem 4.1.1. by taking there the s e t s Ih of the same s i ze .

- The previous theorems r e fe r t o the weak type (1,l) of t he maxi ma1 operator of an ordinary sequence o f convolution operators. In many

Page 99: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

84 4 . CONVOLUTION OPERATORS

cases, however, one has t o deal with the maximal operator of a whole fam - i l y of convolution operators indexed, f o r example,by the s e t of rea l num- bers. Such i s the case, f o r instance, of the maximal Hi lber t the Hardy-Li ttlewood maximal operators , the maximal Calder6n e ra to r s , . . .

The natural question i s then: Can one charac te r ize (1 , l ) of the maximal operator by means of i t s weak type (1,l

transform , Zygmund op-

the weak type over f i n i t e

sums of Dirac de l tas as we have done i n the case o f an ordinary sequence?

The answer f o r t he general case i s negative,as the following sim ple example shows

Let

1 i f x = 1,2,3,4,. . .

i f x e R - M k ( x ) =

and, f o r E > 0 , k E ( x ) = E - ~ k(:) . For f E L’m) , l e t K E f ( x ) = k E * f

and K*f(x) = sup IKEf(x) l . E>O

Then, f o r each E > 0 , we have K f z 0 and so K*f = 0 . E

Therefore K* i s of weak type (1 , l ) . However, f o r each x E ( O , l J , n e W, X i f E~ - - - , we have

n n n k ( x ) = - k ( - . x ) = - X X > n X E X

Therefore

and so K* i s not of weak type (1 , l ) over f i n i t e sums of Dirac de l t a s .

However, by imposing some mild conditions on the kernels we can s t i l l recpver the same kind of charac te r iza t ions . For example, i f

Page 100: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

4.1. THE TYPE (1 , l ) 85

k 6 L j o c ( Rn - (0) ) , f o r E > 0 , x a R n

and, f o r f E L ’ N n ) , KEf(x) = kE * f ( x ) , and K*f (x) = sup IKE f (x ) l , R s E > O

then we e a s i l y o b t a i n

and so one can app ly t h e p rev ious r e s u l t s . Observe t h a t t h e Calder6n-

Zygmund maximal ope ra to rs f a l l under t h i s t y p e .

Also, i f B i s any measurable subse t o f Rn w i t h p o s i t i v e

and f o r each sequence measure so t h a t f o r each

we have x,.~ + xEB J

E > 0 { E ~ } , E~ -f E

a.e. then, if, f o r f E L1(Rn) , we s e t

t hen we e a s i l y o b t a i n

sup I K E f ( x ) l = sup I K E f W I R a 0 0 Q3 E > O

and so one can a p p l y t h e p rev ious theorems.

ope ra to r ,

The Hardy -L i t t l ewood maximal

f o r example, f a l l s under t h i s ca tegory .

I n t h i s c o n t e x t t h e f o l l o w i n g genera l theorems a r e of i n t e r e s t ,

e s p e c i a l l y f o r some r e s u l t s on approx imat ions o f t h e i d e n t i t y t h a t we s h a l l

s tudy i n Chapter 10.

4.1.4. LEMMA . L e t k E L’ Lw(Rn) and f E L1(Rn) . L& A be a d e u e hubb& 06 (0,m) . Then,id doh E > 0 ,

kE(x) = E - ~ k (:) and KEf (x ) = kE * f ( x ) , we have

Page 101: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

86 4. C O N V O L U T I O N OPERATORS

Given q > 0 we f i r s t choose g 6 @ o m n ) such t h a t t h e f i r s t

t e rm o f t h e l a s t member o f t h e c h a i n o f i n e q u a l i t i e s i s l e s s t h a t q/2 . Then we choose ci E A so c l o s e t o E t h a t t h e second term i s l e s s than

n/Z . I n t h i s way we o b t a i n t h e lemma.

Wi th t h e p reced ing lemma t h e f o l l o w i n g theorem i s s imple.

4.1.5. THEOREM . L e L k E L’ 0 Lm(Rn) and doh E > 0 ,

kE(x) = E-nk(:). Le, t UA dedine, doh f 6 L’(Rn),

Then:

(a ) K*R LA ad weak ,type (1 , l ) i6 and anLy .i6 K*Q LA 06

(b) K*R can be 06 weak t y p e (1,l) oven ~ u n C . t i u ~ d wLthuu t

w u k t y p e (1,l) oveh 6 i n i t e numb 06 VhAc deetad.

being 06 w& type (1,l) oveh din.& bum5 od PhAc d u .

Page 102: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

4.1. THE TYPE (1,l) 87

Phovd. The p r o o f o f (a ) i s i nmed ia te f rom t h e Lemma 4.1.1. and Theorem 4.1.1. For ( b ) l o o k a t t h e example shown a f t e r t h e p r o o f

o f Theorem 4.1.2.

I n t h e p reced ing theorem k E L’ 1’1 Lamn). I f we o n l y have

k E L’(R”) , then we can s t a t e t h e f o l l o w i n g r e s u l t .

4.1.6. THEOREM. L e Z k E L’(Tln) , k a 0 and K* = K*R be

dedined a.4 i n Theahem 4.1.5. Then, 4 K* Lb 06 weak t y p e (1,l) vveh 6inite numb 0 6 D*ac deetan, Lb vtj w u k t y p e (1 , l ) .

Phvvd. For j = 1 , 2 , 3 , . . . l e t us w r i t e

0 , i f k ( x ) > j

and K? f ( x ) = sup I k: * f ( x ) 1

Since

f o r each j

O < E E R 3

K* i s of weak t ype (1 , l ) over f i n i t e sums o f O i r a c d e l t a s we have

w i t h c independent o f j, ah , A . Since k j a L’ 1’1 Lm, by Theorem

4.1 .5 . we know t h a t K* i s o f weak t y p e ( 1 , l ) w i t h a c o n s t a n t i ndepend

e n t o f j. By pass ing t o t h e l i m i t as j -f OD , we see t h a t K* i s o f

weak t y p e (1,l) .

J

I n a s i m i l a r way we a l s o o b t a i n t h e f o l l o w i n g r e s u l t f o r a

k E L’ (1 $(Rn).

4.1.7. THEOREM . L e A k e L’ ( ) t ( R n ) , and leA K* = K* R be dedined an i n Thevmn 4 .1 .5 . Then K* 0 06 weak t y p e ( 1 , l ) 4 and o n l y i d Lt Lb 06 weak t ype (1,l) vveh ~ i n L t e bumb 013 V h a c d-.

Page 103: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

88 4. CONVOLUTION OPERATORS

4.2. THE TYPE (p,p) ,p > 1, OF MAXIMAL CONVOLUTION OPERATORS.

A l s o t h e t ype (p,p) , p > 1 , o f t h e maximal o p e r a t o r of a

sequence o f c o n v o l u t i o n opera to rs can be s t u d i e d by l o o k i n g a t i t s a c t i o n

ove r t h e O i r a c d e l t a s . However one cannot o b t a i n he re a necessary and

s u f f i c i e n t c o n d i t i o n .

m 4.2.1. THEOREM. le,t {kjIjzl c L1(R) be an ohdifiany b e -

qucnce. 0 6 ~unc,t io~n and C K . 1 t h e nequence 0 6 convolution o p e h a t o ~ 5 a ~ n g J cicLted t o a. L e t K* be t h e cohhuponding maxim& opehatan. 1eL p > 1.

Annwne t h a t dotr each X > 0 and doh tach ~ivLite n e t a6 didde& ent poi& al ,a2, .. . , aH 4 R we. have , don a c > 0 independent 0 6

a A, j y

Then K* .LA 0 6 W M ~ type. (p,p).

Phoo6. The p r o o f is o b t a i n e d f o l l o w i n g t h e same s t e p s o f t h e

p r o o f o f Theorem 4.1.1.

I f KG f ( x ) = sup ] k j * f ( x ) l one f i r s t o b t a i n s f o r j=l,. . . ,N

From here one ge ts t h e same i n e q u a l i t y f o r a genera l s e t

and f i n a l l y , approx ima t ing by means o f d i s j o i n t d y a d i c i n t e r v a l s

II,...,IH one o b t a i n s

c ~ , . . . , c ~ 8 R

P

There fo re K; i s o f weak t ype (p,p) w i t h c independent o f N. Hence

K* i s o f weak t ype (p,p).

Page 104: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

4.2. THE TYPE (p,p) 89

L e t us now observe t h e f o l l o w i n g . L e t B = B(0, l ) Rn and

and f o r f E Lp(Rn) , 1 1 kj = / ~ 3 j X B ~ B . = - B y j = 1 , 2 , 3 ,...,

J J l < p < m ,

K * f ( x ) = sup I k j * f ( x ) \ J

I f M i s t h e o r d i n a r y Hardy -L i t t l ewood maximal o p e r a t o r K * f ( x ) c M f ( x )

and so K* i s o f weak t y p e (p,p) , 1 < p < a. However, as we s h a l l

now see, i t i s n o t o f weak t ype over f i n i t e sums o f D i r a c d e l t a s . I n f a c t ,

i f i 2 1 ,

and so, i f i t were , f o r some c < m,

and t h i s i s a c o n t r a d i c t i o n f o r i s u f f i c i e n t l y b i g . The re fo re , f o r p >I, t h e K* o f t h e Theorem 4.2.1. can be o f weak t y p e (p,p) w i t h o u t b e i n g

s o . o v e r f i n i t e sums o f D i r a c d e l t a s .

A l s o one shou ld observe t h a t t h e same t ype of c o n s i d e r a t i o n s

we have made a f t e r Theorem 4.1.3. a r e v a l i d i n t h i s case p > 1.

The r e s u l t s and methods we have presented i n t h i s chap te r can

be extended, o f course, t o t r e a t t h e u n i f o r m s t r o n g t ype o f a sequence

o f ope ra to rs . We s t a t e h e r e a t y p i c a l r e s u l t .

4.2.2. TffEOREM. LeA {kj}ycL’(n) . FOX f E LP(Q), LeA

K . f ( x ) = k . * f ( x ) . k b u m e tkdt t h e apehatom K j ate uni~omnLg 06

weak type (1,l) o v p f ~ ,5ivLite numb 06 DhacdctYan.

06 weak t y p e ( 1 , l ) .

J J Then t h e y me uni60hmLg

Page 105: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

90 4. CONVOLUTION OPERATORS

One should a l so observe t h a t some of the r e s u l t s of t h i s chanter can be used i n order t o deduce useful and in t e re s t inq qeometric pronerties re la ted to ce r t a in operators. In f a c t , from ana ly t ica l considerations we may know t h a t a ce r t a in maximal convolution operator i s of weak tvoe (1,l). Then, usingTheorem 4 .1 .1 . we deduce t h a t i t i s of weak tvne ( l , l , ) over f i n i t e sums o f Dirac de l t a s . i n an in t e re s t ing geometric way, giving us a r e s u l t t h a t sometimes i s f a r from easy t o obtain i n a d i r e c t wav.

B u t t h i s nronertv can of ten be in te rnre ted

For example, we know t h a t the Hardy-Littlewood onerator i n Rn over Euclidean ba l l s i s of weak type (1,l) . So i t i s of weak tyne (1,l)

over f i n i t e sums of Dirac d e l t a s . r i c language, we get the following in t e re s t ing covering propertv.

I f we t r a n s l a t e t h i s f a c t i n t o geomet-

4.2.3. THEOREM. 1eA a1 ,a2 ,..., aH 6 R n , v > 0 . Fvk j = 1,2 ,..., H , Leet AJ be t h e n e t ad p u i n t ~ 0 6 R" i n at LeanX 5 v b

t h e b d h B j ,Ba ,.. ., B i , centetred at a1 ,... , aH, heApecfiv&9 and H .

0 6 volume j v . Let A, = I I A J . Then j=1

uhetrhe c LA a con~akn t t h a t depencb v n t y vn t h e dimennivn.

Likewise, as we sha l l see i n ChaDter 11, the maximal s inqular in tegra l operators t rea ted there a r e shown t o be of weak type (1,l).

The reader should t r y t o obtain the geometric meaninq of t h i s f a c t .

Page 106: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 5

ESPECIAL TECHNIQUES FOR THE TYPE (2,2)

I n o r d e r t o s tudy t h e t ype o f an o p e r a t o r one can r e s o r t t o t h e

i n t e r p o l a t i o n technique, f o r which one has t o know a l r e a d y t h e t ype o r weak

t ype of t h e o p e r a t o r i n some space. T h i s i s t h e case, f o r example, o f t h e

Hardy -L i t t l ewood maximal o p e r a t o r f o r which one can o b t a i n d i r e c t l y t h e

weak t y p e ( l , l ) , by means o f a c o v e r i n g lemma, and t h e t y p e (-,m) which i s

t r i v i a l . However i n some o t h e r cases t h e weak t y p e ( 1 , l ) o r t h e t ype (my-)

a r e n o t a v a i l a b l e and one has t o t ry t o show more o r l e s s d i r e c t l y t h e t ype

o f t h e opera to r . There a r e n o t many s tandard techniques a v a i l a b l e f o r t h i s

purpose.

theorem enable us t o t r e a t t h e t y p e (2,2) o f c o n v o l u t i o n o p e r a t o r s i f we

can e s t i m a t e t h e Lm-norm o f t h e F o u r i e r t r a n s f o r m o f t h e co r respond ing

k e r n e l s . T h i s i s t h e easy way presented i n S e c t i o n 1.

The use o f t h e F o u r i e r t ransform and t h e Parseva l -P lanchere l

I n o r d e r t o handle t h e L 2 - t h e o r y o f t h e H i l b e r t t r a n s f o r m and

t h e Calder6n-Zygmund opera to rs C o t l a r [1959] i n t r o d u c e d another d i f f e r e n t

method. T h i s i s presented i n S e c t i o n 2 . I t has been used l a t e r f o r many

d i f f e r e n t purposes.

The r o t a t i o n method o f CalderBn and Zygmund was i n t r o d u c e d by

them [1956 ] i n o r d e r t o t r e a t t h e i r s i n g u l a r i n t e g r a l ope ra to rs . I t can

a l s o be used f o r h a n d l i n g c e r t a i n problems i n app rox ima t ion t h e o r y and i n

d i f f e r e n t i a t i o n of i n t e g r a l s . T h i s method i s presented i n S e c t i o n 3.

5.1. FOURIER TRANSFORM

The easy s tandard t o o l i s t h e Parseval -P lanchere l theorem t h a t

can be used as i n t h e f o l l o w i n g theorem.

91

Page 107: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

92 5. THE TYPE (2 ,2 )

5.1.1. THEOREM . lel { k . } be a oequence a Q 6unc.tLtiu~n i n J

c > 0 nuch t h a t dvn each j

F m f E L2(Rn) C e l K j f ( x ) = k * f ( x ) . bourne t h a t t h m e j

Phavd. By t h e Parseva l - P l a n c h e r e l theorem

5 .2 . COTLAR'S LEMMA.

The p r e s e n t a t i o n o f t h e lemma f o l l o w s t h a t o f F e f f e r m a n [19741.

5.2.1. THEOREM . 1eL H be a H i L b m A npacc? and Tl,T2, ..., TN

a 6ivLite he.quencc? 06 vpehaLvhA Qhvm H tv H . Adhume t haL c : 4 +[O,M)

LA u bunct ivn ouch t h a t

d e n a k a the. a d j a i n t 0 6

co

1

Ti ,

( c ( k ) ) ' " c A < w and XhCLt, 45 T t k=-m

Then

P4ovQ. We can w r i t e

Page 108: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

5.2. COTLAR’S LEMMA 93

And r e p e a t i n g t h e p r o c e s s

Thus

N ?k N

1 I / Ti TF Ti TC ... Ti T? II

2 k - 1 2k 1 2 3 4 II c T i II = c ,

i ,i2,. . . ,i k=l

Each t e r m of t h e l a s t sum i s m a j o r i z e d by

and a l s o by

P = /ITil T*i211 ... 1 1 Ti T4 1 1 G c ( i l - i 2 ) . .. ~ ( i ~ ~ - ~ - i2k) 2 k - 1 2k

T h e r e f o r e i t i s a l s o m a j o r i z e d by t h e i r g e o m e t r i c means. Thus

Hence

Page 109: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

94 5. THE TYPE (2,2)

N and making k -f m , we g e t 1 1 Ti [ [ c A.

1

With t h i s theorem one can e a s i l y o b t a i n t h e u n i f o r m s t r o n g t y p e

o f t h e t r u n c a t e d H i l b e r t t r a n s f o r m and o f t h e Calder6n-Zygmund s i n g u l a r

i n t e g r a l ope ra to rs .Th is was t h e f i r s t a p p l i c a t i o n o f t h e lemma which ap-

pears i n C l o t a r [1959].

For j = 0, 21, k2, ... we d e f i n e

and f o r f F: L 2 ( R 1 ) , T . f ( x ) = h j * f ( x ) I

hi(x) = hi(-x),

J - We have, w i t h

- - T? f (x ) = hi * f ( x ) , T? T . f = (hi * h . ) * f J J

Observe now t h a t i h i ( x )dx = 0 and so

Page 110: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

5.2. COTLAR'S LEMMA 95

c Ih i ( t ) l I h j ( x - t ) - h j ( x ) ) dx d t t X

But h . ( x ) = 2 - J h o ( 2 - j x ) and so J

t 1 Now, i f I- I 2 T , then we have 2J

t 1 1 I f 1-1 < T , and Jo = Cx : G 1x1 6 13 2J

t A = { x : x E J O , X - - E J ~ } 2J

2 j B = C X : X B J O , X - - B J o }

C = I x : e i t h e r x e Jo o r t e JoI

then we can argue as follows

If x e B then

If x e A then

If x E C t hen

A lso we have [ A ] 6 l J o l =

t - 7) - h o ( x ) l L 2 2J

1 , ICI c 8 1-1 t . T h e r e f o r e 2J

t t / ( h o ( x - - - h o ( x ) ( dx c 20 1-1 2J 2J

Page 111: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

96 5. THE TYPE ( 2 , 2 )

and so

I n t h i s way we g e t

and so t h e hypotheses o f C o t l a r ' s lemma a r e s a t i s f i e d .

f o l l o w i n g theorem.

We thus o b t a i n t h e

The f a c t t h a t we have chosen a d i s c r e t e t r u n c a t i o n i s r a t h e r

i r r e l e v a n t . One o b t a i n s e a s i l y t h e same r e s u l t f o r

5.3. THE METHOD OF ROTATION.

I n some cases, t h e s tudy o f t h e t y p e o f a c o n v o l u t i o n o p e r a t o r

i n Rn can be reduced t o t h a t o f some known one-dimensional o p e r a t o r a&

s o c i a t e d t o i t i n a n a t u r a l way, by i n t r o d u c i n g p o l a r coo rd ina tes . We j u s t

" r o t a t e " t h e one-dimensional t ype i n e q u a l i t y we a l r e a d y have. T h i s i s t h e

b a s i c i d e a o f t h e r o t a t i o n method i n t r o d u c e d by Calder6n and Zygrnund[19561.

We desc r ibe f i r s t t h e genera l frame o f t h e method and then a p p l y i t t o

Page 112: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

5.3. THE METHOD OF ROTATION

Some p a r t i c u l a r cases.

97

Assume we want t o s tudy t h e t ype o f some o p e r a t o r s o f t h e f o r m

K . f ( x ) = k j * f ( x ) J

- L e t c = I ~ E R ~ : 171 = 11 , y = ry , o < r < m y ye c , i .e .

- f o r y e Rn , y # 0 , 7 w i l l denote t h e p r o y e c t i o n o f y ove r C ( r , y

a r e t h e p o l a r coo rd ina tes of y ) . We can then w r i t e

Assume t h a t we can w r i t e k j ( r 7 ) = g ( y ) h j ( r ) .

Then

K . f J

- m

For a f i x e d 7 e C , l e t K: f ( x ) = \ 0

x - r a r " ' d r dy

h . ( r ) f ( x - r a r n - ' d r . J

If Y i s t h e hyperp lane through t h e o r i g i n o r thogona l t o 7 , we have, f o r x a R n , x = z + sy , w i t h s e R , z E Y , and so

- - K: f ( x ) = K: f ( z + sy) = h j ( r ) f ( z + ( s - r ) y ) rn- l d r

0 -

I f f o r f i x e d

w r i t e , f o r s E R

e C , z e Y , we s e t f ( z + t y ) = f;(t) t hen we can

- m - ( K j Y Y f ) z ( s ) = 1 h j ( r ) rn- l f; ( s - r ) d r E H . fy ( s )

J Z 0

where H j i s t h e o p e r a t o r d e f i n e d by t h e above exp ress ion .

I t can happen, as we s h a l l see i n t h e examples, t h a t

known f a m i l y o f onedimensional ope ra to rs , and t h a t we a l r e a d y have f o r

some p, 1 G p < my i f v a LP(R')

H j i s a

Page 113: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

98 5. THE TYPE (2,2)

w i t h C = C ( p ) independent o f v and j .

Then we can w r i t e , w i t h z v a r y i n g over Y

- 1 K i f ( x ) l p dx = I,,, I ( ( f); ( s ) l p ds dz =

-m

There fo re

-

II K; f l l p 6 c l l f l l p'

Now, by Minkowsk i ' s i n t e g r a l i n e q u a l i t y ,

So, i f I g ( y ) ( d y < m , we g e t t h a t t h e o p e r a t o r s K . a r e u n i f o r m l y o f J c t y p e (P,P).

The i d e a o f t h e method i s c l e a r . Before pass ing t o t h e some

conc re te a p p l i c a t i o n s l e t us make an i m p o r t a n t remark. Suppose t h a t f o r

H . we j u s t know t h a t they a r e u n i f o r m l y o f weak t y p e (p,p). The method J does n o t w o r k . f o r two main reasons. f i r s t we do n o t know how t o i n t e g r a t e

a weak - type i n e q u a l i t y and so we cannot a r r i v e t o t h e weak t y p e i n e q u a l i t y

f o r KY . Second, even i f we had t h e u n i f o r m weak t y p e i n e q u a l i t y f o r - J

K$ , we should s t i l l make t h e l a s t s t e p work, i . e . t h e use o f M inkowsk i ' s

i n t e g r a l i n e q u a l i t y , and t h i s does n o t seem easy f o r a weak t ype inequal -

i t y . Here t h e Kolmogorov c o n d i t i o n may h e l p .

Page 114: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

5.3. THE METHOD OF ROTATION 99

As a straightforward application of the rotation method let us

first prove an easy version of the Lebesgue differentiation theorem in Rn without any covering lemma.

inequality (p,p) , 1 < p < , for the one-dimens onal Hardy-Littlewood maximal operator, we obtain the strong type inequa ity (p,p) for the n- dimensional Hardy-Littlewood maximal operator over Euclidean balls. For

f E LP(R~), we set

Assuming that we already know the strong type

For y 8 C fixed , we set - My f(x) = sup 1' If(x-y)l on-' dp

r>O r 0

Proceeding as before,

Where MI is the (onesided) onedimensional Hardy-Littlewood maximal

operator and

- f p ) f(z+sY) = f(x)

Therefore

W jRn lMy f(x)lp dx = I(My f)! (s)Ip ds dz G i,,, JL

Page 115: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

100 5 . THE TYPE (2,2)

So we a r r i v e a t / I M n f l / c 'd Ilfll as be fo re , u s i n g P

M i nkows k i ' s i n t e g r a l i nequal i ty . We s h a l l see l a t e r , when d e a l i n g w i t h approx imat ions o f t h e

i d e n t i t y i n Chapter 10 , some more examples o f t h e same t ype . Now we

app ly the method t o t h e s tudy o f a p a r t i c u l a r case o f t h e Calderdn - Zygmund s i n g u l a r i n t e g r a l ope ra to rs (odd k e r n e l s ) .

L e t k E Limn - { O l ) be a k e r n e l which i s

( a ) homogeneous o f degree -n , i . e . f o r each 1 > 0, x e R n -{O},

k(Xx) = X- " k ( x ) ,

(b ) i n t e g r a b l e ove r 1 and w i t h mean v a l u e zero ove r 1 , i . e .

J c ' ( c ) odd , i . e . k ( - x ) = - k ( x )

For f e Lp(Rn) , 1 < p < a, and 0 < E < n , we d e f i n e

f ( x ) = k k f ( x ) , where KE ,rl E ,rl

k ( x ) , i f E 1x1 6 rl

0 o t h e r w i s e

kE,n(x) =

Tha t i s ,

f kc ,n

We t ry t o prove, assuming

x ) = k

t h a t we a l r e a d y know t h a t t h e t r u n c a t e d H i l b e r t

transforms a r e u n i f o r m l y of s t r o n g t y p e (p,p) , 1 < p < a

above t runca ted Calderdn-Zygmund opera to rs K E Y n a r e u n i f o r m l y o f s t r o n g

t y p e (P,P).

, t h a t t h e

To do t h i s we w r i t e u s i n g ( a ) and ( c ) ,

Page 116: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

5.3. THE METHOD OF ROTATION 101

Now f o r a f i x e d 7 E C we w r i t e

I f , as b e f o r e , we s e t f o r x e R n , x = z + sy , z a Y , s B W , we g e t

- f ( z + ( s - p ) F ) - f ( z + ( s + p ) j q dp =

P K;,' = f ( x ) =

~

where we w r i t e f:(t) = f ( z + t y ) and f o r g e Lp(R' ) ,

i s t h e t runca ted Hi 1 b e r t t rans fo rm.

Since we assume t h a t we know I \ H E y n g l l 6 c I l g l I , w i t h

c independent o f E, q , g, we can proceed as b e f o r e and g e t

Page 117: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 118: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 6

COVERINGS, THE HARDY - LITTLEWOOD MAXIMAL OPERATOR AND DIFFERENTIATION

SOME GENERAL THEOREMS

Many problems i n r e a l a n a l y s i s can be reduced t o a geomet r i c

s tudy o f t h e c o v e r i n g p r o p e r t i e s o f c e r t a i n f a m i l i e s o f s e t s . We have

a l r e a d y seen how t h e Lebesgue d i f f e r e n t i a t i o n theorem i s an easy conse-

quence o f t h e c o v e r i n g theorem o f B e s i c o v i t c h .

t o o l s as t h e Whitney cove r ing lemma and t h e Calder6n-Zygmund decomposi-

t i o n lemma have been e a s i l y deduced f rom t h e fundamental c o v e r i n g prop-

e r t y o f t h e dyad ic cubes.

A l so such fundamental

The c o v e r i n g p r o p e r t i e s o f a f a m i l y o f s e t s a r e s t r o n g l y r e l a t e d

t o t h e p r o p e r t i e s o f t h e corresponding Hardy-Li t t l e w o o d maximal o p e r a t o r .

A h i n t o f t h i s connec t ion i s t h e theorem o f Co'rdoba we have seen i n Chap-

t e r 3 when d e a l i n g w i t h t h e technique o f l i n e a r i z a t i o n . As we s h a l l show

one can go f u r t h e r i n t h i s d i r e c t i o n .

The Hardy-Li t t l e w o o d maximal o p e r a t o r i s t h e maximal o p e r a t o r

r e l a t i v e t o t h e f a m i l y o f ope ra to rs one s t u d i e s i n t h e problem o f d i f -

f e r e n t i a t i o n o f i n t e g r a l s . I t s s tudy , o f course, f u r n i s h e s v a l u a b l e

r e s u l t s i n t h e s o l u t i o n o f such problem, b u t i t i s a l s o t r u e t h a t , i n

t h e o p p o s i t e d i r e c t i o n , any i n f o r m a t i o n one can a c q u i r e r e l a t i v e t o

t h e d i f f e r e n t i a t i o n p r o p e r t i e s o f a d i f f e r e n t i a t i o n b a s i s p rov ides l i g h t

f o r t h e s tudy o f t h e maximal ope ra to r which can be used i n many o t h e r

f i e l d s , such as t h a t o f t h e s i n g u l a r i n t e g r a l ope ra to rs , i n which t h e

Hardy -L i t t l ewood o p e r a t o r p l a y s a v e r y i m p o r t a n t r o l e .

I n t h i s Chapter we s h a l l t r y t o b u i l d up a genera l frame i n

which t o p resen t t h e i n t e r a c t i o n o f these t h r e e elements so s t r o n g l y

i n te rconnec ted . We p resen t o n l y t h e most i m p o r t a n t genera l r e s u l t s , and

r e f e r t h e reader t o t h e monograph by Guzmin [1975 ] f o r a more s p e c i a l -

i z e d knowledge o f t h e f i e l d . We s h a l l use t h i s o p p o r t u n i t y t o complete

103

Page 119: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

104 6. C O V E R I N G S y HARDY-LITTLEWOOD AND DIFFERENTIATION

t h a t monograph by p r e s e n t i n g t h e most i m p o r t a n t r e c e n t r e s u l t s i n t h i s

f i e l d t h a t has been g r e a t l y expanded by t h e work o f many people, espe-

c i a l l y those work ing i n t h e f i e l d o f F o u r i e r A n a l y s i s .

6.1. SOME NOTATION

I n genera l a didde,tevLticLtio~ b a d i n Rn w i l l be a c o l l e c -

t i o n (I3 = I! @ ( x ) o f bounded measurable s e t s w i t h p o s i t i v e measure x eRn

such t h a t f o r each x e R " t h e r e i s a s u b f a m i l y @ ( x ) o f s e t s o f iB so t h a t each B e B ( x ) con ta ins x and i n O ( x ) t h e r e a r e s e t s o f

a r b i t r a r i l y smal l d iameter .

As an example, (B can be t h e c o l l e c t i o n of a l l open b a l l s i n

Rn. For each x e R n & ( x ) i s t h e subfami ly o f a l l b a l l s c o n t a i n i n g

x . Another example : For each x e R n @(x) w i l l be t h e f a m i l y o f

a l l t h e open b a l l s cen te red a t x and B = \I @(x) . X E R"

A Bu.bemann-Fe,Ue,t didde,tnevl.tiation b a d 8 i s a d i f f e r e n t i a -

t i o n bas i s such t h a t each B e B i s open and i f x e B e & , then

B e B ( x ) .

I f f o r each x E A c Rn we a r e g i ven a c o l l e c t i o n o f bounded

measurable s e t s w i t h p o s i t i v e measure

L m e u J w a o d muximd ope,khatatr ( r e l a t i v e t o 5" = (I y ( x ) ) i n t h e

y ( x ) we can d e f i n e t h e ffahdy-

xsA

f o l 1 owi ng way :

I f f E

M f ( x ) =

0 i f x f 11 S S€ Y

For a Busemann-Feller b a s i s ( f o r s h o r t , a 8-F b a s i s ) i t i s

obvious t h a t { M f > A ] i s an open subse t o f Rn and so M f i s meas-

Page 120: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.2. COVERINGS, IMPLY TYPE AND DIFFERENTIATION

u rab l e.

105

I f we a r e g i v e n a d i f f e r e n t i a t i o n b a s i s i n R n we can

d e f i n e , f o r f 6 Lloc (Rn) ,

D ( f x ) = l i m sup & I f (y)dy ( t h e uppeh detLivative o f f a t x ) - ' b ( B ) + O B

1 D( f , x ) = l i m i n f i f ( y ) d y ( t h e L o w t den iwat ive o f f a t x ) i S(B)+O B -

B&(x)

I f D ( f , x ) = ( f , x ) we say t h a t t h e d e r i v a t i v e D( if.x) - I a t x e x i s t s and i f t h i s happens a t a lmos t each x e R n and

D( f , x ) = f ( x ) a.e. we say t h a t dS d L d d W e W a f. I f t h i s i s

t r u e i f o r each f i n a c l a s s o f f u n c t i o n s X we say, a b b r e v i a t e l y , t h a t

P dcd,4jWevLtiatQc\ x .

I n genera l we s h a l l s t a t e most o f t h e r e s u l t s i n d i f f e r e n t i a -

t i o n f o r a B-F b a s i s . Fo r such a b a s i s M f ( * ) , D( f, .) ,D( f,.)

a r e e a s i l y shown t o be measurable. Many o f t h e r e s u l t s a r e e x t e n s i b l e

t o o t h e r types o f d i f f e r e n t i a t i o n b a s i s w i t h o u t d i f f i c u l t y . However

one shou ld n o t t h i n k t h a t t h e f a c t t h a t i n a genera l d i f f e r e n t i a t i o n

b a s i s each s e t B 6 @ ( x ) i s i n some way "anchored" t o t h e p o i n t x

i s devo id o f importance.

-I I

6.2. C O V E R I N G LEMMAS IMPLY WEAK PROPERTIES OF THE MAXIMAL OPERATOR AND DIFFERENTIATION.

We have a l r e a d y seen how t h e B e s i c o v i t c h c o v e r i n g p r o p e r t y

o f t h e maximal o p e r a t o r . leads i n an easy way t o t h e weak t y p e (1 , l )

Page 121: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

106 6 . COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

We sha l l f i r s t s t a t e here a couple of easy general r e s u l t s i n th i s di- rec t ion . Then we sha l l see how the Besicovitch theorem gives us a very general and useful form of the Vi ta l i covering lemma and f i n a l l y we sha l l see how t o use these lemmas in order t o obtain r e s u l t s on d i f f e r - en t i a t i on .

p h o p e h t g : 7 6 d o t each x e A then we can chaohe 6hom ( S ( X )

\ A ( , 6 C l U S k l and c X (X 'k

c R~ we m e given S ( X

a oequence i s k ) huch XEA

h H at each x e R~ . Whehe c

and H depend o n l y on (9 , nat an A a h ( S ( x ) ) ~ ~ ~ .

Then t h e maximal VpPhCLtoh h&%t.ive t u 9 u a weak .type (1 , l ) .

phoo6. Let, fo r A > 0 a A X = tMf (x ) > A ) . I f x e AX we

I f ( > A . We apply P7i-T I S ( x ) choose S(x) E q ( x ) such t h a t

the covering property t o A A and ( S ( X ) ) x e ~ A and obtain CS,) . We can then wr i te

and obtain the r e s u l t

The same method i s applicable to the weak type ( p , p ) , 1 < p < m.

Page 122: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.2. COVERINGS, IMPLY TYPE AND DIFFERENTIATION 107

Then ,the maximal ape.hatoh ~ . & ~ 2 v e t o 0 6 weak ,type ( q , q ) , P

q = p - l *

Phoaij. L e t f E Lq , X > 0 and AX = ( M f > A }

I f 1 > and T d T j S(x )

For x 6 AX we choose S ( x ) such t h a t

app ly t h e cove r ing p r o p e r t y , o b t a i n i n g { sk } . We can w r i t e

and t h i s proves t h e theorem.

The c l a s s i c a l V i t a l i lemma i s an easy consequence o f t h e

B e s i c o v i t c h p r o p e r t y t h a t has been proved i n Chapter 3

can s t a t e a more genera l r e s u l t v a l i d f o r an a r b i t r a r y measure w i t h t h e

same e f f o r t .

f o r b a l l s . We

6.2.3. THEOREM . L e L y = u ( x ) be a nybXeJn 0 6 x sRn

camp& 0e. t~ ulith poniaXve m w m e nuch t h a t doh each x and S E v ( x ) , we have x E S . Annume t h d t each (/’ ( x ) containh nets 06 ahb&ahiey

nm& diameLteh.

(BesicovLtch) covehing p h a p e h t y : 16 doh each x E A c Rn we ahe given S(x) e Y ( x ) then we can choose &&om ( S ( X ) ) ~ € ~ a nequence I S k )

nuch Ahat:

L a ~n nuppone a h a t h a t y ve14ie.h t h e ~o.Uawing

Page 123: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

108 6 . C O V E R I N G S y HARDY-LITTLEWOOD AND DIFFERENTIATION

Ptiuol;. I t i s easy t o see t h a t t h e r e i s no l o s s o f g e n e r a l i t y

i f 'we assume 0 < pe(E) < m . For each x a E we choose an a r b i t r a r y

S(x) E { Q k ( x ) } c v(x) and a p l l y t h e B e s i c o v i t c h cove r ing p r o p e r t y

o f 9 o b t a i n i n g I S k } s a t i s f y i n g ( i ) and ( i i ) . For one o f t h e se,-

quences { S i 3 , ... , { S f } ( L e t us assume i t i s { S t } ) , we have

I n f a c t , o t h e r w i s e

1 e Pe(E) C p('sk) h 1 U( I1 Sjk C Ue(E)

j=1 k

and t h i s i s a c o n t r a d i c t i o n . L e t us t a k e a p-measurable s e t P 3 E ,

p(P) = pe (E) and a f i n i t e subsequence o f { S c } , say IS: } Y h l

k= 1

such

P

t h a t

The f i r s t hl elements o f t h e sequence {Rk) t h a t we a r e l o o k i n g f o r ,

w i l l be { S 3 , S l y ... S ; l l . So we g e t

h, Fo r each x e E - !I Rk = E l we t a k e S(x) a { Q k ( x ) I c y ( x )

such t h a t S (x ) n (I Rk = 0 and we proceed w i t h El as we have done

w i t h E o b t a i n i n g now { R k }

h i 1

such t h a t h2

h,+l

Page 124: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.2. COVERINGS, IMPLY TYPE AND DIFFERENTIATION 109

I n t h i s way we o b t a i n {Rkl and ue(E - URk) = 0

I t i s i n t e r e s t i n g t o observe t h e f o l l o w i n g r e l a t i o n s h i p bet -

ween t h e V i t a l i p r o p e r t y and t h e B e s i c o v i t c h p r o p e r t y o f a system o f s e t s .

For many purposes i n A n a l y s i s , i n p a r t i c u l a r i n d i f f e r e n t i a t i o n

theo ry , t h e f o l l o w i n g p r o p e r t y o f a system 9 = 11 q ( x ) of compact x eRn

measurable s e t s i n Rn i s good enough : 7Q don u c h x E A we me given

S(x) E y(x) , t h e n One can chaohe dtvm ( S ( X ) ) ~ ~ ~ u hequence IS,} nuch

< 0 . (Weak B e s i c o v i t c h p r o p e r t y ) . t h a t A c USk and 1 xsk

O f course, i f Sp 6.2.3. , then i t s a t i s f i e s t h

B e s i c o v i t c h p r o p e r t y i s s t r

s a t i s f i e s t h e B e s i c o v i t c h p r o p e r t y o f Theorem

s one, s i n c e 1 xsk < 0 . The weak

c t l y weaker than t h a t o f Theorem6.2.3. The

f o l l o w i n g example i s due t o B.Rubio (unpubl ished) .

6.2.4. THEOREM. T h a e LA a hynteni y = LI 0 ( x ) aQ com - x ERn

p a c t he,th h a t i n d y i n g t h e weak BenicavLtch p'rop&y WLthoLLt h a t i n d y i n g

t h e hi7~VKge.R ane 06 Thevheni 6.2.3.

PXaad. We take 1 = b l > bp > b3 > .. . , b k + 0 9

2 = B1 > B2 > . .. , Bk -f 0 and f o r each x E R2 and k = 1,2 ,... we

cons ide r t h e symmetri,c c losed cross Q k ( x ) cen te red a t x i n d i c a t e d i n

the p i c t u r e

F i g u r e 6.2.1.

Page 125: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

110 6 . C O V E R I N G S y HARDY-LITTLEWOOD AND DIFFERENTIATION

y = U ,(J(x) s a t i s - x ER k = 1 , 2 , . , . , The system y ( x ) = ( Q k ( x ) )

f i e s t h e weak B e s i c o v i t c h p r o p e r t y . L e t Q be any square o f d iamete r 2,

A c Q and f o r each g i ven .

We choose as S1 one of t h e s e t s Q ( x ) , x 6 A w i t h min imal k ( x ) .

x 6 A - S1 w i t h minimal k ( x ) , Then as SP one of t he s e t s Q

and so on. I f t h e process s tops, i t i s because A - USk = 0 . I f no t ,

n e c e s s a r i l y S(S,) + 0 , I n f a c t o t h e r w i s e , i f b(Sk) > c1 > 0 , s i n c e the t h i r d s o f t h e c u b i c i n t e r v a l s a t t h e c e n t e r s o f t h e crosses

sk i n s i d e a bounded s e t and t h i s i s imposs ib le . But i f

A - USk = 0 . Otherwise i f x 6 A - usk , we have ove r looked

Q,(,)(x) i n o u r s e l e c t i o n process.

process o f t h e s e t s Sk

2 x 4 s e t s sk . I t s u f f i c e s t o c o n s i d e r how many crosses c o n t a i n i n g z

have t h e i r cen te rs i n t h e f i r s t o f t h e c losed quadrants determined by z .

They a r e a t most 2.

x e A assume t h e r e i s one S ( x ) = Q,(,)(x)

k ( x )

k ( x ) ’

a r e d i s j o i n t , we would have i n f i n i t e l y many d i s j o i n t congruent cubes

6(Sk) + 0 , then

Because o f t h e fo rm o f t h e s e l e c t i o n

i t i s e a s i l y seen t h a t no p o i n t i s i n more than

Therefore 1 xsk c 8 .

Now i f t h e system would s a t i s f y t h e s t r o n g B e s i c o v i t c h p r o p e r t y

i t would s a t i s f y t h e V i t a l i p rope r t y , acco rd ing t h Theorem 6.2.3. But

one can choose bk , Bk so t h a t t h i s i s n o t t r u e .

I n f a c t l e t Q be t h e must cube. D i v i d e t h e cube d y a d i c a l l y

i n f o u r p a r t s and f o r each p o i n t i n each one o f them t a k e a c ross cen-

t e r e d a t t he p o i n t such t h a t t h e l e n g t h , B1 , o f t h e arm i s t w i c e as l a r g e

as t h e s i d e l e n g t h o f each o f t h e dyad ic cubes and t h e w i d t h o f t h e arm

o f t h e cross, bl, i s smal l enough so t h a t t h e area o f t h e c ross i s l e s s

than --< o f t h a t o f t h e d y a d i c cube o f t h i s d i v i s i o n . We d i v i d e dyad-

i c a i l y again and t a k e crosses centered a t each p o i n t i n t h e same way so

t h a t t h e area o f t h e c ross i s l e s s than

cube o f t h i s d i v i s i o n . It i s easy t o see t h a t i f we s e l e c t any system od

d i s j o i n t crosses we can t a k e a t most one of t h e crosses o f .each s tage and

so they can n o t cover a lmos t a l l t h e cube Q .

1 2

4x2 2 o f t h a t o f t h e d y a d i c

Here we have a l s o c o n s t r u c t e d a b a s i s t h a t d i f f e r e n t i a l s L’

b u t does n o t s a t i s f y t h e V i t a l i lemma. As we s h a l l see l a t e r t h i s i s

imposs ib le f o r a B-F b a s i s t h a t i s i n v a r i a n t by homothecies.

Page 126: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.2. COVERINGS, IMPLY TYPE AND DIFFERENTIATION 111

The i n e q u a l i t i e s f o r t h e maximal o p e r a t o r o f t h e t y p e o b t a i n e d

i n 6.2.1. l e a d t o a d i f f e r e n t i a t i o n theorem f o r L1, as we have shown i n

Chapter 3. The one i n 6.2.2. l eads i n t h e same way t o d i f f e r e n t i a t i o n

o f Lq .

Now we s h a l l show how f rom t h e V i t a l i lemma o f 6.2.3. one can

a l s o deduce t h e d i f f e r e n t i a t i o n p r o p e r t y o f a b a s i s .

6.2.5. THEOREM . L e R 1-1 be a n e t dunction dedined on diniAe

u n i u ~ n ad &abed cubic in tehv& a6 Rn . Ab~ume t h a t 1-1 LA nvnnegative, manoiane, ~ i n i t e L q addi t ive and dini te an each cube. Then at almost evetry

( i n t h e Lebe~gue A C U ~ ) p a i n t vne h a , dah each Aeyuence { Q k ( x ) } ad &ohEd cubic in tehv& c e n t a e d at x and cant'iaoting t o x , th lLt t h e L h L t

x 8 Rn

exddh, i~ dini te and i~ independent 0 6 t h e neyuence {Q,fx)) .

P m o d . I n o r d e r t o prove t h i s r e s u l t , d e f i n e f i r s t

We t ry show t h a t

t e r v a l Q and a c o n s t a n t M > 0 . For each x E A, 0 Q we have

I Q,(x) 1 c o n t r a c t i n g t o x such t h a t

\A,] = 0 . L e t us t a k e an a r b i t r a r y c l o s e d c u b i c i n - 0

0

and Qk(x ) C Q . We app ly Theorem 6.2.3. o b t a i n i n g a d i s j o i n t se - quence IS,} f r om such cubes so t h a t

n

Page 127: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

112 6 . COVERINGSy HARDY-LITTLEWOOD AND DIFFERENTIATION

So we g e t

0 Since M i s a r b i t r a r y and u ( Q ) < m we o b t a i n IA,n Q ) = 0

and so / A m [ = 0.

L e t us now take an a r b i t r a r y c losed c u b i c i n t e r v a l Q and de-

f i n e , f o r r z s > 0

We t r y t o prove t h a t \ A r s ( = 0 . L e t E > 0 a r b i t r a r y and G an open

s e t c o n t a i n i n g A,, such t h a t ( G I 6 ( A r s I e + E . We a p p l y V i t a l i ' s

theorem t o Ars w i t h t h e cubes Q{(x) , t a k i n g o n l y those con ta ined i n

G and we o b t a i n a d i s j o i n t sequence { S t } o f such cubes so t h a t

l A r s - II S g [ = 0 . We c l e a r l y have k

Observe t h a t , i f

0

C = A,, II ( II S i k

we have 1C/ , = l A r s l e . For each x 8 C t h e r e i s an S* such t h a t

x 6 S* and so , s i n c e x E Ars t h e r e i s a l s o a sequence Q k ( x ) + x

such t h a t Q,(x) C S* and

J 0

J 0

J

U(Qk(x ) )

14krx)(> r .

We now apply t h e V i t a l i theorem aga in t o C w i t h ' t h e s e cubes and so

Page 128: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6 . 2 . COVERINGS, IMPLY TYPE AND DIFFERENTIATION 113

o b t a i n a d i s j o i n t sequence { S , } such t h a t each Sk i s i n some S* and

1C - ( J S,] J

= 0 . Thus we have, t a k i n g i n t o account t h e above i n e q u a l i -

t i e s

I A r s

< r S

Thus

Since E i s a r b i t r a r i l y smal l we o b t a i n [ A r s [ = 0 . Wi th t h i s one eas-

i l y concludes t h e p r o o f o f t h e theorem.

We o b t a i n i n p a r t i c u l a r t h e f o l l o w i n g . I f P i s an a r b i t r a r y

p l ( Q ) = \ Q [I P i e , s e t o f R" we o b t a i n t h a t t h e l i m i t

and we s e t f o r each closed c u b i c i n t e r v a l

e x i s t s and i s f i n i t e a t a lmost eve ry x .

We can a l s o t a k e u,(Q) = / Q 0 P I i , i . e . t h e i n t e r i o r meas

ure o f Q 0 P , and so

e x i s t s and i s f i n i t e a t a lmost every X .

I f u ( Q ) = 1, f w i t h f nonnegat ive and l o c a l l y i n t e g r a b l e ,

we g e t t h a t

Page 129: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

114 6 . COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

e x i s t s , every x E R",

i s f i n i t e and independent o f t h e p a r t i c u l a r {Q,(x)I a t a lmost

6.3. FROM THE MAXIMAL OPERATOR TO COVERING PROPERTIES.

As an example o f t h e use o f t h e method o f l i n e a r i z a t i o n we have

seen i n Chapter 3 how a s t r o n g t y p e (p,p) p r o p e r t y f o r t h e maximal

o p e r a t o r i m p l i e s a q - t ype cove r ing p r o p e r t y . However one more o f t e n knows

t h a t t h e maximal ope ra to r s a t i s f i e s a weak t ype p r o p e r t y , and t h e theorem

can be extended t o t h i s s i t u a t i o n . T h i s r e s u l t be longsindependent ly t o

C.Hayes [1976]

o f Hayes and ou r v e r s i o n i s a l i t t l e more genera l t han t h e one h e presents.

and A.CBrdoba [:1976] . The p r o o f we p resen t f o l l o w s t h a t

6.3.1. THEOREM . L e t ( Q , F , p ) be a meuhme npace and

@. = ( R a ) a E A a cvUecaXvn v6 meanaabke. AU~APLA 0 6 R Mlith 6 i n i t e m e a n - me. We cvnniden t h e ( H c v r d y - L U e w v o d ) maximal opmahh M [belated

tv A ) i n t h e 6vUvwing dvhm. 7 6 f 6 L(Q) and x E 0 , we n e t

LeA + : [0,w) -+ [O,w) be an inmeaning 6unctivn wLth

@(O) = 0 and U A A W ~ ~ t h a t doh A > 0 and doh each f E L(Q) we have

h h w n e t h a t I) : [0,w) -+ COY-) a nondechming ~ u n u X v n duch t h a t dotl each p > 0 t h e m e . x A a 2 k (p ) > 0 auch t h a t , 6vh each

Page 130: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.3. FROM THE MAXIMAL OPERATOR TO COVERINGS 115

u > 1 , Lhre hccwe

I) R k 1

N

.__ Remwlh. I n t e r e s t i n g f u n c t i o n s assoc ia ted as t h e f u n c t i o n s 4 and $ of t h e s tatement o f t h e theorem can be e a s i l y found. Examples:

, c > o

Ptloo6. We can assume t h a t has a f i n i t e number o f (R&B s e t s . Otherwise we take a f i n i t e s u b c o l l e c t i o n such t h a t t h e measure o f

i t s un ion i s s u f f i c i e n t l y c l o s e t o t h a t o f II R a . BEB

The cho ise o f t h e s e t s R k i s made as f o l l o w s . Take R 1 a r b i -

t r a r i l y . Assume R1,R2, ..., Rm have been chosen so t h a t

We f i x T- such t h a t 0 < rl < 1 , c E , and ask 1-T-

ourse lves whether t h e r e i s among t h e s e t s o f (R ) which have n o t a P E B

Page 131: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

116 6. COVERINGS, H A R D Y - L I T T L E W O O D AND D I F F E R E N T I A T I O N

been chosen a s e t W such t h a t we have s imu l taneous ly

If t h e r e a r e such sets , we t a k e one o f them as o u r Rmtl . If

n o t , we a r e f i n i s h e d w i t h t h e s e l e c t i o n process.

We have

N So we s t o p i n a f i n i t e number o f s t e p t s . L e t R1,RZ, ..., R

be the chosen se ts . for t h e se ts W i n (RB)BEB which have n o t been

chosen, we have a t l e a s t one o f t h e f o l l o w i n g i n e q u a l i t i e s

Page 132: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.3. FROM THE MAXIMAL OPERATOR TO COVERINGS 117

Because of t h e hypo thes i s of t h e theorem on t h e maximal o p e r a t o r ,

we have t h a t t h e union o f a l l such se ts W v e r i f y i n g (1) has measure l e s s

than o r equal t o

IJ R k 1

IJ R k 1

Also t h e un ion o f t h e s e t s W v e r i f y i n g ( 2 ) has a measure l e s s

than o r equal t o

Hence R1, R 2 , ... , RN s a t i s f y ( a ) and ( b ) .

It i s an i n t e r e s t i n g open problem t o f i n d t h e e x a c t l i m i t s o f

t h i s t y p e o f theorem, i n t h e f o l l o w i n g sense. Assume t h a t one knows t h a t

t h e maximal o p e r a t o r s a t i s f i e s an i n e q u a l i t y o f t h e t y p e appear ing i n t h e

s tatement w i t h $ ( u ) = u . What i s t hen t h e b e s t c o v e r i n g p r o p e r t y one

can deduce f rom t h i s ? Can one t a k e $ (u ) = eu2 ? O r , assume t h a t f

$ ( u ) = u ( l + l o g u ) . Can one t a k e + (u ) = eu ?

Page 133: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

118 6 . COVERINGS , HARDY-LITTELWOOD AND DIFFERENTIATION

6.4. DIFFERENTIATION A N D THE MAXIMAL OPERATOR.

When of a d i f f e ren t i a t ion bas is B one knows t h a t i f s a t i s f i e s L p ( l < p < m),

one can apply the general theorems of Chapter 1

a d i f f e ren t i a t ion property such as t h a t i t d i f f e r e n t i a t e s then, since i t i s c l ea r t h a t the corresponding maximal operator i s bounded a .e . fo r each and obtain weak type proper t ies for the maximal operator.

f E L p ,

However t h i s type of r e s u l t s can be obtained by d i r e c t methods t h a t a r e simpler by f a r . re la ted to individual d i f f e ren t i a t ion proper t ies t h a t a r e not covered by the abs t r ac t theorems. Busemann and Fe l le r r19341 and some o thers in Hayes and Pauc [1955] . We present here a sample of r e s u l t s of t h i s type. For more d e t a i l s and fu r the r information one can consult the monograph Guzmdn [1975] .

Moreover, by such methods one can ge t r e s u l t s

Some of the r e s u l t s we present o r ig ina t e in

A .Den&Ltq p m p e t L t i ~ . As a f i r s t r e s u l t we prove t h a t the d i f f e r e n t i a t i o n o f the

c h a r a c t e r i s t i c functions of measurable s e t s f a c t equivalent t o the apparently s t ronger property of d i f f e r e n t i a t i o n

( devlni2q p m p W y ) i s in

of L”(FP).

Phoad. Since the d i f f e ren t i a t ion of j f a t x i s a local property , i . e . depends only on the behavior of f in a neighborhood of x , we assume tha t f has compact support A . We a l so can assume without loosing genera l i ty t h a t f o r every x , 0 G f ( x ) c H < a. By Lusin’s theorem, given E > 0 , there exists a compact s e t K i n . A such t h a t ! A - K I c E and f i s continuous on K. Let f K = fXv ,

~ A - K = ~ x A - K - We f i r s t prove O( jf, ,x) = f K ( x ) a t almost every x a R’ .

In f a c t , assume R k E 6j ( x ) , R k + x as k -+ a . We can wr i t e

Page 134: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.4. DIFFERENTIATION AND THE MAXIMAL OPERATOR 119

I f x 6 K , then f,&y) -f f K ( x ) as y -f x , y E K and so t h e above

exp ress ion tends t o zero as k -f m . I f x 6 K , then f k ( x ) = 0 and

the f i r s t member i s ma jo r i zed by

proper ty , tends t o ze ro f o r a lmos t a l l such p o i n t s x .

D( fk ,x) = f K ( x ) a lmos t everywhere i n Rn.

IRk (7 K I . T h i s , by t h e d e n s i t y

Hence T

With t h i s , f o r an a r b i t r a r y cx > 0 , we can s e t

i

p r o p e r t y . So D ( f , x ) = f ( x ) f o r a lmost each x B Rn . f,x) = f ( x ) a lmos t everywhere and so t h e theorem i s proved

- I The f o l l o w i n g c h a r a c t e r i z a t i o n o f a d e n s i t y b a s i s belongs t o

Busemann and F e l l e r c1934 3 .

Page 135: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

120 6 . COVERINGS, HARDY-LITTLEWOO0 AND DIFFERENTIATION

( a ) LA a demLtity b u d , .

( b ) FUR. each A, 0 A < 1, S o t each nvndecAwbing bequence

{Ak} U S bvunded meanwrabLe be,tb buch t h a t I A k ( J. 0 and 604 each nvn - i n a e u i n g sequence Irk) 0 6 heat numbem buch thctt rk + 0 we have

whehe, ~ V R . each k, h, xh = xAh , and

Phvvd. That ( a ) i m p l i e s ( b ) i s easy. L e t 0 < A < 1 and

{Ak ) as i n (b ) . F i x an Ah. Fo r a lmost each x 6 Ah we have, i f

(a ) i s t r u e , D(\ xh,x) = 0 , and so , if k i s s u f f i c i e n t l y b i g ,

Mkxh(x) < A . Hence

CMkXk

by t h e d e f i n i t i o n o f

1 i m k-

Since

d e n s i t y

A h [ -t 0 we g e t (b ) .

We now prove t h a t n o t - ( a ) i m p l i e s n o t - (b ) . I f '@ i s n o t a

b a s i s , t h e r e i s a measurable s e t A , w i t h I A l > 0 , such t h a t

I n f a c t , assume t h a t f o r each measurable s e t 0 , we have, a t

a lmost each x 6 P , - D( j x p , x ) = 0 , i . e . ,x) = 0 = ~ ( ~ x p , x ) .

Page 136: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.4. DIFFERENTIATION AND THE MAXIMAL OPERATOR 121

If we app ly t h i s t o t h e complement P ' o f P , i f I P ' I > 0 , we o b t a i n

t h a t a t a lmost each x 6 P ' , i . e . a t a lmost each x E P , we have

Observe now t h a t

and so we have , a t a lmost each x E P

and t h e r e f o r e '@ would be a d e n s i t y bas i s .

L e t us then t a k e A measurable, w i t h J A I > 0, such t h a t

There e x i s t s then a measurable s e t C, w i t h C c A ' , I C I > 0 , such

t h a t a t each x E C we have E( x A 7 x ) > A . L e t { G k I a sequence

o f non inc reas ing open s e t s such t h a t G k ~ C, J G k - C I -+ 0 and l e t

Ak = G k 0 A. C l e a r l y { A k } i s non inc reas ing and IA,:I + 0 s i n c e

A k C Gk - C . any non inc reas ing sequence o f r e a l numbers {r,]

such t h a t rk + 0. We s h a l l prove t h a t {Mkxk > XI 3 C f o r each k .

I Take

I n f a c t , l e t x E C and k be f i x e d . S ince E( x A 7 x ) > A t h e r e

i s a sequence { R h I C B ( x ) w i t h Rh -+ x such

Hence

Page 137: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

122 6. COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

and M k x ( x ) > A . Th is proves C CMkxk(x) > A 1 f o r each k and,

s i n c e I C I > 0 t h i s shows t h a t n o t - ( b ) holds, T h i s concludes t h e p r o o f

o f t he theorem.

Ak

When 8 i s a B - F b a s i s t h a t i s i n v a r i a n t by homothecies,i .e.

when 6 i s such t h a t i f R 6 63 t hen any s e t homothet ic t o R w i t h

any r a t i o and any cen te r o f hornothecy i s a l s o i n '@ (and so i n p a r t i c u l a r

any t r a n s l a t e d s e t o f R ) ,

p l e r form, as the f o l l o w i n g theorem proves.

then t h e p reced ing c r i t e r i o n r e c e i v e s a sim-

6.4.3. THEOREM. L e t @ be a B-F b a d RhaX d inwahiant by h v r n v f h e ~ ~ . Then .the ZWV 6 v U v d n g p 4 " r a p ~ ~ t - L ~ c ~ z e e q d v d e n t :

( a ) '63 & a det&.ty b t ~ . . ~ i ~ .

( b ) Fvlz each A, 0 < A < 1, t h m e exim.2 a ponLCLwe cvn~Aant c ( A ) < m ouch RthCLt ~ V R . each bounded rneauhabLe+ n e t A vne h a

Ptrvo6. That (b ) i m p l i e s ( a ) i s a s imp le consequence o f Theorem

6.4.2., s i n c e ( b ) i m p l i e s c o n d i t i o n ( b ) o f t h a t theorem.

I n o r d e r t o prove t h a t ( a ) i m p l i e s ( b ) we s h a l l use t h e f o l

1 owi ng 1 emma.

6.4.4. -- LEMMA. L e X G be any baunded vpen A ~ R -in R" and LeX

K a cLthjvi& sequence { K k } 0 6 .be& hamaRh&c t o K conta ined in

/ G - (I Kkl = 0 and S ( K k ) < r.

be any cvrnpaot A & w a h pvnLCLve rneame. L& r > 0 . Then t h e m A

P R V V ~ v 6 Rhe Lemma. The lemma i s an easy consequence p f t h e

f a c t t h e bas i s o f a l l s e t s homothet ic t o K s a t i s f i e s t h e theorem

of V i t a l i . However a s imp le p r o o f o f i t can be g i v e n i n the f o l l o w i n g way.

0

L e t A be a ha l f -open c u b i c i n t e r v a l such t h a t K t A and

l e t c t l A l = I K I w i t h €I < ct < 1. We p a r t i t i o n G i n t o a sequence

o f d i s j o i n t ha l f -open c u b i c i n t e r v a l s {Ah} o f d iameter l e s s than r. For

Page 138: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.4. DIFFERENTIATION AND THE MAXIMAL OPERATOR 123

each Ah l e t Ph be t h e homothecy t h a t c a r r i e s A i n t o Ah and l e t

K* = PhK. We can keep a sequence {KiI:Il of these s e t s such t h a t , i f h

then G1 i s open and

by t a k i n g N1 s u f f i c i e n t l y b i g . We now s e t Kh = K* , h = l , Z , ..., Nl

and proceed w i t h G1 as we have done w i t h G, o b t a i n i n g now CKh)h:N +1 such t h a t

N h

And so on. So we o b t a i n t h e sequence CKhI s a t i s f y i n g t h e lemma.

We now c o n t i n u e w i t h t h e p r o o f o f t h e theorem. Assume t h a t (b )

does n o t ho ld . The t h e r e e x i s t s a p o s i t i v e number A > 0 such t h a t f o r

each i n t e g e r k > 0 t h e r e i s a bounded measurable s e t Ak such t h a t , if x k = XAk 3

t h e r e i s a l s o a p o s i t i v e number rk such t h a t

. L e t C k be a compact subset o f {M x > A} such Mrk k j where Mk means

t h a t [ C k [ > 2 [ A k [ . By t h e p rev ious lemma we can cove r t h e open

u n i t cube Q

o f s e t s homothet ic t o Ck such t h a t i f c1 i s t h e {cJ,} i=1,2,. . . r a t i o o f t h e homothecy Pkj c a r r y i n g Ck i n t o C i we have akjrk < Z-k

k+ 1

almost comp le te l y by means o f a d i s j o i n t sequence

k j

Page 139: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

124 6. C O V E R I N G S y HARDY-LITTLEWOOD AND DIFFERENTIATION

f o r each j and k .

s e t s AJk , k = 1,2, ..., j = 1,2 ,... L e t Pkj Ak = AJk and l e t A be t h e union o f a l l

We then have

- We s h a l l now prove t h a t a t a lmost each x 6 Q we have

1 Since I A l < 7

f o r A .

I)(] x A y x ) a A > 0.

t h i s w i l l p rove t h a t t h e d e n s i t y p r o p e r t y i s n o t t r u e

F i x k and l e t x E C k . There i s t hen R e a ( x ) , w i t h

6(R) < rk such t h a t

I R f'l A k l > A

I R I For each j, t h e image R* o f R by t h e homothecy P i s such t h a t

k j 6(R* ) < 2-k and

IR* o A1 > A .

I R* I

S ince f o r each f i x e d k a lmos t every p o i n t x o f Q i s i n some CJk , i t r e s u l t s t h a t f o r almost each x o f Q t h e r e i s a sequence R k o f

elements of a3 ( x ) c o n t r a c t i n g t o x such t h a t

Thus D( xA ,x) > A a lmos t everywhere i n Q.

I f one knows t h a t a d e n s i t y b a s i s d9 d i f f e r e n t i a t e s t h e i n t e -

g r a l of a f u n c t i o n f e L , t h e one can a f f i r m t h a t t h e maximal ope ra to r

assoc ia ted t o @ s a t i s f i e s a c e r t a i n weak t y p e p r o p e r t y . Th i s i s es-

s e n t i a l l y t h e con ten ts o f t h e main theorem i n t h e s e c t i o n . I n o r d e r t o

p rove i t we s h a l l make use of another i m p o r t a n t theorem t h a t a s s e r t s t h a t

Page 140: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.4. DIFFERENTIATION AND THE MAXIMAL OPERATOR 125

the d i f f e r e n t i a t i o n o f i n t e g r a l s o f f u n c t i o n s by a b a s i s @ i s t r a n s m i t -

t e d t o s m a l l e r f u n c t i o n s .

L1955J. I t i s based on a i d e a of Jessen used by Papou l i s [1950] f o r a d i f f e r e n t .

purpose.

and P a w [1955] , equ iva lence (a )<=>(c ) .

T h i s l a s t theorem i s due t o Hayes and Pauc

The p r o o f we p resen t here i s c o n s i d e r a b l y s h o r t e r and s i m p l e r .

The main theorem ,6.4.G., i n t h i s s e c t i o n i s p a r t l y due t o Hayes

P4ood. For a f i x e d N > 0 d e f i n e

f ( x ) if f ( x ) < N

if f ( x ) I N f N ( X ) =

N and l e t fN be such t h a t a t each x e Rn. By

hypo thes i s D ( f , x ) = f ( x ) a t a lmost eve ry x e Rn and a l s o , s i n c e

f ( x ) = f ( x ) + f N ( x )

N

I 'p, i s a d e n s i t y bas i s , by Theorem 6.4.1.,0( f N y x ) = f N ( x ) a t a lmos t

eve ry x E R~ . so we g e t a t a lmost every E R~ , D ( / fN,x) = f ( x ) .

L e t us now de f ine

and g* such t h a t g ( x ) = g,(x) + g*(x) a t each x o Rn. Then we have

D( 1 g,,x) = g,(x) a lmost everywhere. S ince l g * l L fN , we have a t a l -

mosz every x f o r each sequence { R k ( x ) ) c Q ( x ) c o n t r a c t i n g t o x.

I g * ( x ) I < N a t each x e Rn and so , aga in by theorem 6.4.1.,

Page 141: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

126 6 . COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

w i t h t h i s we have D ( g,x) = g ( x ) a lmos t everywhere. Analogously

I)( g,x) = g (x ) a lmost everywhere and t h i s proves t h e theorem. -_ - J

The f o l l o w i n g theorem c h a r a c t e r i z e s t h e d e r i v a t i o n by 8 o f t h e

i n te rm which a r e s i m i l a r t o those o f t h e den- i n t e g r a l o f a f u n c t i o n f

s i t y theorem o f Busemann and F e l l e r . I t i s v a l i d f o r a genera l b a s i s .

6.4.6. THEOREM . L t L 63 be a b u h w a h t h e d e a a y p h o p e h -

ty. L e t f > 0 , f E L1(Rn) . Then t h e & o U v w i n g t h e e condi t ionn me - eq iLivaeevLt :

( a ) 9 di66mentiaten

( b ) doh each A > 0 , each nequence Cf,}, w L t h fk E L', f k < f f ,

f k ( x ) G 0 CLt d m o & t a c h x E Rn and doh each numeAhaP. ACQUenCe Cr,}

w L t h rk G 0, we have.

whme Mk

by t a k i n g @om @ jui t h e e..temenx2 wLth diamQ;tm Lenn t h a n ,the maximal a p e h a t a h u n v c i a t e d t o .the b a d % rk vbRained

rk . ( c ) Fv/z each 1 > 0 , each n o n i n c h m i n g nequence 0 5 meuw -

abRe n u 2 { A k } w L t h \ A k [ + 0 , and each numehicd neyuence irk} w L t h

rk G 0 , we have

Page 142: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.4. DIFFERENTIATION AND THE MAXIMAL OPERATOR 127

PaoaQ. I n o r d e r t o prove t h a t ( a ) i m p l i e s ( b ) we t a k e an

a r b i t r a r y open c u b i c i n t e r v a l Q and E > 0. We have f k + 0 p o i n t w i s e

on Q and so, by Egorov ’s theorem, t h e r e i s a measurable s e t A, w i t h

J A J < E , such t h a t fk + 0 u n i f o r m l y on Q - A . Hence, g i v e n A > 0,

t h e r e e x i s t s a p o s i t i v e i n t e g e r h such t h a t f k ( x ) < X i f k > h

and x 6 Q - A. S ince we a r e assuming t h a t 6 d i f f e r e n t i a t e s If, by

t h e p reced ing theorem, % d i f f e r e n t i a t e s

each x B Q - A and f o r each sequence { R j ( x ) } C ( x ) c o n t r a c t i n g

t o x we have, as j +

J Ifk f o r each k . Hence, f o r

There fo re

l i m { x E Q : M~ f h ( x ) > c A k-

I t i s c l e a r t h a t , i f k 2 h, s i n c e fk < fh , we have

and so

l i m I { x 6 Q : Mk f k ( x ) > A 1 ) e 6 ] A ) < E k-m

Since Q and E a r e a r b i t r a r y , we g e t (b ) .

That ( b ) i m p l i e s ( c ) i s t r i v i a l by t a k i n g fk = f X A k .

I n o r d e r t o prove t h a t ( c ) i m p l i e s (a) , l e t

Ak = C f ;r k3 f o r k = 1,2,...

Since f E L ~ ( R ” ) , 1 ~ ~ 1 + 0.

Page 143: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

128 6 . C O V E R I N G S y HARDY-LITTLEWOOD AND DIFFERENTIATION

We have, c a l l i n g f X A = fk , f = fk t f . Since i s k

assumed t o be a d e n s i t y bas i s , f o r a lmos t eve ry x, D( J f k * x ) = f k ( x ) So f o r each X > 0,

The f i r s t t e rm i n t h e l a s t member of t h i s c h a i n o f i n e q u a l i t i e s tends t o

ze ro by hypo thes i s and k * m. The second one because f e L1(Rn) . So

we g e t i( f ,x) = f ( x ) a lmos t everywhere. S i m i l a r l y D(( f,x) = f ( x )

a lmost everywhere. I

T h i s concludes t h e p r o o f o f t h e theorem.

With t h e p rev ious theorems i t i s ve ry easy t o g i v e a cha rac te r -

i z a t i o n o f b a s i s d i f f e r e n t i a t i n g L'(R")

i n t h e s t y l e o f Busemann and F e l l e r .

i n terms o f t h e maximal o p e r a t o r

6.4.7. THEOREM. 1eX fi be a did6etrentiation banA i n Rn.

Thcn t h e Aktlee I;oUuwing canditioMn ahc eqlLivaLent:

( c ) F O X each X > 0 , each f e L1(Rn) , each nonirzc/rea,&uj

btqUc?nCe 0 6 meanmabLe A& t A k ) nuch t h a t ] A k [ -+ 0 , a d each numehicd

Page 144: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.4. DIFFERENTIATION AND THE MAXIMAL OPERATOR 129

P m o d . I f any o f t h e t h r e e cond

i s a d e n s i t y bas i s , by Theorem 6.4.1.

consequence o f Theorem 6.4.6.

0

t i o n s ( a ) , (b

The theorem

, ( c ) ho lds , t hen

i s t hen a d i r e c t

When one assumes t h a t t h e b a s i s f i i s i n v a r i a n t by t r a n s l a t i o n s

o r by homothecies, t h e p reced ing c h a r a c t e r i z a t i o n takes a s i m p l e r form.

6.4.8. THEOREM . L e A @ be a B - F b a d t h d d invahiant by XhanbLatium. Then t h e A.va doUawing conditiam ahe qU.ivdevLt:

whme

S U P

I n t h e p r o o f o f t he theorem we s h a l l make use of t h e f o l l o w i n g

lemma due t o A.P.CalderGn, which has been a l r e a d y presented i n Chapter 2

6.4.9. LEMMA . L e A C A k l be a bequence ad meanwrabLe n e A

Q c R n . poi& in R n and a net S lu i th

cantdined in a dixed cubic i n t e h v d Then t h m e LA a nequence Cxkl 0 6 p V b i , t i V e meanwre cantdined i n Q buch .thcLt each s e S LA i n i n @ h X d y

many n e A 06 t h e dahni

and nuch thcLt C I A k \ =

xk + Ak.

Page 145: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

130 6. C O V E R I N G S y HARDY-LITTLEWOOD AND DIFFERENTIATION

Phuoi) 0 6 t h e Theohem 6.4.8. Tha t ( b ) i m p l i e s (a ) i s a

s imp le consequence o f Theorem 6.4.7.

( b )

I n o rde r t o p rove t h a t ( a ) i m p l i e s

l e t us prove f i r s t t h a t ( a ) i m p l i e s t h e f o l l o w i n g :

(b*) F o ~ each dixed cubic intehwd Q t h e h e txht paniaXwe

co1z~tant5 c = c ( Q ) r = r ( Q ) nuch , that doh each non negative f 6 L1

w a h nuppoht in Q arid M C ~ > 0 we have

Assume t h a t

t h a t for each p a i r o f

fk E L1 suppor ted i n

(b*) does n o t ho ld . Then t h e r e is a f i x e d Q such

cons tan ts c k Y rk > 0 t h e r e i s a nonnegat ive

Q and a l s o a X k > 0 such t h a t t h e s e t

Ek = { x 8 Rn : M f k ( x ) > X k } rk

S a t i s f i e s 1 ~ ~ 1 > ck ,/ L e t us take a sequence i r k } rk + 0, such t h a t a l l numbers rk

a r e l e s s than the s i d e - l e n g t h o f Q y and l e t ck = 2k . We c a l l gk = f k / X k

and Q* t h e c u b i c i n t e r v a l w i t h t h e same c e n t e r as t h a t o f Q and t h r e e

t imes i t s s i z e . C l e a r l y E k C Q * and

We can choose f o r each k a p o s i t i v e i n t e g e r hk such t h a t

1 Q * 1 G h k l E k l G 21Q*1. So we have

m

We cons ide r t h e sequence {Ah}

by r e p e a t i n g hk t imes each Ek , i.e.

m

o f s e t s con ta ined i n Q* ob ta ined

t h e f o l l o w i n g sequence:

h, h h3 E i , E:, .. . El , E:, Et,.. . , E2' E:, E:, .. . , E 3 , Eiy. ..

i where Ek = Ek f o r each j w i t h 1 G j $ hk . S ince

Page 146: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.4. DIFFERENTIATION AND THE MAXIMAL OPERATOR 131

m m

and a l l se ts a r e con ta ined i n Q* we can a p p l y Lemma 6.4.9. We thus o b t a i n

t h e p o i n t s

h 2 h3 x2 , x i 7 x;, ..., x g , x; ,... x i , x;, ... , x, , x i , x;, ..., h l

and a s e t S w i t h p o s i t i v e measure con ta ined i n Q* such t h a t each p o i n t

o f S

f o r each k and each j = 172,...,hk,

i s i n i n f i n i t e l y many o f t h e s e t s Ejk . We d e f i n e t h e f u n c t i o n s ,

and f i n a l l y t h e f u n c t i o n

where ak z 0 w i l l be chosen i n a moment

We have

k and,since h k [ E k / g 2 [Q* l and I E k ( > 2 [ Igk[ l l , we g e t

L e t R B @ . We can o b v i o u s l y w r i t e

Each

L e t t hese s e t s be

s 6 S belongs t o an i n f i n i t e number o f s e t s o f t h e fo rm EJk .

Page 147: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

132 6. COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

By t h e d e f i n i t i o n of t h e s e t s E; , t h e r e i s t hen a sequence { R h l C @ ( s ) ,

w i t h such t h a t , because o f t h e above e q u a l i t y , Rh -f s,

f > f o r m = 1,2, ..

L e t us choose now ak so t h a t ak + and a t t h e same t ime

< a . ak

k = l Zk c -

For example, l e t us s e t ak = Zk” . Then we o b t a i n f 8 L’ and a t each

(b * ) .

s e S we have 6 ( f ,s ) = f m . T h i s c o n t r a d i c t s ( a ) . Hence ( a ) i m p l i e s

We have now t o deduce ( b ) f r o m (b*) . F i r s t of a l l i t i s c l e a r ,

b y the i n v a r i a n c e by t r a n s l a t i o n s o f a o f (b*) do n o t depend on t h e p lace i n Rn where Q i s l oca ted .

, t h a t t h e cons tan ts c ( Q ) , r ( Q )

I t i s a l s o c l e a r t h a t Mr,2f 6 Mrf and so we assume i n (b*)

t h a t r ( Q ) i s l e s s than h a l f t he l e n g t h of t h e s i d e o f Q. Assume now

t h a t f a 0 i s a f u n c t i o n i n L1 w i t h suppor t con ta ined i n i n f i n i t e l y

many d i s j o i n t cub ic i n t e r v a l s {QjIjZ1 each’one o f them equal i n s i z e

t o Q and such t h a t t h e d i s t a n c e between any two o f them i s a t l e a s t

equal t o t h e s i d e l e n g t h of 4. Then, if r i s , as we have assumed,less

than h a l f t h e s i d e l e n g t h o f Q, we c l e a r l y have

m CU

and t h e se ts H a r e d i s j o i n t . Hence j

Page 148: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.4. DIFFERENTIATION AND THE MAXIMAL OPERATOR 133

a ( n ) Now, f o r an a r b i t r a r y f E L 1 , f a 0 , we can s e t f = 1 fh where

h = l

each fh i s o f t h e

suppor ts and a ( n )

t ype a l r e a d y t r e a t e d , t h e f u n c t i o n s fh have d i s j o i n t

depends o n l y on t h e dimension. Thus

The r e s t r i c t i o n f > 0 i s t r i v i a l l y removed and so we o b t a i n t h e theorem.

The theorem of Busemann-Fel l e r f o r a b a s i s t h a t i s homothecy

i n v a r i a n t i s now an easy c o r o l l a r y o f Theorem 6.4.8.

6.4.10. THEOREM. 1e.L be a B - F b a A t h a A ' A homothecy i n v u t i a n t . Then t h e Awo 6 o ~ Y o w i n g ConditioMn me eqLLiudevCt:

( b ) The maximd o p e ~ a A o f i M 06 i~ 06 weak t y p e ( l , l ) , i . e . thetre exL.02 a cavl0.tunt c > 0 nuch t h a t 6ofi each f E L' and each A > 0 one h a

- P h d . I t i s s u f f i c i e n t t o prove t h a t f o r t h e homothecy i n v a r -

i a n t b a s i s

t h i s theorem.

, c o n d i t i o n ( b ) o f Theorem 6.4.8. i m p l i e s c o n d i t i o n ( b ) o f

The re fo re , we assume t h a t t h e r e e x i s t c > 0 and r > 0 such

t h a t f o r each f 6 L' and A > 0 we have

Take a number p > 0 and a f u n c t i o n @ E L ' . D e f i n e a new f u n c t i o n f

by s e t t i n g , f o r x E Rn ,

Page 149: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

134 6 . COVERINGS, HARDY-LITTLEWOOD A N D DIFFERENTIATION

Observe tha t 447 P x )

f ( x ) I dx = ~ ( r - ) ~ 1 I d z . c \ 1-1 A dx = c i l ~ P

In pa r t i cu la r , of course, f e L ’ . I f s e t

y e R n and R e ?3,(y) , we can

1 I \ f ( $ z ) \ d z = I$ R I ( F ) n R

- - 1 I f (x ) l (F)n d x = 1

1; R I ( F I n R

r MP(P (y) = M f ( r y ) , s ince - R e 8 (“ y ) and when R

Pr P Pr This provesthat runs over a l l % ( y ) , the s e t - R runs over a l l ‘13 (- y ) .

P P r P

I C Y e R n : Mp $ ( y ) > XI1

/{!Z : Mrf(z) > X)l

= I C Y e R n : M f ( T y )

= (F)n I { z : Mrf(z) > A

r P

=

c (by hypothesis) G

This proves t h a t f o r any p > 0 and any 4 8 L’ we ge t

with the same constant. Hence f o r each $ E. L ’ ,

and t h i s concl udes the proof of the theorem.

The type of Theorems presented in this Section C s a r i l y connected w i t h the d i f f e ren t i a t ion of a f i n e m space. and Peral [1974] have obtained r e s u l t s concerning weak type proper t ies

i s not neces Rubio [1971]

Page 150: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.4. DIFFERENTIATION AND THE MAXIMAL OPERATOR 135

f o r t h e maximal o p e r a t o r when one knows t h a t t h e co r respond ing b a s i s d i f -

f e r e n t i a t e s a space

t y p e due t o Rubio.

$ ( L ) . We s h a l l c o n s i d e r here one theorem o f t h i s

6.4.11. THEOREM. L e t $ : [0,.3] + [O,m] be a n&tio tey inmean -

ing aunctian wLth $ ( O ) = 0 and buch thaR $ ( u ) ud m d e h ghe&eh

than oh equal t o t h e o/rde,t ol; u when u -+ m . Le,t $ ( L ) be t h e coL-

Lecfion 06

1eL @ be a humothecy invahiuvct B - F b a & thcLt d i Q d e ~ e r t t i a Z e ~ $ ( L ) .

then t h e m e u h 2 a c o ~ h t ~ ~ v c t c > 0 buch thaR Qvh each A > O and each

f E $ ( L ) , f 2 0 one h a

meanmubLe 6unctioMh f : Rn -+ R nuch t h a t I $ ( I f 1 ) < m.

Phood. Assume t h a t t h e theorem i s n o t t r u e . Then, f o r each

ck > 0 t h e r e e x i s t fk E $ ( L ) , fk > 0 and > 0 such t h a t

. We t a k e a sequence { c k } , ck > 0 f k L e t us c a l l gk =

such t h a t

There e x i s t s a sequence (rkl , rk > 0 , such t h a t

There i s a l s o a compact subset Ek o f iM gk > 11 such rk

t h a t l E k l > ck $ (gk ) . We cons ide r t h e open u n i t cube Q and a f i x e d

k . By us ing Lemma 6.4.4. we cover a lmost comp le te l y Q by means o f a

o f s e t s homothet ic t o Ek con ta ined i n Q d i s j o i n t sequence E E k l h,l be t h e homothecy t h a t c a r r i e s and o f d iameter l e s s than l / k . L e t

Ek i n t o Ek . We d e f i n e t h e f u n c t i o n gk by s e t t i n g

h

pk h h

Page 151: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

136 6. COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

D e f i n e then

and f i n a l l y f = sup Sk . One e a s i l y g e t s f E $ ( L ) and k

However, D ( f , x ) a 1 a t a lmos t each x e Q . Since @ d i f f e r e n t i a t e s f $ ( L ) , we g e t f ( x ) > 1 a t a lmost each x E Q and so

,

Th is c o n t r a d i c t i o n proves t h e theorem.

6.5. DIFFERENTIATION PROPERTIES IMPLY C O V E R I N G PROPERTIES.

Since t h e beg inn ing o f t h e d i ' f f e r e n t i a t i o n theo ry , seve ra l

i n t e r e s t i n g theorems have been fo rmu la ted t h a t p e r m i t t o deduce u s e f u l

cove r ing p r o p e r t i e s f rom d i f f e r e n t i a t i o n p r o p e r t i e s .

o f R. de Posse1 [19361 and t h e ones o f Hayes and Pauc [19551. More

r e c e n t l y Hayes [19761 and a l s o Cordoba and R. Fef ferman [19771 have

amply extended the scope o f t h e o r i g i n a l theorems.

t h e method o f p r o o f o f such theorems seems q u i t e n a t u r a l .

o b t a i n an economical cove r ing f rom a g iven, perhaps h i g h l y redundant,

cove r o f a set,one chooses t h e b i g g e s t p o s s i b l e s e t s among those whose

o v e r l a p w i t h t h e a l r e a d y chosen ones i s smal l i n some sense.

cove r i s then shown, us ing the d i f f e r e n t i a t i o n p r o p e r t y , t o cover t h e

Such a r e t h e r e s u l t s

As one can observe,

I n o r d e r t o

T h i s sparse

Page 152: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.5. DIFFERENTIATION IMPLIES COVERING PROPERTIES 137

o r i g i n a l s e t .

We f i r s t p resen t t h e theorem o f t h e Posse1 c h a r a c t e r i z i n g den-

s i t y bases by means o f a cove r ing p r o p e r t y .

Hayes and P a w [1955]

p a r t i c u l a r f u n c t i o n .

a c t e r i z i n g the bases t h a t d i f f e r e n t i a t e

a c o v e r i n g p r o p e r t y .

t h a t f o r a B - f b a s i s t h a t i s i n v a r i a n t by homothecies, t h e d i f f e r e n t i a

t i o n o f L 1 m n ) i s e q u i v a l e n t t o t h e V i t a l i p r o p e r t y .

Then we show a theorem o f

t h a t concerns a c o v e r i n g p r o p e r t y r e l a t e d t o a

I n t h e t h i r d p l a c e we s h a l l p r e s e n t a r e s u l t char-

F i n a l l y we o f f e r a r e s u l t o f Mor i ydn [1975] p r o v i n g

L P m n ) y 1 < p < mY’n terms o f

I n o r d e r t o s t a t e more e a s i l y t h e f o l l o w i n g theorems, g i v e n a

s e t A and a d i f f e r e n t i a t i o n b a s i s 9 , we s h a l l say t h a t a sub fami l y

‘2 of @ i s a VLtitaei c o v a o f A i f f o r each x E A t h e r e i s a

sequence { B k ( x ) } c % such t h a t S ( B k ( x ) ) -f 0,

Prrovd. L e t us assume t h a t i s a d e n s i t y b a s i s . We t ry t o

prove p r o p e r t y ( P ) . L e t G be open, w i t h G 3 A such t h a t ) G - A [ c E

w i t h o u t loss o f g e n e r a l i t y we can assume t h a t a l l elements o f 2 a r e

con ta ined i n t h e s e t G. Otherwise we keep o n l y those elements o f ? t h a t s a t i s f y t h i s p r o e e r t y .

( b ) . L e t us t a k e a w i t h 0 < c1 < 1, t h a t w i l l be chosen c o n v e n i e n t l y

i n a moment. We d e f i n e

I n t h i s way we a u t o m a t i c a l l y o b t a i n p r o p e r t y

PI= SUP {[R[ : R E % , \ A n R ( > a(R(1

Page 153: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

138 6. COVERINGS, HARDY-LITTLEWOOD AND D I F F E R E N T I A T I O N

Since / A / > 0 a n d f o r each I R k ( x ) 3 c @ ( x ) w i t h R k ( x ) + x we have

i t i s c l ea r t h a t p1 > 0 . We take R1 8 "t such t h a t

Let us ca l l A = Al and AP = A1 - R1 . I f / A 2 [ = 0 the process of se lec t ing Rk i s f in i shed . Otherwise we define

a n d we s e l e c t RL E 2. such t h a t

Define now A 3 = A 2 - R 2 and so on. We obtain a sequence { R k I k , l f i n i t e or i n f i n i t e .

In order t o see t h a t { R k 3 s a t i s f i e s ( b ) , we f i r s t observe (Rk (1 A k ) 1'1 ( R . I1 A . ) = 4 i f k # j , and so we can wr i te J J

If {R,} i s f i n i t e , we c l ea r ly have \ A - II R k l = 0 . Assume t h a t

I R k } i s an i n f i n i t e sequence. Since 1 l R k l < a we have l R k l -, 0

and so pk < 3 \ R k J i s such t h a t pk + 0 . Let us ca l l A,=A - I) R k . k

Assume \A,/ > 0 . Then, i f we define

k

k 4

Page 154: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.5. DIFFERENTIATION IMPLIES C O V E R I N G P R O P E R r I E S 139

we c l e a r l y have p, > 0 , p, ,c pk f o r each k . T h i s c o n t r a d i c t i o n

proves t h a t I A - (I R k l = 0.

For t h e p r o o f of

we have ob ta ined , I A l 2 c1

( c ) we can w r i t e , because of t h e i n e q u a l i t y

( R k l , and because o f ( a ) ,

1 Hence, i f we choose c1 s o t h a t (; - 1) I A l G E , we o b t a i n ( c ) .

The second p a r t o f t h e theorem i s easy. Assume t h a t 9 s a t i s -

f i e s p r o p e r t y ( P ) f o r each measurable s e t A w i t h 0 < \ A \ < m.

We want t o prove t h a t % i s a d e n s i t y b a s i s s i n c e

t o Theorem 6 . 4 . 1 . , t o d i f f e r e n t i a t i o n of L".

t h i s i s e q u i v a l e n t

L e t M be a measurable s e t . For a A > 0 and H > 0 we

d e f i ne

So, f o r each x f A t h e r e e x i s t s C R k ( x ) f c @ ( x ) , such t h a t Rk(x) + x

and

IRk (x ) ('1 M I

IR,(x)l > A .

We s h a l l prove t h a t I A l = 0 . I f no t , we t a k e an a r b i t r a r y E > 0 and

app ly p r o p e r t y (P) t o A w i t h t h e V i t a l i c o v e r i n g

'r- = (Rk (X) )xeA , k = 1,2,2 ,...

and w i t h E > 0 . We o b t a i n { R k ) s a t i s f y i n g (a) , (b ) , ( c ) . Hence ,hav ing

Page 155: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

140 6 . C O V E R I N G S , HARDY-LITTLEWOOD AND DIFFERENTIATION

i n t o account t h a t M c A ' we can w r i t e

Since E i s a r b i t r a r y , I A l = 0.

So we o b t a i n f o r a lmost a l l x E M ' D ( x M,x) = 0 . I f we

app ly t h i s r e s u l t t o N = M I , we have , f o r a lmos t a l l x e N '

D ( x N Y x ) = 0 . But t h i s i m p l i e s D(xM,x) = 1. Hence i s a d e n s i t y

bas i s ,

The f o l l o w i n g theorem can be viewed as an e x t e n s i o n o f t h e

Posse l ' s theorem t o a measure t h a t i s cont inuous w i t h r e s p e c t t o Lebesgue

measure.

6.5.2. -__ THEOREM. L e i be a B - F b a h wLth t h e deMnLty

p'lopehty and teX f E L f > 0

and nuddicient cvndition i n o t d a t h a t 8 ~ ~ ~ e ~ e ~ c ~ t ~ lvwing :

be a hixed dunctivn. Then a necunwry

f .LA t h e h u t - I ( E ) Given a bvunded meurnab le b&t A , g iven E > 0 and a

A , t h e m ex-&& a bequence { R k } buch t h d , denvang ViAaLL c o v a 5 06

xk = xRk k R = 0 Rk , we have

P'laod. Assume t h a t @ d i f f e r e n t i a t e s f. L e t A , E, , I be as i n p r o p e r t y (E) o f t h e s tatement o f t h e theorem. L e t T-I z 0 be

a f i x e d cons tan t t h a t we s h a l l choose c o n v e n i e n t l y i n a moment. L e t

Page 156: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.5. DIFFERENTIATION IMPLIES COVERING PROPERTIES 141

f o r k 6 h . Since 7 4 d i f f e r e n t i a t e s f, we have, f o r a lmos t eve ry

x E Ak , i

a sequence

such t h a t

We can assume

(1 t ri ) k IRh (x ) l < \ f 6 ( l + q ) k ' l I R h ( x ) I f o r each h = 1 , 2 , ... Rh

We s h a l l d i s r e g a r d t h e n u l l s e t o f

and a l s o t h e n u l l s e t where f may be i n f i n i t e . We a p p l y t h e P o s s e l ' s

theorem t o

{Rh(x)} and w i t h an ck + 0 t h a t w i l l be c o n v e n i e n t l y chosen l a t e r . We

Ak where the p reced ing i s n o t v a l i d

Ak w i t h t h e V i t a l i cove r ing o b t a i n e d by means o f t h e s e t s

thus o b t a i n a sequence

such t h a t , i f we denote

k (i) IAk - s

e x t r a c t e d f rom (Rh(x))xaA , h = 1,2 ,... , k

xsk f xk and Sk = S j , we have

'j'j>l k

J j J

= o

Observe t h a t we can a l s o w r i t e

So c o n d i t i o n (iii) can be w r i t e n

Page 157: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

142 6. COVERINGSy HARDY-LITTLEWOOD AND DIFFERENTIATION

where yk > 0 can be choosen i n advanced a r b i t r a r i l y sma l l .

can be chosen as t h e f a m i l y we a r e k We now t h a t ' CSjl k y j

l o o k i n g f o r i n o rde r t o prove p r o p e r t y (E). Observe t h a t

and so we have ( a ) . A lso we have

and so we have ( b ) i f we choose E~ so t h a t 1 ck < E .

For each k we can w r i t e

so we can s e t

i f o n l y yk c y f o r each k. Hence

There fo re , b y choosing q y y and E~ c o n v e n i e n t l y we o b t a i n (a ) , (b )

and ( c ) o f p r o p e r t y (E ) . T h i s concludes t h e f i r s t p a r t o f t h e theorem.

Page 158: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.5. DIFFERENTIATION IMPLIES COVERING PROPERTIES 143

Assume now t h a t ( E ) ho lds . L e t us t r y t o show t h a t %?I d i f -

f e r e n t i a t e s . We can assume t h a t f has compact suppor t w i t h o u t loss o f g e n e r a l i t y . For each r > s > 0 we c o n s i d e r t h e s e t

if

The s e t A i s bounded and f o r each x 6 A t h e r e e x i s t s a sequence

C R k ( x ) } c @ ( x ) , Rk(x ) -f x such t h a t

We app ly ( E ) and e x t r a c t from (Rk (X) )xeA , k=l,2,... a se-

quence C T k I s a t i s f y i n g (a ) , ( b ) , ( c ) . We can w r i t e , c a l l i n g

T = 0 Tk 3

k

(For t h e second i n e q u a l i t y we have used

Given n > O we.can choose E > 0 f o r t h e a p p l i c a t i o n o f (E)

such t h a t

i . e . ( r - 5 ) l A / c i) . Hence \ A / = 0. So we have proved t h a t t h e s e t

where Is( f , x ) i s n o t f ( x ) i s o f n u l l measure. I n t h e same way one

proves t h a t O( f , x ) = f ( x ) a lmos t everywhere . T h i s concludes t h e

p roo f o f t h e theorem. I I

Page 159: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

144 6 . COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

The f o l l o w i n g theorem c h a r a c t e r i z e s those d i f f e r e n t i a t i o n

bases t h a t d i f f e r e n t i a t e Lp , 1 < p < m.

( P ) Given E > O aRd g i v e n a V i a k L L c v u a 2 0 6 a memuhub& 9

he,t A, 0 < / A 1 < w, t h e m d a nequence {Rk Ika lc 2 huch LhaX

( a ) ] A - u R k I = 0

P m v d . Assume t h a t 63 d i f f e r e n t i a t e s L q . We t r y t o prove

(P,). F i r s t o f a l l we prune 2 G > A and I G - A1 c E and keeping o n l y those s e t s i n ? con ta ined

i n G . We keep c a l l i n g *‘t t h e rema in ing cover o f A. We now observe

t h e f o l l o w i n g : I f { R k ) i s any sequence ( f i n i t e o r i n f i n i t e ) of

elements o f 7 such t h a t f o r 0 < ci < 1 we have

by t a k i n g an open s e t G such t h a t

The reason f o r (1) i s t h a t @ i s a d e n s i t y b a s i s

c a ( 1 - a ) ( W 1 .

and f o r ( 2 ) t h a t

Page 160: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6 . 5 . DIFFERENTIATION IMPLIES COVERING PROPERTIES 145

fl d i f f e r e n t i a t e s L p and the function in brackets i s in L p and i s 0 on A - O R k .

Therefore we can wr i te

( i i ) ' (I-a) (1

= I A

r

G [ I W ( ) ( A -

This suggests how we can proceed i n the se l ec t ion of CRkI . We f i x a, 0 < a < 1, such t h a t alGl < E , and choose f i r s t R I E ? such t h a t I R 1 I 2 3/4 sup { [ V l : V st}. I f I A - R I I = 0 we a r e f in i shed . Otherwise IR1) s a t i s f i e s ( i ) , ( i i ) and ( i i i ) . Call w1 the co l lec t ion of a l l s e t s W 8 2 sa t i s fy ing (1) and ( 2 ) corresponding to t h i s sequence C R 1 1 as above. Choose R2s w1 such t h a t

{ I W l : W E w1 I . If IA - f~ R k [ = 0 we a r e f in i shed . Otherwise ER1, R z } s a t i s f i e s ( i ) , ( i i ) , and ( i i i ) , Call w2 the collec- t ion of a l l s e t s W E '% as above corresponding t o t h i s sequence. Choose R3a w z such t h a t I R 3 1 2 3/4 sup I W I : W E w2}. And so on. In t h i s way we obatin {RkI . [ A - O R k l = 0 . I f i t i s i n f i n i t e and / A - u R k [ > 0 then there e x i s t s W E 2 sa t i s fy ing (1) and ( 2 ) . B u t c l ea r ly , since (1 - a) 1 I R k ] s ] G I , we have l R k l -f 0 . There i s a f i r s t R k such

I R z 1 2 3/4 sup 1

If i t i s f i n i t e , then i t i s so because

Page 161: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

146 6. COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

t h a t l R k l G 3/4 IWI and t h i s c o n t r a d i c t s t h e cho ice o f R k . There fo re

[ A - i iRkl = 0 and C R k I s a t i s f i e s (a) , (b ) and ( c ) .

Assume now t h a t @ s a t i s f i e s (P,) . L e t f E Lp and f o r

ol 7 0 and M > 0 l e t

For an a r b i t r a r y ri > 0 l e t us choose g E @ such t h a t i f h = f - g

we have llhll 6 rl. We can w r i t e

sa M = t x E R ~ : 1x1 < M, l i m sup 1 6 \ h (y )dy - h ( x ) I > c11 xERk“(x) 5 S(Rk) + o

and a l s o

I n o r d e r t o e s t i m a t e S!” we use (P,) w i t h an E > 0. Fo r

each

such t h a t

x E S!” t h e r e i s a sequence { R k ( x ) ) c U 3 ( x ) c o n t r a c t i n g t o x

We can assume t h a t S ( R k ( x ) ) 4 1. We app ly p r o p e r t y (P,) t o t h i s

s i t u a t i o n o b t a i n i n g { S , } C ( R k ( x ) )

such t h a t

xeS:”, k = l ,2 ¶ . . .

Page 162: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

t h a t

6.5. DIFFERENTIATION IMPLIES C O V E R I N G PROPERTIES 147

- -

Using H o l d e r ' s i nequa l ty, p r o p e r t y

, we o b t a i n

sk

c ) o f (P,) and t h e f a c t

I n 1

M Since I ( h / ( c rl and 0 i s a r b i t r a r i l y sma l l , we see t h a t l S a l = 0

f o r each ci and M. T h i s proves t h a t d i f f e r e n t i a t e s L p . P

As we have a l r e a d y shown i n Theorem 6.2.4. a d i f f e r e n t i a t i o n

b a s i s can d i f f e r e n t i a t e L ' w i t h o u t hav ing t h e V i t a l i p r o p e r t y . However,

as MoriyBn [1975] has proved , i f t h e b a s i s @ i s a B - F b a s i s

i n v a r i a n t by homothecies, t hen t h i s i s n o t p o s s i b l e . I f t h e b a s i s 8 i s a d e n s i t y b a s i s then (B has t h e V i t a l i p r o p e r t y .

6.5.4. THEOREM. L& '@ b~ a B - F ba&ih t h a t A i n v d a n t

by hvmcdhwien. Then 3 o!il;l;e~enLia.t~ L ' il; and a d l j id h a t h e

v u pfi3hOpuLty.

P m a d . We need o n l y t o prove t h a t i f fB d i f f e r e n t i a t e s L '

We s t a r t by c o n s i d e r i n g t h e s e t

t hen i t has t h e V i t a l i p r o p e r t y .

and we prove t h a t I K I < co .

We know, acco rd ing t o Theorem 6.4.3, t h a t t h e maximal o p e r a t o r

r e l a t e d t o i s o f weak t y p e (1 , l ) . L e t Bk = B(O, l /k) ( b a l l c e n t e r - ed a t 0 and r a d i u s l / k ) and

Page 163: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

148 6 . COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

Kk = II CR 6 @ ( 0 ) : I R I 6 1 , R 3 B k I

C l e a r l y K k c K k + l and K = I", Kk . On t h e o t h e r hand

Next we show t h a t I K / < a, i m p l i e s t h a t K i s bounded. Sup-

pose t h a t K i s unbounded. We can then choose, by t h e i n v a r i a n c e by

homothecies , C R k l c @ ( O ) , R k C S K , I R k ( = 1, 6(Rk) + m ,so

t h a t each R k has some p o i n t xk e Rk w i t h j x k / 2 8 6 ( 0 R j ) . k - l

1

We now choose a

S1 1 R 1 . I f

then S 2 = - X Z

The s e t s Lk =

sequence o f s e t s C S k l i n t h e f o l l o w i n g way. Take

1 1 I R 2 (7 S 1 l & then S 2 = R2 . If I R 2 17 S 1 I > 7

R Z . If

1 > then

K (by t h e

> 7 (by 1

k - 1 sk - IJ

1

2 1 R 3 17 ( y S j ) / 6 7 t hen

nva r iance by homothecies) and

n t e g r a t i o n a long l i n e s p a r a l l e l t o oxk).

S j a r e d i s j o i n t . T h e r e f o r e I K I = .

S 3 = R 3 . If

S 3 = - x3+ R 3 . And so on. I t i s easy t o

Hence, i f 8 d i f f e r e n t i a t e s L ' , then K i s bounded and

so we can enc lose K i n a c losed c u b i c i n t e r v a l Q cen te red a t 0.

L e t / Q / = aIK1 . For each B E @ (0) w i t h IBI = 1 we see t h a t

B C Q and 141 = (aIKI) I B I . I t i s then c l e a r , by t h e i n v a r i a n c e

by homothecies, t h a t f o r each

Val Q cen te red a t x such t h a t 101 = alKl I B I . The b a s i s @ i s s a i d

t o be heglLeah w i t h r e s p e c t t o t h e b a s i s c f cub ic i n t e r v a l s cen te red a t

t h e corresponding p o i n t s .

r e g u l a r i t y i m p l i e s t h e V i t a l i p r o p e r t y f o r 8

B e @ ( x ) t h e r e i s a c losed c u b i c i n t e r

I t i s an easy e x e r c i s e t o show t h a t t h i s

.

Page 164: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.6. THE HALO PROBLEM

6.6. THE HALO PROBLEM.

149

L e t % be a B - F b a s i s i n Rn t h a t i s i n v a r i a n t by homo-

t h e c i e s and s a t i s f i e s t h e d e n s i t y p r o p e r t y .

6 .4 .3 . the re e x i s t s a f u n c t i o n +* : (1P) -f [ O P ) such t h a t each bound

ed and measurable s e t A and f o r each u e ( 1 , ~ ) , one has

Accord ing t o t h e theorem

T h i s suggests we def ine, f o r any B - F b a s i s % , even i f i t

i s n o t i n v a r i a n t by homothecies and does n o t have t h e d e n s i t y p roper t y ,

t h e f o l l o w i n g f u n c t i o n + t h a t will be c a l l e d t h e halo 6uncxXun 0 6 a . For each u E (1,m) we s e t

We now can say t h a t , if 6 i s i n v a r i a n t by homothecies then

B i s a d e n s i t y b a s i s i f and o n l y i f $ i s f i n i t e a t each u c: ( 1 , ~ ) .

If % i s a d e n s i t y b a s i s , then , f o r each u > 1 we have 1 l{MxA > > ] A 1 f o r each A measurable w i t h I A l > 0 and t h e r e f o r e ,

$ ( u ) > 1. We can extend $ t o [O,m) by s e t t i n g

$ ( u ) = u f o r u E [0,1]

We have a l r e a d y seen bases whose h a l o f u n c t i o n s behave r a t h e r

d i f f e r e n t l y . I n ’ f a c t , t h e h a l o f u n c t i o n $ l (u) o f t h e b a s i s 3 1 of cub ic i n t e r v a l s i n Rn behaves l i k e u, i . e . t h e r e e x i s t two cons tan ts

c 1 and c z independent o f u such t h a t

The h a l o f u n c t i o n $ 2 ( u ) o f t h e b a s i s 74 o f i n t e r v a l s i n Rn behaves

l i k e u ( l + log’u)”’. I n f a c t , we s h a l l see i n Chapter 7,

$2 (u ) c c u ( l + log+

Page 165: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

150 6 . COVERINGSy HARDY-LITTLEWOOD AND DIFFERENTIATION

The other inequal i ty r e s u l t s very e a s i l y by considering Mx4 where Q i s the unit cubic in t e rva l . One e a s i l y f inds

The halo function 4 1 ~ o f

f i n i t e a t each u > 1, as we sha

x c* u ( l f log+ U ) n - l

the bas is 53 1 see in ChaDter 8.

of a l l rectangles i s i l l

On the other hand 3, d i f f e r e n t i a t e s L 1 ¶a2 d i f f e r e n t i a t e s L ( l t log' L)"' ( R n ) i s t i c functions of measurable s e t s .

and 8 does not d i f f e r e n t i a t e s a l l the character-

I t seems c l ea r t ha t the order of growth of $ a t infin.i ty can give important information about the d i f f e r e n t i a t i o n proper t ies of 8 . So a r i s e s the following question : Knowing the halo function @ of 33 invar ian t by homothecies i n order t o ensure tha t conjecture, looking a t the p ic ture described above, seems t o be t h a t i f 8 i s invar ian t by homothecies and q~ i s i t s halo function, then 13

d i f f e ren t i a t e s $ ( L ) . We sha l l ca l l this the "halo conjecture".Perhaps Gl;63 2 y % have a very pa r t i cu la r geometric s t r u c t u r e in order t o jus t i f y the conjecture. open.

f ind out a minimal condition on f e L l o c ( R n ) d i f f e r e n t i a t e s I f . More prec ise ly , t he natural

The problem suggested by the halo function i s s t i l l

I t will be useful t o look a t the problem from another point of view. We know t h a t the maximal operator M of 9 i s of r e s t r i c t e d weak type $ in the following sense: For each u E ( 1 , ~ ) and each A bounded measurable, with ( A 1 > 0 , one has

@ ( u ) A . We want to.prove tha t M s a t i s f i e s a l so a non-restricted weak type

@ inequal i ty , i . e . f o r each f 6 L l o c and f o r each A, > 0 one has

being the best possible constant s a t i s fy ing t h i s f o r a l l such s e t s

Page 166: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.6. THE HALO PROBLEM 151

In what follows we sha l l present some r e s u l t s r e l a t ed t o t he halo problem. F i r s t we deduce some easy proper t ies of t he halo function. In ( B ) we present a r e s u l t of Hayes 119661 , t h a t i s r a the r general and in ( C ) another one due t o Guzmdn [1975] t h a t gives a b e t t e r r e s u l t f o r some cases. Finally we sha l l o f f e r some remarks t h a t might be useful in order t o a t tack the problem.

We consider a B - F basis t h a t i s homothecy invar ian t and s a t i s f i e s the dens i ty property. From the de f in i t i on

u , i f u E [0,1']

: A bounded, measurable, ] A / > 0) M u ) =

we see t h a t 8 i s non decreasing.

When @I i s a basis of convex o r star-shaped s e t s , one e a s i l y sees t h a t @ ( u ) > u . In f a c t , l e t u E ( 1 , ~ ) . We take any s e t B

Let B* be a s e t homothetic t o B such t h a t B * 3 B and

1 Then CMXB > ; 1 3 B* and therefore

Since E > 0 i s a r b i t r a r y $ ( u ) 2 u .

The following property i s more in t e re s t ing from the point o f

view of the d i f f e ren t i a t ion theory.

6.6.1. THEOREM. L e R '@ be a B - F ba&h t h a t .LA inulVLiAnt by hornathec ia and oati06iecl t h e d e r k t q pkvpt%tq. 1eA o:[O,m) +[O,m) be a nvndecfieixbing ~uncLLvn ouch t h a t .-$# + d o t u + m, $

Page 167: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

152 6. COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

being t h e halo duncfion 0 6 6 3 . Then @ doen n o t diddehentLaLte u ( L ) .

P m u d . Accord ing t o 6.4.10 , if 4 d i f f e r e n t i a t e s u(L) , then we have, f o r each f B L and each X > 0

w i t h c independent o f f and X.

+ ( u o )

> c. L e t us choose uo such t h a t

Then t h e r e e x i s t s a s e t A, measurable and bounded, w i t h IAl> 0,

such t h a t

1 uo . and t h i s c o n t r a d i c t s t h e p reced ing i n e q u a l i t y t a k i n g

Therefore "4 cannot d i f f e r e n t i a t e u ( L ) .

f = xA, h = -

B. A henub! 0 6 ha ye^.

The f o l l o w i n g theorem c o n s t i t u t e a good approx ima t ion t o t h e

It i s e s s e n t i a l l y due t o Hayes [1966] i n a c o n t e x t a h a l o c o n j e c t u r e .

l i t t l e more genera l and a b s t r a c t than t h e one we s e t here.

6.6.2. THEOREM. L e t @ be a B - F b a h [ n o t n.eccennahiey -__ i n v a h i a n t by homoZhecied). Let 4 be t h e h a l o dunct ion oh 'p3 , A A A W I ~ ,that + h &buXe on [O,m) (hememba ,that @ ( u ) = u 5o.k u B [0,1]). LeA u : [O,W) + [O,-) be a nun d e m e a i n g dunct ion nuch t h a t a(0) = 0 ,

and doh Aome a > 1 , we have

Then, doh each d u n c ~ o n f E L and doh each A > 0 , we have

Page 168: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.6. THE HALO PROBLEM 153

Phuod. Assume f i r s t t h a t f 2 0 . For X > 0 l e t us d e f i n e

Then we have

We s h a l l now prove t h a t , i f g i s a f u n c t i o n such t h a t i t s

values a r e e i t h e r 0 o r b i g g e r t h a t 1, then we have

I f f i s n o t n e c e s s a r i l y non-negative, t hen we can s e t

I n o r d e r t o prove (*), l e t c1 > 1 be such t h a t

and l e t us c a l l , f o r k = 1,2,...,

Page 169: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

154 6. COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

We can w r i t e

a,

f o r each k = l , Z , . . . , 1 s ince, i f x i s such t h a t MXk(X) < ~

then, f o r each B E @ ( x ) , we have

a ( a k - l )

Therefore

and a p p l y i n g t h e f a c t f o r each k we have, f o r A > 0,

we o b t a i n

Th is concludes t h e p r o o f o f t h e theorem.

From t h e theorem we have proved we e a s i l y g e t some i n t e r e s t i n g

d i f f e r e n t i a b i l i t y r e s u l t s . L e t f o r example be + ( u ) 6 cu . We can

t a k e a(u) = u ( l t log' u)'+€ and we o b t a i n

T h i s r e s u l t , by r o u t i n e methods, shows t h a t t h e co r respond ing b a s i s

d i f f e r e n t i a t e s L ( l + l o g * 1 ) I t E .

L e t now $(u) s c u ( l t l o g t u ) . With t h e same u as b e f o r e

Page 170: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.6 . THE HALO PROBLEM 155

we get

and so a d i f f e r e n t i a t e s L ( l + log’ L)’+€

As one can see, Theorem 6.6.2. does not give in these cases the bes t possible r e s u l t . For 8 1 in R 2 we have $ ( u ) c cu and

d i f f e r e n t i a t e s L . For 8 , i n R 2 , + ( u ) c cu (1 + log’ u ) and 8 2 d i f f e r e n t i a t e s L ( l + log’ L ) .

In the next paragraph we sha l l use another method t h a t , f o r cases indicated above, gives a f i n e r r e s u l t .

C . An appficatian 0 6 t h e e x h a p o l a t i o n mdhod 0 6 Yano.

A straightforward appl ica t ion o f t he ex t rapola t ion method of Yano presented in 3.5.1. gives us the following r e s u l t . MoriyBn “781

has re f ined i t i n order t o deal with the ex t rapola t ion t o pa > 1 , u s i n g his theorem presented i n 3.5.2.

6 .6 .3 . THEOREM. LeR 63 be a B - F d i ~ ~ ~ e v L t i a t i 0 n b a A

i n R n and f ~ 2 + be .iA h d a 6uncaXon. Annume t h a t , 6011. name 6ixed

s > 0 and ha& each p , u X h 1 < p < 2 , we. have

D. Some. /rematrhn on t h e h d o pkoblm.

The following remarks a r e perhaps of i n t e r e s t f o r the so lu t ion of the halo problem, s ince they suggest some possible ways o f handling i t .

6 .6 .4 . THEOREM. ( a ) 16 Ahehe e x h d a denbag B - F b a O

t h a t A hamothecy invahiant and buch t h a t 6011. ~32 h d o ~uncLLon 0 we have

Page 171: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

156 6. COVERINGS, HARDY-LITTLEWOOD AND DIFFERENTIATION

t h e n t h e h u b conjeotwre A @.!-be.

Pfioud. (a ) I f t h e h a l o c o n j e c t u r e were t r u e , @ would d i f - L

2 f .

f e r e n t i a t e $ ( L ) and t h e r e f o r e a l s o a ( L ) = c + ( ~ ) , s i n c e $3 d i f f e r -

e n t i a t e s If i f and o n l y i f 70 d i f f e r e n t i a t e s f But we have

f o r u -f m . Therefore, by what we have seen i n A , @ does n o t d i f f e r -

e n t i a t e o ( L ) . T h i s c o n t r a d i c t i o n proves (a ) .

( b ) Accord ing t o (a ) , i f t h e h a l o c o n j e c t u r e i s t r u e , t hen

f o r '8 one has

where c i s a cons tan t independent o f u. There fo re , s i n c e @ ( u ) i s non decreasing, we have, i f k i s an i n t e g e r b i g g e r than 1,

k Hence, if c = 2p , we g e t @ ( Z ) < Zpk , and so, i f Zk- ' c u < Z k , we

o b t a i n

Accord ing t o Theorem 6.6.2., a p p l i e d w i t h

t h a t 8 d i f f e r e n t i a t e s a t l e a s t LP+' f o r each > 0.

~ ( u ) = u logl+"(l+u) we g e t

Page 172: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

6.6. THE HALO PROBLEM '1 57

Therefore, i n o r d e r t o d i sp rove t h e h a l o c o n j e c t u r e , i t would

be s u f f i c i e n t t o e x h i b i t a d e n s i t y B - F b a s i s , t h a t i s i n v a r i a n t by

homothecies and does n o t d i f f e r e n t i a t e any Lp w i t h p i m . One can

c o n s t r u c t a d e n s i t y b a s i s t h a t does n o t d i f f e r e n t i a t e any

p < m , b u t t h i s b a s i s i s n o t o f t h e t ype r e q u i r e d here. Fo r t h i s c o n s t r u g

t i o n o f Hayes

L p w i t h

[1952, 19583 one can a l s o see Guzmhn [1975].

For a counterexample t o t h e h a l o c o n j e c t u r e one c o u l d t r y t o

c o n s t r u c t a B - F b a s i s i n v a r i a n t by homothecies and such t h a t i t s h a l o

f u n c t i o n behaves a t i n f i n i t y l i k e eu .

Tha t t h e h a l o c o n j e c t u r e i s t r u e i n case $ ( u ) - u a t i n f i n i t y

i s an easy consequence o f t h e r e s u l t o f MoriyBn [1978] p resen ted i n 6.5.4.

Page 173: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 174: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 7

THE BASIS OF INTERVALS

I n t h i s Chapter we s h a l l ana lyze some i n t e r e s t i n g c o v e r i n g and

d i f f e r e n t i a t i o n p r o p e r t i e s o f t h e b a s i s o f i n t e r v a l s i n Rn . For each

x 6 Rn we cons ide r as @ ( x ) t h e f a m i l y o f a l l open bounded i n t e r v a l s

c o n t a i n i n g x, and B = \I ,@(x). T h i s b a s i s w i l l be denoted as 8, x a R

and i t s maximal o p e r a t o r w i l l be c a l l e d M P . H i s t o r i c a l l y i t was t h i s b a s i s t h e one w i t h which s t a r t e d t h e

expansion of t h e modern t h e o r y o f d i f f e r e n t i a t i o n l o n g a f t e r t h e Lebes-

gue d i f f e r e n t i a t i o n theorem.

has t h e d e n s i t y p r o p e r t y ( s t r o n g d e n s i t y theorem), a l l t h e e f f o r t s t o

extend t h e c o v e r i n g and d i f f e r e n t i a t i o n p r o p e r t i e s o f t h e b a s i s o f c u b i c

i n t e r v a l s ( V i t a l i p r o p e r t y and Lebesgue d i f f e r e n t i a t i o n p r o p e r t y ) t o

s i g n i f i c a n t l y d i f f e r e n t systems o f s e t s were f r u i t l e s s . I n 1924 Banach

proved t h a t 8, does n o t have t h e V i t a l i p r o p e r t y , a r e s u l t a l s o o b t a i n e d

by H.Bohr about t h a t t ime, as appears i n an appendix o f t h e work o f

Carath6odory [1927] . I n 1927 N i kodym ob ta ined ano the r i n t e r e s t i n g resu l t ,

r a t h e r d i s c o u r a g i n g f rom t h e p o i n t o f view o f d i f f e r e n t i a t i o n , f r o m wh ich

Zygmund deduced t h a t t h e b a s i s o f a l l r e c t a n g l e s i n R2 t h e d e n s i t y p r o p e r t y . T h i s r e s u l t o f Nikodym w i l l be p resen ted i n t h e n e x t

Chapter.

U n t i l 1933 , when Banach proved t h a t B ,

does n o t have

A f t e r t h e s t r o n g d e n s i t y theorem o f Saks p 9 3 q t h e p o s i t i v e

r e s u l t s s t a r t e d p i l i n g up w i t h t h e work o f Zygmund [1934] , Busemann and

F e l l e r [1934] , Jessen, Marc ink iew icz and Zygmund [1935], de Posse1 [1936]

y . . .

I n o u r e x p o s i t i o n we s h a l l f o l l o w a more o r l e s s c h r o n o l o g i c a l

o rde r , s t a r t i n g w i t h t h e e a r l y n e g a t i v e r e s u l t s and end ing w i t h t h e more

r e c e n t and i n t e r e s t i n g r e s u l t s o r i g i n a t i n g m a i n l y i n some problems pro-

159

Page 175: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

160 7. THE B A S I S OF INTERVALS

posed by Zygmund and so l ved o n l y r e c e n t l y by Marst rand, MoriyBn, CoFdoba, ...

7.1. THE INTERVAL BASIS B 2 DOES NOT HAVE THE VITAL1 PROPERTY. I T DOES NOT DIFFERENTIATE L ' .

Accord ing t o Theorem 6.5.4. o f M o r i y h , f o r a B - F b a s i s

t h a t i s i n v a r i a n t by homothecies, d i f f e r e n t i a t i o n o f L' is e q u i v a l e n t

t o the V i t a l i p r o p e r t y and e q u i v a l e n t a l s o t o t h e r e g u l a r i t y o f t h e b a s i s

w i t h respec t t o t h e b a s i s o f c u b i c i n t e r v a l s . Obv ious l y

s a t i s f y t h e l a t t e r p r o p e r t y .

B2 does n o t

Even i f we c o n s i d e r the minimal B - F

{Ik)

b a s i s i n v a r i a n t by

o f open bounded i n t e r - homothecies t h a t con ta ins a g iven sequence

v a l s we can a f f i r m t h e same i f t h e e c c e n t r i c i t y o f

o f t h e l onger s i d e and t h e s m a l l e r one) tends t o i n f i n i t e . I k ( i . e . t h e r a t i o

7.2. DIFFERENTIATION PROPERTIES OF $2. WEAK TYPE INEQUALITY FOR A BASIS WHICH I S THE CARTESIAN PRODUCT OF ANOTHER TWO.

Though B2 does n o t d i f f e r e n t i a t e L ' m " ) , i t i s a d e n s i t y

bas i s , as Saks [1935] has proved. Moreover i t d i f f e r e n t i a t e s

L ( l t log' L)"' (Fin) , as t h e theorem o f Jessen-Marcinkiewicz-Zygmund

[1935] a f f i r m s . We s h a l l o b t a i n t h i s theorem by c o n s i d e r i n g t h e b a s i s

B2 as t h e i t e r a t e d C a r t e s i a n p r o d u c t o f t h e i n t e r v a l b a s i s o f R' . T h i s

method o f p r o o f belongs t o Guzma'n [1974] . A p rev ious r e s u l t i n t h i s d l

r e c t i o n was ob ta ined by B u r k i l l [1951] .

Page 176: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.2. DIFFERENTIATION PROPERTIES 16 1

7 . 2 . 1 . THEOREM. Let M 2 be ,the muximde opehcLtoh a6ocicLted Rv

t h e i v t t e h v d b a b dB2 in R 2 . Then, doh each f e Lloc (R’) and each

A > 0 we have

whehe c ~2 a ~ O A L C ~ V ~ condtant, independent v d f and A , and l o g a = 0 id 0 6 a c 1 and l o g a = l o g a -id a > 1.

+ +

P4vv 6. t h e easy, b u t t e d

We p resen t here a proof o f t h e theorem d i s r e g a r d i n g

ous , measurabi 1 i t y problems t h a t a r i s e i n i t .

I n t h e p r o o f we s h a l l i n d i c a t e by / P I 1 and 1Q/ t h e Lebesgue

measure o f t h e measurable s e t P t R1 and Q C R 2 r e s p e c t i v e l y . For t h e

sake o f c l a r i t y we s h a l l denote by Greek l e t t e r s

t h e dummy v a r i a b l e coo rd ina tes which appear i n t h e i n t e g r a l s and d e f i n i -

t i o n s .

(El,<’) , (n1 , r12) , . . .

L e t f > 0 , f 6 Lloc(R2) . Fo r (xl, x 2 ) e R2 we de f ine

1 f(E,1,x2)dE,1 : J i n t e r v a l o f R1,x’e J} K J Tl f (x1,x2) = sup{

f o r A > 0 we cons ide r t h e s e t

and a g a i n we d e f i n e , fo r (x1,x2) Q R 2

T 2 f ( x 1 , x 2 ) = sup{ xA(x1,n2) Tlf(xi,n2)dn2: H i n t e r v a l o f R’,x26HI

We s h a l l f i r s t prove t h e

B = { (5’ , C 2 ) 6 R 2 : M z f ( E 1 , E ’ ) > A

re1 a t i o n

Page 177: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

16 2 7. THE B A S I S OF INTERVALS

Take a f i x e d p o i n t (x1,x2) o f B. We w i s h t o p rove t h a t

(x1,x2) a C . Since (x1,x2) a B , t h e r e i s an i n t e r v a l I = J x H of

R2 such t h a t x1a J , x2e H and

We now p a r t i t i o n t h e i n t e r v a l I i n t o two s e t s C1, C z , each one b e i n g

a un ion o f segments o f t h e s i z e of J p a r a l l e l t o t h e a x i s Ox’ i n t h e

f o l l o w i n g way. L e t J x {yz} be one o f such segments. I f f o r each p o i n t

(z ’ ,yz) E J x {y2} we have Tlf (z’,y2) > 2 we s e t J x { y 2 } c C1.

Otherwise, i . e . i f t h e r e i s some p o i n t

T l f (z’,y2) c we s e t J x { y 2 } c C 2 . Observe t h a t J x {y2}CCz

i m p l i e s i n p a r t i c u l a r t h a t

A

(z1,y2) E J x {yz} such t h a t

x

and so, i n t e g r a t i n g t h i s i n e q u a l i t y ove r t h e s e t G o f a l l 4’ i n H such t h a t J x {c21 c C Z , we g e t

Since

We can a l s o w r i t e , by v i r t u e o f t h e d e f i n i t i o n o f T2 and o f T, ,

Page 178: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.2. DIFFERENTIATION PROPERTIES 163

By t h e d e f i n i t i o n o f C 1 and A, i f (q1,r12) E C1 t hen (xl,rlz) E A

and so t h e l a s t member o f t h e above c h a i n of i n e q u a l i t i e s i s

T h i s concludes t h e p r o o f t h a t B C C. We now prove t h a t C s a t i s f i e s

t h e i n e q u a l i t y we a r e l o o k i n g f o r .

t We can assume f E L ( l t l o g L ) , s i n c e o t h e r w i s e t h e r e i s

n o t h i n g t o prove. I n t h e f o l l o w i n g argument c w i l l be an a b s o l u t e

c o n s t a n t n o t always t h e same i n each ocurrence, independent i n p a r t i c y

l a r o f f and A . By v i r t u e o f t h e weak t ype (1 , l ) f o r t h e un id imens iona l b a s i s

9 1 o f i n t e r v a l s , f o r a lmos t each f i x e d x’e R we can w r i t e

Hence, i f we i n t e g r a t e over a l l such X’E R and in te rchange t h e o r d e r o f

i n t e g r a t i o n , we g e t

x I f ( t1 ,c2) 6 A , then Tlf(<1,<2) > 7 , and so i f 0 < u & 1,

we have

Page 179: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

164 7 . THE BASIS OF NTERVALS

R’ , we get

I n order t o estimate Sz we define f o r a fixed 0 > 0

and f*(t1,t2: 5 ) such t h a t

For brevity l e t us wr i te f = f z + f: . I t i s c l ea r t h a t

A 5 and T l f z 6 Hence,

Page 180: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.3. SAKS RARITY THEOREM 165

Adding up we get

and this implies the inequality of the theorem.

For some generalizations of this type of results one can see

Guzm6n [1975] .

7.3. THE HALO FUNCTION OF 8 2 . SAKS RARITY THEOREM.

The halo function of B2 can be easily estimated from below from the following geometric observation which will also be useful in the proof of the rarity theorem of Saks [1935] .

A u U a / r y cvnhn;ttruotivn. Let H be an integer bigger that 1

and consider in R 2 the collection of open intervals 1 1 , 1 2 , ..., IH obtained as ind icated in Figure 7.3.1. (where H = 3).

Figure 7.3.1.

Page 181: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

166 7. THE B A S I S OF INTERVALS

Each I j i s an open i n t e r v a l w i t h a v e r t e x a t 0 , a s i d e on t h e pos i -

t i v e p a r t of Ox w i t h l e n g t h j, and ano the r on t h e p o s i t i v e p a r t o f Oy

w i t h l e n g t h - . Hence t h e area o f I i s H, t h a t o f t h e i n t e r s e c t i o n

E= 0 I j i s 1 and t h a t o f t h e un ion

H j j

H

j=1

From t h i s c o n s t r u c t i o n we o b t a i n

1 CM2 XE > %I 3 JH

s i nce . Hence f o r each H

As we have a1 ready seen,

Therefore t h e h a l o f u n c t i o n @ z of & ( R 2 ) s a t i s f i e s

C l U ( 1 + l o g + u) h @2(u) G czu( 1 + l o g + u)

and analogously i n Rn

C lU(1 + l o g + G @ Z ( U ) h c2u(1 + l o g +

Hence, acco rd ing t o t h e c o n s i d e r a t i o n s o f Theorem 6.6.2 we

deduce t h a t ?Bz

L ( l t log' L)"' (R'), i . e . i f I) : [0,m) +.

does n o t d i f f e r e n t i a t e any space worse.than

[O,m) i s such t h a t

Page 182: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.3. SAKS RARITY 167 THEOREM

as U + m

f o r i n s t a n c e +(u) = ' u ( 1 + log t uln- '-€ , then &mn) does n o t d i f

f e r e n t i a t e +(L).

Saks [1935] has proved a s t r o n g e r r e s u l t . F o r "a ln iost a l l "

f u n c t i o n s f o f L 1 , "almost a l l " i n t h e sense o f B a i r e ' s ca tegory , one has [I( I f , x ) = + m a t each x 6 Rn . The p r o o f o f Saks uses a c o n s

t r u c t i o n of H.Bohr . Here we s h a l l make use o f t h e a u x i l i a r y c o n s t r u c t -

i o n o f Sec t i on 1.

7.3.1. THEOREM . The o e t F 06 &~nction.4 f i n L ' ouch

t h a t D ( / f , x ) < 00 at borne po in t x e Rn LA 0 6 t h e &Oi~,t ca;tegohq i n

L' .

Ptrao6. For t h e sake o f c l a r i t y , we s h a l l p r e s e n t t h e p r o o f f o r

n = 2 . We show t h a t F i s t h e un ion of a coun tab le c o l l e c t i o n o f nowhere

dense s e t s i n t h e f o l l o w i n g way. Fo r k = 1,2,3, ... we d e f i n e Fk

as t h e s e t o f f u n c t i o n s f i n L 1 such t h a t f o r some p o i n t x e R 2 , 1 w i t h 1x1 c k , i t happens t h a t f o r a l l I e-od,(x) w i t h 6 ( I ) < T;

r m

we have 11; 1 c k l I ( . We c l e a r l y have F =

t h a t each Fk i s nowhere dense, o r , what i s e q u i v a l e n t t h a t Fk has no

i n t e r i o r p o i n t s .

(I k = l

Fk . We now prove

For each k we have Fk = Fk . I n f a c t , assume t h a t f -f f i n j

j y L1 and f . 6 F k f o r j = 1,2,... Fo r each j t h e r e i s some p o i n t x

w i t h J x . 1 c k, such t h a t i f I e%,(x j ) and & ( I ) < T; , then 1 J J

I f , f j / c k l I / . S ince B(O,k ) i s compact, one can e x t r a c t f r o m ( x . 1

a convergent subsequence. We can assume, changing n o t a t i o n i f necessary,

t h a t x j

i s such t h a t 6 ( I ) < we can w r i t e

J

converges t o a p o i n t x . C l e a r l y , 1x1 < k and i f I e Q 2 ( x ) 1

Page 183: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

168 7 . THE B A S I S OF INTERVALS

Since I i s open, x E I and x . + x , we have I ( x j ) f o r j

as j -f m , and we g e t 1 f l h k l 11 , p r o v i n g t h a t f e Fk. Therefore

pk = F

J s u f f i c i e n t l y l a r g e , and so (1, f j ( G k l I l . Fur thermore ,

i, k '

I n o r d e r t o p rove t h a t Fk we s h a l l use t h e f o l l o w i n g lemma which c o n s t i t u t e s t h e k e r n e l o f t h e p r o o f

o f t h e theorem. The lemma j u s t means t h a t f o r each neighborhood V o f

t h e o r i g i n of L ' and f o r each k = 1,2, ... t h e r e i s a f u n c t i o n $

i n t h a t neighborhood which i s n o t i n

does n o t c o n t a i n any i n t e r i o r p o i n t

k ,V Fk . I t s p roo f i s g i ven l a t e r .

7 . 3 . 2 . LEMMA. Foh each Matwlae numbm N ,thehe a nonnaja-

LLwe 6unCtion +N huch ,that

With t h i s lemma t h e f a c t t h a t F k does n o t have any i n t e r i o r

q z 0 p o i n t s i s e a s i l y obta ined.

t h e r e i s a f u n c t i o n g E L1 - F k such t h a t ( ( g - f ( ( , g q. L e t

h e Lm o L ' be such t h a t (If - h i l l 6

where $N i s t h e f u n c t i o n o f t h e lemma wi th an N t h a t w i l l be chosen

i n a moment. We can w r i t e

L e t f c Fk . We prove t h a t f o r each

q /2 . We d e f i n e g = h + +N

Accord ing t o (b ) o f t h e lemma, f o r each x 6 B(O,N), t h e r e 1 e x i s t s an i n t e r v a l I 6 B z ( x ) , w i t h 6 ( I ) < such t h a t

Page 184: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7 . 3 . SAKS RARITY THEOREM 169

1 We now choose N such t h a t N x k , c , N - I l h l Im > k . Then we have

119 - f / I i c n and

Hence g d Fk as we wanted t o prove.

P m v d v d t h e Lemma 7.3.2. For t h e proof of t h e lemma we s t a r t

o f t h e beg inn ing o f t h i s S e c t i o n w i t h t h e s imp le a u a u h y c v M n ~ u c 2 i v n w i t h an H t h a t w i l l be c o n v e n i e n t l y f i x e d i n a moment. By us ing lemma

6.4.4. we can cover a lmost

d i s j o i n t sequence I S k } o f

i a r y c o n s t r u c t i o n con ta ined

L e t R = B(O,N) - (I S k .

we can t a k e an open s e t G

co

1

comp le te l y t h e b a l l B(O,N) by means o f a

s e t s homothet ic t o t h e s e t J,, o f t h e a u x i l

i n B(0,N) and w i t h d iameter l e s s than 1/N.

We have IRI = 0 and so, f o r each E > 0

c o n t a i n i n g R and such t h a t [GI b E . For

each x E R we t a k e an open c u b i c i n t e r v a l I ( x ) cen te red a t x w i t h

d iameter less than 1/N con ta ined i n G. We a p p l y t o ( I ( X ) ) ~ € ~ t h e

theorem o f B e s i c o v i t c h o b t a i n i n g {Ik} so t h a t

0 b e i n g an abso lu te cons tan t .

L e t us c a l l E k t h e s e t ob ta ined f rom E o f t h e a u x i l i a r y

c o n s t r u c t i o n by t h e same homothecy t h a t c a r r i e s J H i n t o S k . We now

d e f i n e t h e f o l l o w i n g f u n c t i o n s

0 i f x 6 Ek I

Page 185: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

170 7. THE B A S I S OF INTERVALS

Then

and so

1

4N2@ i f E < - ,

Now i f x E B(O,N) i s i n some s k , then i t w i l l be in some o f

the intervals I: , j = 1,2,...y H composing Sk and IJk has diameter

less t h a n 1/N. So we get

+ R . I f we choose H so that 1 2 where a ( H ) = 1 + - + .. .

I f x B Sk then x € I k for some k and by the definit ion Of Pk and ON 7

Page 186: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.4. A THEOREM OF BESICOVITCH 171

@N > l l k l * 'k

Th is concludes t h e p r o o f o f t h e lemma.

7.4. A THEOREM OF BESICOVITCH ON THE POSSIBLE VALUES OF THE UPPER AND LOWER DERIVATIVES WITH RESPECT TO B2.

We cons ide r t h e b a s i s @I 2 i n R2 . L e t f e L ' ( R 2 ) . S ince

8 c 6, and @, d i f f e r e n t i a t e s / f, i t i s easy t o see t h a t w i t h r e s p e c t

t o t h e b a s i s 9 2 we have

a t a lmost eve ry

can happen t h a t t h e s e t s

x e R2 . However, acco rd ing t o t h e p rev ious s e c t i o n s , i t

C X 6 R 2 : f ( x ) < D ( / f , x ) }

{ X e R 2 : - D ( 1 f , x ) < f ( x ) }

have p o s i t i v e measure.

posed t h e f o l l o w i n g ques t i on : Can any 0 4 the. ne&

With r e s p e c t t o t h i s s i t u a t i o n Saks [1934] pro-

C X E R 2 : f ( x ) < iS(1 f , x ) < m}

Cx e R 2 : -a < - D ( 1 f , x ) < f ( x ) }

be 06 puoLt iwe rneaute.? The n e g a t i v e answer i s due t o B e s i c o v i t c h [1935]. Here we p resen t t h e r e s u l t of B e s i c o v i t c h .

show how t h e theorem can be somewhat extended.

I n t h e remark a t t h e end we

Page 187: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

172 7 . THE B A S I S OF INTERVALS

7.4.1. THEOREM . We comida t h e i n t a u a k ? b a d f12 i n R 2 .

LeZ f e L' (R2) be a dixed dunc t i an . Then t h e &a neA

{ X E R' : f ( x ) < II( if,.) < a)

have m u m e z a a .

P m o d . We s h a l l c a r r y o u t t h e p r o o f f o r t h e f i r s t o f t hese se ts .

For t h e o t h e r s e t one can p u t and app ly t h e r e s u l t f o r t h e f i r s t

s e t t o g.

g = -f

I t w i l l be enough t o prove t h a t f o r a , B , y r a t i o n a l such

t h a t 0 < a < B i y , t h e s e t

E(ii,B,y) = { x 6 R2 : f ( x ) -t a < D ( f , x ) < f ( x ) -t p , - y < f ( x ) < y ) f has measure zero.

L e t us assume t h a t t h e r e a r e t h r e e numbers cx , B ,y as above

so t h a t t h e s e t E = E ( a , B , y ) i s o f p o s i t i v e measure.

f = f -t fy where

L e t us s e t

Y

Since ' @ z d i f f e r e n t i a t e s La and f e Lm, we have Y

D ( f ,x) = f ( x ) a lmost everywhere. L e t us c a l l t h e subse t o f E

where D(Jfy,x) = f y ( x ) . We have $ 1 = \El > 0. f Y Y

I t x E we have

and t h e r e f o r e , hav ing i n mind t h e d e f i n i t i o n o f E, i f x e E c E we have

Page 188: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.4 . A THEOREM OF BESICOVITCH 173

< f y ( X ) + fY(X) + B

and -y < f ( x ) < y , i . e . f y ( x ) = 0

- Hence, i f x E E we can w r i t e

a < a ( / f Y , X ) < B

and f y ( x ) = 0 . Thus t h e s e t

has p o s i t i v e measure. We now i n t e n d t o prove t h a t t h i s l eads t o a con t ra -

d i c t i o n and t h i s w i l l conclude t h e p r o o f o f t h e theorem.

A

For each s, w i t h 0 < s < 1 , we de f ine E, as t h e subse t o f

p o i n t s x o f E such t h a t f o r each I S @ ~ ( X ) , w i t h 6 ( I ) < s , one

has

A

A

The s e t i s t h e union o f a l l E s w i t h s 6 Q , s > 0, and so t h e r e must

be some s* > 0 such t h a t Es* i s o f p o s i t i v e e x t e r i o r measure. L e t E* be a subse t o f Es* w i t h f i n i t e p o s i t i v e e x t e r i o r measure . L e t H be an

open s e t such t h a t H 3 E* , I H I 6 ( l + n ) I E * l e w i t h an 17 > 0 t h a t

h

w i l l be c o n v e n i e n t l y chosen l a t e r .

For each x 6 E* one can choose I ( x ) = I C H, I = I ( X ) €@2(X),

w i t h 6 ( I ( x ) ) < s* such t h a t

We s h a l l now app ly the f o l l o w i n g lemma whose p r o o f i s p resen ted a t t h e end.

Page 189: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

174 7 . THE B A S I S OF INTERVALS

7.4.2. LEMMA. 1e.Z I be any

t h u t 604 u c h x E I we have & h a fy

UA M h U m C Ah&

open intmvd and

x ) = 0 o 4 I f q x

fy E L' nuch

I > y . L e i

Then one can chaooe a d i n j a i n t bequence

i n I ouch t h a t each k

{Ik} 0 6 open i n t e h v d contcuned

To each I ( x ) we app ly t h i s lemma, o b t a i n i n g { I k ( x ) } s a t i s -

f y i n g I k ( x ) c I ( x ) C H,

f o r each k .

L e t now be G = I J I ( x ) XEE*

U = U { I k ( x ) : x E E* , k = 1,2, ... 3

1 ?.

and l e t E = G - U . C l e a r l y E i s measurable, s i n c e G and U a r e open.

Furthermore E 3 E*. I n f a c t , f o r each , y E E * C ES, and each i n t e r

Val I E @ 2 ( y ) w i t h 6 ( I ) i s* we have, by t h e d e f i n i t i o n of ES, ,

- h

h

However, f o r each one o f t h e s e t s I k ( x ) composing U we have

6 ( I k ( x ) ) < s* and

I

So y 1 U. T h i s i m p l i e s E*c G - U = E.

Page 190: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

and so

Hence, by

on a/y ,

each I ( x

(1

7.4. A THEOREM OF BESICOVITCH

Now f o r each I(x) w i t h x e E* we have

G c { x e R 2

175

Theorem 6.4.3. we have GI s c ) U \ . Where c depends o n l y - -. Therefore ( E l c c [ U ( . We c l e a r l y have U U E C H s i n c e

i s i n H. So we g e t

1 T h i s i s imposs ib le i f we choose II < c . T h i s c o n t r a d i c t i o n conlcudes

t h e Droo f o f t he theorem.

P m u B vd t h e Lemma. 7.4.2. We t a k e t h e i n t e r v a l I and per form

on i t t h e f o l l o w i n g process P. If d i s t h e s m a l l e r s i d e and ( d l 1 i t s

l e n g t h , D i s t h e b i g g e r s i d e and \ D J 1 i t s l e n g t h , we d i v i d e D i n t o

equal p a r t e s o f l e n g t h between '!!L and

i n g p o i n t s , we draw through them l i n e s p a r a l l e l t o d. We g e t a p a r t i t i o n

o f I i n t o a c e r t a i n number o f p a r t i a l i n t e r v a l s {IT . 1; ,..., 1; 1

such t h a t t h e r a t i o between t h e i r b i g g e r s i d e s and t h e i r s m a l l e r ones is between 2 and 4. I f t h e mean o f fy on each one o f t h e p a r t i a l i n t e r v a l s

i s l e s s than y, then t h e process P on I i s f i n i s h e d . I f t h e r e i s some

p a r t i a l i n t e r v a l It such t h a t t he mean o f f on 1: i s b i g g e r t h a n o r

equal t o y, we t a k e a maximal i n t e r v a l con ta ined i n I and c o n t a i n i n g

13 such t h a t t h e mean o f fy on i t i s e x a c t l y y. I n t h i s way we have

p a r t i t i o n e d I i n t o a f i n i t e d i s j o i n t c o l l e c t i o n Q o f i n t e r v a l s on

which t h e mean o f fy i s y and another f i n i t e d i s j o i n t c o l l e c t i o n %?,* c o n s t i t u t e d by t h e i n i t i a l p a r t i a l i n t e r v a l s o r by those p a r t s o f

them ob ta ined i n t h e process o f c o n s t r u c t i o n o f t h e i n t e r v a l s o f a;! . On t h e i n t e r v a l s o f '5Lf t h e process P on I .

. Once we have t h e d i v i d

J

IJ

t h e mean o f fy i s l e s s than y . T h i s f i n i s h e s

Page 191: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

176 7 . THE BASIS OF INTERVALS

We now keep t h e i n t e r v a l s o f ;R and on each i n t e r v a l of ?R * we pe r fo rm t h e same process P. I n t h i s way we g e t a sequence {Ik) of

d i s j o i n t i n t e r v a l s , w i t h (I I k c I and such t h a t

On t h e o t h e r hand, i f f e I - (J I k , then t h e r e e x i s t s a sequence of i n t e r v a l s H k ( x ) e @ 2 ( x ) c o n t r a c t i n g t o x such t h a t t h e r a t i o

between t h e b i g g e r s i d e an t h e s m a l l e r s i d e i s between 2 and 4 such t h a t

Since F e L , and the sequence IHk(x) I i s r e g u l a r w i t h r e s p e c t t o

squares, we g e t

f o r almost eve ry x B I - I! I k and, t h e r e f o r e , f y ( x ) c y and so

f Y ( x ) c o a t a lmost eve ry x e I - L J I ~ . SO we can w r i t e

p l I J = I, f Y = f y ' I,,, k f Y h I,,, f y S Y I \ J I k I '1- I J Ik k

T h i s concludes t h e p r o o f o f t h e lemma.

For an ex tens ion o f t h e p rev ious theorem one can see Guzmin

e 9 7 5 1 .

Page 192: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.5. A T H E O R E M OF MARSTRAND 177

7.5. A THEOREM OF MARSTRAND AND SOME GENERALIZATIONS.

According to the r a r i t y theorem we have seen in 7.3. there i s a function f e L1(R2) such t h a t 6( f , x ) = + m a t a . e . x with re- spect t o 8 2. Zygmund proposed the following problem (see Guzma'n and We1 land [1971] ) : f e L1(R'). I s i t pos- s i b l e t o choose a p a i r of rectangular d i rec t ions so t h a t t he bas i s of a l l rectangles in those d i rec t ions d i f f e ren t i a t e s f a t a , e . x e R 2 ?

I Suppose we a re given a function

I That the answer i s negative was proved f o r the f i r s t time by

Marstrand 119771, , who found a function f e L1 (R2) such t h a t f o r every o r i en ta t ion o f the axes y we have B ( f , x ) = t m a t a.e. x with respect t o the rectangles in d i rec t ion y. Later on E l Helou [19781 found such an f belonging t o (1 L ( l t log' L)'. More recently Bernard0

L . Me1 ero [I9781 has general i zed the method of Marstrand showing t h a t i t works f o r any t r ans l a t ion invar ian t B - F bas i s and t h a t the s i t u a t i o n i s then s imi la r t o t h a t o f the Saks' r a r i t y theorem. Here we sha l l f i r s t present the r e s u l t o f Marstrand. which Melero obtains from t h i s method.

i O<a<l

Then we ind ica t e the general r e s u l t

7.5.1. JHEUREM. Thehe A a ljunotian f E L' @lz) buch t h a t

I ~.

doh ewmy dine.Otion y we. have 6,( f , x ) = +m n . e . w L t h hapec t t o

t h e heotangben ,in t h a t dihecLLon.

Phoolj. We shal l cons t ruc t f E L ' ( Q ) , Q u n i t square such t h a t o r ( f , x ) = +- a t a . e . statement. Let , f o r 0 < r < 1,

x E Q . From t h i s one eas i ly obtains the above

where B(0 , r ) means the open ball of center 0 and radius r . The s e t H(r) looks l i k e F i g . 7.5.1. shows.

Page 193: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

178 7. THE B A S I S OF INTERVALS

F i g u r e 7.5.1. I t i s n o t d i f f i c u l t t o g e t t h e e s t i m a t e f o r smal l r

H ( r ) 2 cr (1 + l o g r 1 )

Fo r each k we f i x an i n t e g e r Mk > 0 t h a t w i l l be conven-

i e n t l y chosen l a t e r on and we d e f i n e a f u n c t i o n

way. Consider Q ( k , j ) , j = l y 2 , ..., 2 k , t h e ZMk dyad ic subsquares

o f o r d e r Mk o f Q. L e t B ( k , j ) be t h e b a l l c o n c e n t r i c w i t h Q ( k , j ) ,

t angen t t o Q ( k , j ] . rk , 0 < rk < 1, t h a t w i l l a l s o be chosen

l a t e r , we take H(k, j) homothet ic t o H ( r k ) w i t h t h e same homothecy

t h a t sends B (0 , l ) t o B ( k , j ) . L e t C (k , j ) be t h e b a l l homothe t i c

t o B(0yr-k) by t h e same homothecy. (See F i g . 7 . 5 . 2 . , where

fk i n t h e f o l l o w i n g M

Wi th an

Mkl = 2 , Mk2 = 4 ) .

F i g u r e 7.5.2.

Page 194: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.5 . A THEOREM OF MARSTRAND 179

The f u n c t i o n fk w i l l have cons ta t i t v a l u e X k > 0 ( t o be

chosen l a t e r ) on each C ( k , j ) and w i l l be 0 o u t s i d e t h e i r un ion . Fo r

any f i x e d d i r e c t i o n y l e t H(k, j ,y ) be t h e s e t c o n c e n t r i c w i t h H ( k , j )

ob ta ined by r o t a t i n g H ( k , j ) .

I f x e H(k , j , y ) t h e r e i s a r e c t a n g l e I i n d i r e c t i o n y such t h a t

From now on we f i x t h i s d i r e c t i o n .

We have I C ( k ) l = C rt , w i t h c a b s o l u t e cons tan t . A l so

Take now f = sup f k . Then

SO if we want f e L1 i f s u f f i c e s t o s e t 1 akrk < m .

Observe now t h a t i f x belongs t o i n f i n i t e l y many s e t s K(k,y)

and ak -f m we o b t a i n , by t h e r e l a t i o n (*) above, 0 ( Y

So we w i l l t r y t o ar range our cons tan ts so t h a t

l l i m sup K ( k , y ) \ = 1 k - t m

Since

co m

Q - l i m sup K(k,y) = (2 - (1 I J K(k,y) = IJ f) (Q - K(k,y)) k + m 1=1 k h l 1=1 ka1

we need I f) ( Q - K ( k , y ) ) l = 0 f o r each 1. We achieve t h i s by means of k a l

t h e f o l l o w i n g lemma t h a t w i l l be proved l a t e r .

Page 195: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

180 7. THE BASIS OF INTERVALS

LEAiMA. 7.5.2. L e t A,S be -two meawlabEe b&tA i n the. uvLit

bquatle Q und E > O . Covlcriden t h e 2k d y a d i c bubhquaheh Q ( k , j )

j = 1,2,...,2k 06 o t d e h k 0 6 Q . l e t S(k ) be t h e union a d t h e 2k

S ( k , j ) C Q ( k , j ) , whene S ( k , j ) & homotheLLc t o S by ,the hume

homvthecy t h u f CWU Q i n t o Q ( k , j ) . Then id k A budl;icievLtey b i g

With t h i s lemma we lsroceed as . f o l l o w s . Take MI = 2 . App ly

t h e lemma w i t h A = Q - K(1,y) S = Q - H ( r 2 , y ) , where H ( r 2 , y ) i s

H ( r 2 ) i n d i r e c t i o n y . So i f MZ i s b i g enough we g e t

We now a p p l y a g a i n t h e lemma w i t h

and o b t a i n , if M 3 i s b i g enough,

3 3

Observe t h a t t h e second member i s i ndependen t o f y . So, i f we a r e a b l e

t o choose rk so t h a t

we g e t l l i m sup K(k, - { ) I = 1 as d e s i r e d .

I n o r d e r t o a c h i e v e

k +

Page 196: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.5. A THEOREM OF MARSTRAND 181

Pnmd 06 ,the Lemma. We take k b i g enough so t h a t t h e r e i s

G = II Q ( k , j ) , G 3 A I G I X (1 f E ) I A l j BJ

Then

For a b a s i s @3 i n Rn t h a t i s i n v a r i a n t by homothecies we

can d e f i n e f o r 0 < r < 1

Then t h e genera l r e s u l t ob ta ined f o l l o w i n g t h e same p a t t e r n o f p r o o f i s

as f o l l o w s .

-_ THEOREM. 7.5.3. Let Y(1,m) -f (0,m) be an incneaning convex 6unotion nuch t h a t

L.Melero s t u d i e s i n t e r e s t i n g p a r t i c u l a r cases. The r e s u l t o f 1 Y ( u ) = u l o g u(1og l o g u ) - , E l Helou i s ob ta ined f rom t h i s one by s e t t i n g

u > e.

Page 197: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

182 7. THE B A S I S OF INTERVALS

The r a r i t y r e s u l t i s ob ta ined by showing t h a t , f o r eve ry

b,s > 0, t h e s e t o f f u n c t i o n s

each y we have

f E Y ( L ) w i t h t h e p r o p e r t y t h a t f o r

con ta ins a dense open subse t o f Y ( L ) , and t h a t eve ry f i n a c e r t a i n

denumerable i n t e r s e c t i o n o f s e t s o f t h i s t ype i s as bad as t h e theorem

s t a t e s .

7 . 6 . A PROBLEM OF ZYGMUND SOLVED BY MORIY~N.

Consider i n R 2 t h e f o l l o w i n g b a s i s 3. For each x e R 2 , B ( X ) w i l l be t h e c o l l e c t i o n o f a l l open bounded i n t e r v a l s c o n t a i n i n g x and

such t h a t , if d i s t h e l e n g t h o f t h e s m a l l e r s i d e and D i s t h e l e n g t h

o f t h e l a r g e r s i d e one has What a r e t h e d i f f e r e n t i a t i o n

p r o p e r t i e s of t h i s b a s i s B? O f course one knows t h a t $3 d i f f e r e n t i a t e s

L ( l f l o g L ) b u t one c o u l d perhaps expec t something b e t t e r . Tha t i t

i s n o t so has been proved by MoriyGn [1975] .

D2 6 d G 0 6 1.

i.

Phood. Tha t @ d i f f e r e n t i a t e s L ( l f l o g t L i s obvious,

s i n c e J3 i s a subbasis o f 8 2 , t h e b a s i s o f a l l i n t e r v a l s . I n o r d e r

t o prove t h e second p a r t o f t h e theorem we proceed as f o l l o w s .

For each x e ( 0 , l ) , Q, w i l l denote t h e f o l l o w i n g i n t e r v a l

of R 2 : Qx = (0,~~'~) x (0,x ) and cx w i l l be t h e e q u i l a t e r a l hyper-

Page 198: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7 .6 . A PROBLEM OF ZYGMUND 183

bola passing through (x,x2) , as in the following picture

1 I x3/2x

Figure 7 .6 .1 .

Clearly, each rectangle o f 4 with a vertex a t (0,O) and the opposite one on cx contains Q, and has the same measure, i . e . i f

0 6 [x3”,x] , Q,,, = (O,,) x ( 0 , x 3 0 - l ) then / Q X y e / = x 3 . A l s o

S ( Q x , , ) & 2x . Hence, since

we get for each x E ( 0 , l ) and each 0 E [x3/’,x] ,

where M r , for r 0 , means the maximal operator associated t o the se t s of “a3 with diameter less t h a n r . So we have

Page 199: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

184 7 . THE B A S I S OF INTERVALS

I f @ d i f f e r e n t i a t e s O(L), accord ing t o Theorem 6.4.8. t h e r e

e x i s t r > 0 and c > 0 such t h a t f o r each measurable f u n c t i o n f and

f o r each A > O

I C Y E R’ : Mrf(y) > All & c i @(8)ds x (**)

r Hence, if x 6 x Q = min(1,T) , hav ing i n t o account ( * ) and

I f we s e t I ~ x - ~ ” = 1 , then we g e t f o r h >lo = 16 ,

~ ( h ) > k l ( 1 -+ log’ A )

and t h i s o b v i o u s l y i m p l i e s t h e s tatement o f t h e theorem

7.7. CGVERING PROPERTIES OF THE B A S I S OF INTERVALS. CORDOBA AND R. FEFFERMAN.

A THEOREM OF

The maximal o p e r a t o r a s s o c i a t e d t o t h e b a s i s o f i n t e r v a l s i n

R 2 s a t i s f i e s the f o l l o w i n g weak t y p e i n e q u a l i t y

Page 200: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.7 . C O V E R I N G PROPERTIES 185

Accord ing t o Theorem 6.3.1. v a l s i n R 2 s a t i s f i e s a good cove r ing p r o p e r t y :

of C6rdoba and Hayes, t h e system o f i n t e r

Given any c o l l e c t i o n o f i n t e r v a l s (Ia)aeA such t h a t 1 ~ ~ 1 ~ 1

we can choose a f i n i t e sequence 11,) f rom ( Ia)asA s a t i s f y i n g

w i t h c1,c2 independent o f ( Ia)aeA . That i s , t h e s e l e c t e d {Ik} cover

a good p a r t o f LJI, and they have a v e r y sma l l ove r lap .

+ However, observe t h a t t h e i n v e r s e f u n c t i o n o f @ ( u ) = ( l + l o g LI),

u 2 0 behaves a t i n f i n i t y l i k e t h e f u n c t i o n $(u) = eu and n o t l i k e

e

r i g h t c o n j e c t u r e seems t o be o b t a i n e d by s u b s t i t u t i n g ( b ' ) by

,1/2 . So one c o u l d expect a s t i l l b e t t e r c o v e r i n g p r o p e r t y f o r $ 2 . The

and so i t was fo rmu la ted i n Guzmdn [1975,

1B2 i n Rn t h e r i g h t o v e r l a p p i n g i nequa l

i n t e r v a

p r e s e n t

We cons

p.1651 . I n a s i m i l a r way f o r

t y i s

The p r o o f t h a t t h i s was indeed t h e r i g h t c o v e r i n g theorem f o r

s was ob ta ined by Cdrdoba and R.Fefferman [1976] . Here we s h a l l

t h e easy geometr ic p r o o f t h a t they g i v e of t h i s theorem f o r R? der the system o f dyad ic i n t e r v a l s of R 2 , i . e . t h e i n t e r v a l s

o b t a i n e d by t h e C a r t e s i a n p roduc t of dyad ic i n t e r v a l s o f R ' . There i s

no fundamental d i f f e r e n c e i n what t h e c o v e r i n g p r o p e r t y respec ts and

t h i s system i s e a s i e r t o handle. We s h a l l make use o f t h e weak t ype

i n e q u a l i t y f o r t h e maximal o p e r a t o r M w i t h respec t t o t h i s system of i n t e r v a l s .

Page 201: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

186 7. THE B A S I S OF INTERVALS

where A i s any measurable s e t o f R ? By means o f i t we e a s i l y p r o v e

t h e f o l l o w i n g lemma.

7.7.1. LEMMA. L e Y {Bk } be. a 6 i n i i c crcyuence 0 6 dyadic i n -

tehvden ad R 2 .Then we can creXe.ot 6hvm them C R k I no th&

1 (b ) For each k , I R k 0 L J R j l 6 / R k ] j # k

ffem c an abno&u;te coM2atant.

P ~ o a d . We choose f i r s t R: = B, , and l o o k a t B, . 1 (1) If I B 2 II R:] L 5 1B21 , then we s e t R; = B Z .

, then we l e a v e B Z as ide . 1 (2 ) If ( B z " R:l > 5 ( 8 2 1

Assume (1) happens. We l o o k a t

1 (1) I f I B 3 I\ (I R:l L 5 I B 3 I , then R'; = B3

B3. 2

j=1 1 2

( 2 ) I f I B 3 I ) I! R? > 5 I B 3 1 , then we leave B 3 as ide . Assume j=1 J

now t h a t ( 2 ) happens. We l o o k a t BI, 2

1 (1) I f (BI, 11 1J R j \ c 5 ( B 4 ( , then R: = B4 j =1

1 2 (2) I f (B, 11 ( I R j 1 > I B 4 1 , we leave B, as ide .

L I n t h i s way we o b t a i n tRi} k=l . For each B t h a t has been l e f t

as ide, we have

j = 1

j

Page 202: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7 . 7 . COVERING PROPERTIES 187

and so ( fo r the chosen ones t h i s i s obv ious)

On the other hand, f o r each k

- L -" - We now consider the sequence f R k l k = l where RI= R r R P = R t - l , . . . ( i . e . we reverse the order of { R E 1 ) and proceed with C R k I k z 1 - have done with { B k l obtaining i R k ) t h a t s a t i s f y

as we

We now prove the following easy lemma f o r dyadic in t e rva l s i n R1 .

7 . 7 . 2 . LEMMA. L e I S = {I , ) be a &hi.Xe oequence 0 6 diddehent

dyadic inte~vu.42 0 4 R1 nuch t h a t 404 each I k we have

Then auk each r = O Y l y 2 , 3 , ... we have

whme c an a b n a U e cvnbAant.

P400d. We can c l ea r ly wr i te

A, = { x : lx ( x ) 2 r + 11 = IJ { x E Ik : x belongs t o a t l e a s t r Ik k

Page 203: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

188 7 . THE B A S I S OF INTERVALS

r 1 s e t s r j con ta ined i n I k l f IJ I k , and we t r y t o prove I I C I 6 - 1 1 I . k 5r

1 I f r = 1 we have = ]Ik') I I 1.1 c 5 ] I k ] by the I jCI , J

hypothes is .

any k and f o r r = 1,2 ,..., h . L e t r = h +1 and l o o k a t 1;" as

a subset o f 1; . The s e t 1; i s a d i s j o i n t un ion o f elements of

S = { I k } . L e t

Assume now t h a t t h e i n e q u a l i t y I I [ ~ G -+ l I k j i s t r u e f o r 5

N

1=1 r; = II 17

From t h e d e f i n i t i o n s we c l e a r l y have

I'i f l 1;+1 = I'ih

Therefore, a p p l y i n g t h e i n d u c t i v e hypo thes i s ,

Adding up over k

But, if we assume t h a t t h e I k a r e o r d e r e d by s i z e 1111 >, 1121 2 ... ,

Page 204: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.7. COVERING PROPERTIES 189

C Therefore IA,I 6 - 1 1 ) Ikl .

!jr

With these two lemmas t h e f o l l o w i n g theorem i s easy.

Ptiood. F i r s t we t a k e a f i n i t e sequence EB,} f rom (Ba)acA

1 w i t h measure g r e a t e r t han

o b t a i n i n g a f i n i t e sequence

1uB,I, Then we app ly lemma

{ R k } s a t i s f y i n g

7 . 7 . 1 . t o { B k }

and

Observe t h a t , by t h e preceding i n e q u a l i t y , no s e t of { R k }

i n ano the r o f {Rk).Let us c a l l ak ,bk t h e l e n g t h o f t h e s i d e s o f Rk

p a r a l l e t t o O x and Oy r e s p e c t i v e l y . L e t us take any l i n e t p a r a l l e l

t o Ox and c a l l

i s con ta ined

Hence t h e j * I f I j c Ik t hen ak r a and so bk < b

j two-dimensional i n e q u a l i t y

Page 205: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

190 7. THE BASIS O F INTERVALS

1 I 0 Ij11 5 l l k l l r j I J

and therefore , applying lemma 7 . 7 . 2 . ,

C I{x E t : CxI (XI r + 111 6 - 1 0 1 ~ 1 1

k 5r

and so

An aeteAulative pmod ad Theohm 7.7.3. We now present another proof of the covering theorem f o r dyadic in t e rva l s in R 2 t ha t i s in te r - es t ing in i t s e l f and will give us a method t o solve another r e l a t ed pro blem.

Let (Ba)aEA be a co l lec t ion of dyadic in t e rva l s of R2 w i t h . We choose f i r s t {Bkj! so t h a t 1 LIB,\ 6 2 1 i~ B k / . Let us M

I [,Ba( <

ca l l t h e i r side-lengths a,&,. We can assume tsl r 6 ? k... 6, , and also t h a t there i s no 8 k contained i n another one. We choose now

R , = B1 . Assume t h a t R 1 ,.. . , Rh have already been chosen a n d l e t R . = El . We then choose as Rhtl the next Bk in the sequence J

where ri wi l l be fixed i n a moment.

Page 206: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.7. COVERING PROPERTIES 191

H So we o b t a i n { R j l l w i t h s i d e s a b t h a t s a t i s f y

b l a bZ 2 ... a b H , al i( a 2 G . . . G aH ,

j ' j '

and a l s o j -1

CXRK

I R . 1 7 I J R I = - e dx 6 e e e l+ ' l e I R j I ' 1 0 R k k < j Rj k < j

k < j 'I R . 0 IJ R k

The re fo re f o r each j

and so

Fur thermore we have

Then

h h h 2oe I ;J R j l + e ( l+q ) [Rhtll L 20el IJ R j l+ e(l+rl) [Rh+l - 11 R . 1 c c

1 i J 1- l+rl e

ti i f we choose rl s u f f i c i e n t l y small . So t h e tR.1 s a t i s f y

J i

Page 207: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

192 7. THE BASIS OF INTERVALS

H

IJ Rj

t i H H We now try to prove I LJ Bk - LJ Rj I c cI IJ R. I .

1 i J

Take any B E iBkIM that has not been chosen.

intervals with bk > 6 then we have

1

Let us intersect B y R1,R Zy...,RH by a line

If R1 ,.. .,R1 are the

paralell t Ox and let the intersections be called two-dimensional inequality

S , I ,... ,IH. Since a < ak , 1 < k c 1, the 1

1

transforms into the one-dimensional one

and so, if M, is the maximal operator with respect t o intervals of s ,

we have

1

There fore

Page 208: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.8. ANOTHER PROBLEM OF ZYGMUND 193

H

If we integrate over all lines s H

7.8. ANOTHER PROBLEM OF ZYGMUND. SOLUTION BY C6ROOBA.

According to a result of Zygmund l19651, if we consider the

system of all intervals in R 3 then the corresponding maximal operator M satisfies the inequality

such that one of their bases is a square,

(1 i. logf

and so this basis differentiates L ( l f log' L ) ( R 3 ) .

In a similar way, if we consider a system of intervals in R 3

such that there is some reasonable constraint between their three dif- ferent side-lengths , it is to be expected that this system will behave again like the two-dimensional basis of intervals, i.e. its maximal

operator will satisfy the same inequality as above,

Page 209: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

194 7. THE BASIS OF INTERVALS

The f o l l o w i n g theorem of CGrdoba [1978] i s t h e s o l u t i o n t o a

problem o f Zygmund i n t h i s d i r e c t i o n .

v e r s i o n , g i v i n g t h e corresponding c o v e r i n g lemma f r o m which t h e weak

t y p e i n e q u a l i t y f o r t h e maximal o p e r a t o r i s an easy consequence.

We w i l l p r e s e n t i t i n t h e dyad ic

i~ a dixed duncfitian nandemeaning i n t h e ,two vatLiable? 4epmaXcLy.

?'hood. The p r o o f i s p a t t e r n e d a f t e r t h e a l t e r n a t i v e proof we

have g i ven i n 7.7. of t h e cove r ing theorem 7.7.3. f o r i n t e r v a l s i n

R and w i l l be b e t t e r understood under i t s l i g h t .

M We f i r s t choose a f i n i t e sequence {Bk )k= l such t h a t

M I o B a ( r; 21 IJ B k ( . L e t us c a l l

We can assume t h a t no

ak , 6, , ck t h e s i d e - l e n g t h s of Bk . cl 1

Bk i s con ta ined i n another one and t h a t

a C 2 > c j .... 2 EM , By t h e m o n o t o n i c i t y c o n d i t i o n o f 4 we

have , i f t, a c, , t h a t e i theh iik 6 ii, O h fik C b1 .

Page 210: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.8. ANOTHER PROBLEM OF ZYGMUND 195

We now choose the { R j } exactly in the same way as in the

above mentioned proof o f the covering theorem for intervals in R z , i.e. we choose first R 1 = B 1 and them R P as the next Bk such that

and so on. We obtain { R j I Y satisfying (see that proof)

(i) c1 c2 a . . . 2 cH

( t i ) If Ck > c1 then either a k G al or bkX bl

(iv) If B e {B,IM - { R j } Y and if R 1 , R 2 , ..., R1 are the

intervals with ck> c , then

1

By means of properties (i) - (iv) we shall now try to prove M H H

that I I) Bk - II R j l c cI II R . 1 1 i J in order to obtain (a).

We intersect B and R 1 , R 2 , ..., R1 of (iv) by a plane u

orthogonal to Oz obtaining S, I I z,. . . , I 1 . Due to the fact that c1 2 cz 2 ... a c1 > e , the three-dimensional inequality of transformed into the two-dimensional one

1

(iv) is

Page 211: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

196 7. THE B A S I S OF INTERVALS

For each I we have e i t h e r a a a o r b 6. Assume t h a t

11,12, ... Ih a r e such t h a t a . h a , b . c 6 and t h a t Ih+l , .. . , I , a r e such t h a t a . 6 a, b . a 6 t h e s ides c ) , The s i t u a t i o n i n the p lane o i s t h a t o f t h e f i g u r e

be1 ow

j j j

J J (we can now f o r g e t about t h e o r d e r of

J J j

F i g u r e 7.8.1.

L e t us c a l l P,Q t h e p r o y e c t i o n s o f S over OX, Oy, and J K

those of I j over t h e same axes Ox, Oy. We can w r i t e j’ j

Page 212: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

7.8. ANOTHER

+ & J J 1 h s f) ( ' J I j ) 0 ( IJ I . ) h + l 1 J

PROBLEM OF ZYGMUND

h 1

Therefore we can write

having set

Page 213: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

198 7. THE B A S I S OF INTERVALS

Hence, i f p = min ( 3 ,G) , we have e i t h e r al>p or aL,, Q a

Therefore

= E I J F

B u t , u s i n g the weak type (1,l) f o r t he onedimens maximal operator and in tegra t ing we obtain

Therefore

J

d s > p } =

onal Hardy-Littlewood

Page 214: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 8

THE B A S I S OF RECTANGLES 1 B s

The bas i s B 3 o f a l l r e c t a n g l e s i n R2 r a i s e s a l a r g e number

o f i n t e r e s t i n g and amusing ques t i ons . Some o f them were handled, r a t h e r

l a b o r i o u s l y , a t t h e v e r y beg inn ing o f t h e t 5 e o r y o f t h e Lebesgue measure,

some o t h e r s have been so l ved v e r y r e c e n t l y and many, as we s h a l l see,

a r e s t i l l w a i t i n g f o r an answer.

I n 1927 Nikodym , m o t i v a t e d by t h e i n t e r e s t t o understand

t h e geometr ic s t r u c t u r e o f Lebesgue measurable se ts , c o n s t r u c t e d a r a t h e r

pa radox ica l s e t . The Nikodym s e t N i s a subset o f t h e u n i t square i n R 2 o f f u l l measure ( i . e . I N 1 = 1 ) , such t h a t through each one of i t s

p o i n t s x E N t h e r e i s a s t r a i g h t l i n e l ( x ) so t h a t l ( x ) 0 N = {XI. One can say t h a t t h e v e r y t h i n complement Q - N i n Q o f t h e t h i c k s e t

N has i n some sense many more p o i n t s than N i t s e l f . Zygmund ( C f . t h e

remark a t t h e end o f Nikodym's paper) p o i n t e d o u t t h a t t h i s i n m e d i a t e l y

i m p l i e s t h a t t h e b a s i s o f a l l r e c t a n g l e s i n R 2 i s v e r y bad i n what c o ~

cerns d i f f e r e n t i a t i o n p r o p e r t i e s . The b a s i s &is does n o t even d i f f e r e n -

t i a t e t h e c h a r a c t e r i s t i c f u n c t i o n s o f a l l measurable s e t s , i n p a r t i c u l a r

o f an a p p r o p r i a t e subset o f t h e Nikodym s e t .

Ten yea rs e a r l i e r Kakeya [1917] had proposed a v e r s i o n o f what

i s now c a l l e d " t h e Kakeya problem" o r " t h e needle problem": What i s t h e

in f imum o f t h e areas o f those s e t s i n R2 such t h a t a needle o f l e n g t h 1

can be c o n t i n u o u s l y moved w i t h i n the s e t so t h a t a t t h e end i t occupies

t h e o r i g i n a l p lace b u t i n i n v e r t e d p o s i t i o n ?

Almost s imu l taneous ly B e s i c o v i t c h [19181 had s o l v e d an i n t e r - e s t i n g q u e s t i o n concern ing t h e Riemann i n t e g r a l : Assume f

i n t e g r a b l e f u n c t i o n i n R2. i s a Riemann

Is i t then t r u e t h a t t h e r e i s a p o s s i b l e

199

Page 215: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

200 8. THE B A S I S OF RECTANGLES

cho ice o f o r thogona l axes Ox,Oy f o r which t h e f u n c t i o n f ( * , y ) i s

Riemann i n t e g r a b l e f o r each y and f ( x , * ) d x i s Riemann i n t e g r a b l e ?

To answer t h i s ques t i on he c o n s t r u c t e d a compact s e t B i n R 2 of

two-dimensional n u l l measure c o n t a i n i n g a segment o f l e n g t h one i n

each d i r e c t i o n . Such a t y p e o f s e t we s h a l l c a l l a B e s i c o v i t c h s e t . Wi th

t h i s s e t B one can i n m e d i a t e l y see t h a t t h e answer t o B e s i c o v i t c h ’ s

q u e s t i o n i s nega t i ve . I n f a c t , we can assume t h a t B con ta ins no v e r t i -

c a l o r h o r i z o n t a l segment w i t h a r a t i o n a l coo rd ina te . L e t F be t h e

subse t o f B o f p o i n t s w i t h a r a t i o n a l coo rd ina te . Then t h e d i s c o n t i -

n u i t y p o i n t s o f xF a r e i n B and so xF i s Riemann i n t e g r a b l e i n R2. But i n each d i r e c t i o n t h e r e i s some segment con ta ined i n

I

B a long which

xF i s n o t Riemann i n t e g r a b l e .

As i t was r e a l i z e d much l a t e r [1928] , t h e s e t B g i v e s a l s o

a s o l u t i o n t o t h e needle problem: The in f i n imum o f t h e areas on which t h e

needle can be i n v e r t e d i s zero.

The c o n s t r u c t i o n of t h e B e s i c o v i t c h s e t was s i m p l i f i e d by Per-

r o n C19281 and l a t e r on by Radeniacher [1962] and Schoenberg [1962] . I t s connec t ion w i t h d i f f e r e n t i a t i o n theo ry was b rough t t o l i g h t f i r s t by

Busemann and F e l l e r [1934] who used i t i n o r d e r t o g i v e a s i m p l e r p r o o f

( n o t based i n t h e e x i s t e n c e o f t h e Nikodym s e t ) o f t he f a c t t h a t P, i s

n o t a d e n s i t y bas i s . (Nikodym’s c o n s t r u c t i o n o f h i s s e t was e lementary

b u t e x t r a o r d i n a r i l y c o n p l i c i t e d ) . L a t e r on Kahane [1969] gave an i n t e r -

e s t i n g c o n s t r u c t i o n o f a B e s i c o v i t c h s e t .

had e s t a b l i s h e d t h e connec t ion o f such ’a t y p e o f s e t s w i t h t h e t h e o r y

developed by him o f t h e geometr ic of l i n e a r l y measurable s e t s i n R2 ( s e t s o f Hausdor f f dimension 1).

Before t h a t B e s i c o v i t c h [1964]

Very much a t t e n t i o n has been p a i d t o c o n s t r u c t i o n s connected

w i t h t h e B e s i c o v i t c h s e t and t h e Nikodym se t , among o t h e r s e s p e c i a l l y

by Davies [1953] and Cunningham [1971,1974] . And r i g h t l y so, s i n c e

they p r o v i d e ve ry much l i g h t i n o r d e r t o g e t a deeper ‘understanding o f

impor tan t geometr ic and measure - theo re t i c p r o p e r t i e s r e l a t e d w i t h t h e

c o l l e c t i o n of rec tang les i n R2 .

Page 216: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.1. THE PERRON TREE 20 1

As we sha l l see , most of what we sha l l present i n t h i s Chapter depends on w h a t we sha l l ca l l t he Perron t r e e ( the construction proposed by Perron [1928] Nikodym set can be most ea s i ly b u i l t by means of i t . For t h i s reason we sha l l present f i r s t t h i s fundamental construction and from i t we sha l l draw a good number of conclusions and r e s u l t s of h i g h i n t e r e s t . Then we sha l l present several recent r e s u l t s connected with subbases of 8 , such as those of Stromberg [1977] , C6rdoba and Fefferman [I9781 and CBrdoba [1976] . We s t a t e a l s o some in t e re s t ing open problems in t h i s area.

i n order t o simplify t h a t of Besicovitch). Even a

8.1. THE PERRON T R E E .

The construction we present here of the Perron t r e e follows of Rademacher [1962] , w i t h some s l i g h t modifications t h a t wi l l make i t more useful f o r our purposes.

8.1.1. THEOREM. Comidm .in R 2 t h e 2n open M a n g l u

C A h ) h = l 2n o b h u k e d by joining Xthe paid ( 0 , l ) w d h t h e p o i & ( O , O ) ,

( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 ) , ...,( 2",0). LeA A h be t h e M a n g l e w a h ueh'tice~

( 0 , l ) (h-1,O) , ( h , O ) . Then, given

t o make u p w i a e R e l L t u n h U n ad

pOhi,thn A h h o XhcLt one h a

2n I u A h / c

h = l

Pkood. The theorem wi l l be obtained by r epe t i t i on of the f o l

lowing process t h a t , fo r reference purpose, we sha l l ca l l t he basic con s t r uc t i on.

Page 217: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

202 8 . THE B A S I S OF RECTANGLES

&mic euvl,l,?huotion. Consider two a d j a c e n t t r i a n g l e s T1,T2 w i t h

b a s i s on Ox, w i t h t h e same b a s i s l e n g t h b and w i t h h e i g h t l e n g t h h,

as i n F i g u r e 8.1.1. L e t 0 < c1 < 1. Keeping T1 f i x e d we s h i f t TP

towards T 1 t o p o s i t i o n T: i n such a way t h a t t h e s i d e s t h a t a r e n o t

p a r a l l e l meet a t a p o i n t a t d i s t a n c e ah f rom Ox as i n F i g u r e 8.1.2.

F i g u r e 8.1.1.

F i g u r e 8.1.2.

The union of TI and T: i s composed by a t r i a n g l e S ( n o t shaded por-

t i o n i n F i g . 8.1.2.) homothet ic t o T1 IJ T2 p l u s two “excess t r i a n g l e s “

A l , A 2 . One can e a s i l y g e t

I S / = ~ t ’ / T 1 (I TP/

and so

Page 218: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.1. THE PERRON TREE 203

We s h a l l now app ly t h i s b a s i c c o n s t r u c t i o n t o t h e s i t u a t i o n o f

t h e theorem. Consider t h e 2"' p a i r s o f a d j a c e n t t r i a n g l e s

( A 1 , A z ) , ( A 3 , A & ) ,..., (A

c o n s t r u c t i o n w i t h t h e same ci g i v e n i n t h e s tatement o f t h e theorem. We

o b t a i n t h e t r i a n g l e s S 1 , S z Y . . . , S and t h e excess t r i a n g l e s

,A n ) . To each p a i r we a p p l y t h e b a s i c 2"l 2

2"l

A;,A;;A:,A~: ...; , . We now s h i f t S 2 a long Ox towards S 1

so t h a t i t becomes s 2 ad jacen t t o S1. Then we s h i f t S3 t o p o s i t i o n s 3 a d j a c e n t t o S1 Ij S 2 , and so on. I n these mot ions each Sh must c a r r y

h h w i t h i t t h e two excess t r i a n g l e s a l ,A2 , so t h a t what we a r e i n f a c t do ing

i s e q u i v a l e n t t o s h i f t i n g t h e t r i a n g l e s

p o s i t i o n s A2, A 3 , ..., A Consider now A 1 IJ AP 0 x3 ...(I A

T h i s f i g u r e i s composed by

i s o f area

,.,

A2,A3 , . . .yA2n , t o some new - - - - - zn * -. 2n* 2 n - l

t r i a n g l e s S 1 , S P Y . . . ,S2,,-1 , whose un ion

p lus s h i f t e d excess t r i a n g l e s , whose un ion i s o f area n o t l a r g e r than

The 2"' t r i a n g l e s S l , i 2 , ? 3 y . . . , S Z n - l a r e i n t h e same s i t u a t i o n as

t h e i n i t i a l t r i a n g l e s A1,A2,A3,. . . ,A2n. One s u b j e c t s them t o t h e same

process, always c a r r y i n g t h e excess t r i a n g l e s so t h a t i n f a c t one moves

t h e e n t i r e t r i a n g l e s A2,A3, ... ,Azn. T h i s process i s repea ted n t imes

and a t t h e end one o b t a i n s a f i g u r e A1 0 A P A 3 ... A

which i s composed by a t r i a n g l e H homothet ic t o Al (J A2 0 ... II A

o f area

- 2n

2"

p lus a d d i t i o n a l t r i a n o l e s whose un ion has an area n o t l a r g e r than

Page 219: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

204 8. THE B A S I S OF RECTANGLES

Hence, i f we s e t A1 = T i l , we g e t

T h i s concludes t h e p r o o f o f t h e theorem.

I t i s c l e a r t h a t one can perform an a f f i n e t r a n s f o r m a t i o n i n

t h e s i t u a t i o n o f Theorem 8.1.1. i n o r d e r t o g i v e i t a more f l e x i b l e

s t r u c t u r e . P a r a l l e l l i n e s keep be ing p a r a l l e l a f t e r t h e t r a n s f o r m a t i o n

and r a t i o s between areas o f f i g u r e s do n o t change.

t o the f o l l o w i n g r e s u l t .

So one e a s i l y a r r i v e s

8.1.2. THEOREM . LeL A B C be u XkLangRe o d meu H. Given

uny E > 0 Lt A pobbibL?e t o pah&Xivn t h e baA B C i n t o 2" p W I I ,Iz ,I3 , . . . , I ( n dependn on E ) und .to ~kil;t t h e &LungLen

T I ,T2 , T3 , ..., T w L t h baA 1 1 , 1 2 , 1 3 , ..., ' a n d common ventex 2n

2n I 2 n

A d o n g B C ZCJ pVb&UMn f l Y f 2 , f 3 , ... ,TZn b~ t h a t

Pkoud. We f i r s t t a k e a so t h a t 0 < a < 1, 211-a) < € 1 2 , E

and then take n so t h a t aZn < 7 . We now c o n s i d e r t h e r e s u l t o f

Theorem 8.1.1. w i t h t h i s n and a, and an a f f i n e t r a n s f o r m a t i o n p t h a t c a r r i e s ( 0 , l ) t o A , (0,O) t o B and (2",0) t o C . Then

p(Ah) = Th and p(Ah) = ih f o r h = 1,Z ,...,Zn.

t h e r a m i f i c a t i o n s due t o t h e excess t r i a n g l e s .

As we s h a l l see l a t e r t h e Per ron t r e e has p l e n t y o f a p p l i c a t i o n s

t o v e r y many d i f f e r e n t problems. It would be of i n t e r e s t t o have a h i g h

Page 220: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.1. THE PERRON TREE 205

degree o f f l e x i b i l i t y t o c o n s t r u c t d i f f e r e n t types o f Pe r ron t r e e s adapted

t o m o d i f i c a t i o n s o f t h e problems we a r e go ing t o be a b l e t o s o l v e w i t h t h e

c o n s t r u c t i o n we have performed. Fo r t h i s reason i t i s i n t e r e s t i n g t h e f o l -

l o w i n g o b s e r v a t i o n which pe rm i t s us t o o b t a i n a Perron t r e e once we a r e

g i ven a B e s i c o v i t c h s e t . We s h a l l see t h a t t h e r e a r e d i f f e r e n t methods t o

c o n s t r u c t B e s i c o v i t c h se ts .

Assume B i s a compact n u l l s e t formed by t h e u n i o n o f c e r t a i n

segments of l e n g t h one whose d i r e c t i o n s f i l l a c losed ang le o f 60" (see

F i g u r e 8.1.3.)

F i g u r e 8.1.3.

L e t E > 0 and t a k e an open s e t G such t h a t G 3 B and [GI < E . For

each u n i t segment 1 o f B we take an open t r i a n g l e con ta ined i n G and

c o n t a i n i n g 1 i n i t s i n t e r i o r so t h a t t h e angles a t t h e upper extreme

p o i n t s o f each 1 a r e equal . S ince B i s compact we can cove r B w i t h

a f i n i t e number o f such t r i a n g l e s . We then t r a n s l a t e p a r a l l e l y these

t r i a n g l e s t o have t h e upper v e r t e x a t t h e same p o i n t and so we see, re-

v e r t i n g t h e c o n s t r u c t i o n , t h a t , g i v e n E > 0 and a c l o s e d e q u i l a t e r a l

t r i a n g l e ABC o f h e i g t h ha b i g g e r equal t o 1 / 2 , i t i s p o s s i b l e t o

d i v i d e ABC i n a f i n i t e number of t r i a n g l e s TI, ..., Th and t o t r a n s l a t e

them p a r a l l e l y t o p o s i t i o n s Tl,...,Th so t h a t 10 thl 6 E

However, t h e c o n s t r u c t i o n of t h e Per ron t r e e we have per formed

has some a d d i t i o n a l f e a t u r e s t h a t make i t e s p e c i a l l y i n Theorem 8.1.2.

notewor thy.

Page 221: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

206 8. THE B A S I S OF R E C T A N G L E S

REMARK I . The t r i a n g l e s T I , . , . ,f o f t h e c o n s t r u c t i o n of

Theorem 8.1.2. end up w i t h t h e upper v e r t i c e s i n reve rsed o r d e r w i t h

respec t t o t h e i r bases, i . e . if t h e b a s i s o f 7 of T i t hen t h e upper v e r t e x of 7 i s t o t h e l e f t of t h a t of Ti .

2"

i s t o t h e r i g h t o f t h a t j

j

Thmel(ohe, i d we extend t h e LtiungLen fh ubove the,& u p p u vehticen t h e ~ e e.xten.bivru uhe. d in jo in t (See F i g . 8.1.4)

F i g u r e 8.1.4.

REMARK 2. 16 we extend t h e L h h n g L a 7, b d o w the& b a a

thene exten.bion.b WVQA on t h e h-thip pat&& t o ttkin b a d ! 0 6 w i h t h at &at u &an& egud t o t h e ohiginal one A B C LU indicated .in

F i g . b . I , 5 . no m & u how we have -taken CI and n i n t h e co~n. i%uotion 06 t h e P m v n O ~ e e 06 Theoxem

ha

8.1.2.

A

t ha

B C

\ ha /

\ I /

F i g u r e 8.1.5.

Page 222: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.2. A LEMMA OF FEFFERMAN 20 7

___ REMARK 3 . I n Z h e i h ~ i n d p v b U o n t h e uppeh uemXca v6

fh vd t h e bub.in V/J ABC.

neweh yet &mtheh tv t h e Re@ v d .that v d f , by rnvhe -than t h e Length

8.2. A LEMMA OF FEFFERMAN.

F o r an i m p o r t a n t p r o b l e m i n t h e t h e o r y o f F o u r i e r m u l t i p l i e r s ,

t h a t we s h a l l examine l a t e r on, C.Fef fe rman [1971] used a lemma c o n c e r n

i n g t h e s t r u c t u r e o f r e c t a n g l e s . T h i s lemma can b e v e r y e a s i l y o b t a i n e d

by means o f t h e c o n s t r u c t i o n we have p e r f o r m e d o f t h e P e r r o n t r e e .

Y

fiehe Rh denoten t h e bhaded pvh-tivn ub t h e &7~cne 8.2.1 \

F i g u r e 8.2.1.

Page 223: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

208 8 . THE BASIS OF RECTANGLES

-- P m a d . The proof i s straightformard from Theorem 8.1.2. with the Remark 1. For each one of the t r i ang le s Ph we perform the cons t rug t ion indicated in Fig. 8 . 2 . 2 taking as R h the rec tangle indicated and as E the Perron t r e e 10 f h l . The R h a r e d i s j o i n t according to Remark 1. The area of t h e i r union i s a good portion of t h a t of the or ig ina l t r i ang le ABC with which we s t a r t e d and so we can arrange everything so t h a t 1 E l < rl 1 1 R h l . On the other hand R h 0 E 3 t h and f, i s a good portion of i i h . SO j~~ E I > __

- 1 - 100 l R h l *

Figure 8 . 2 . 2 .

Page 224: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.3. THE KAKEYA PROBLEM

8.3. THE KAKEYA PROBLEM.

209

The s o l u t i o n o f t h e needle problem i s a l s o i nmed ia te w i t h t h e

Perron t r e e .

Pkvvl; . F i r s t o f a l l we show t h a t one can c o n t i n u o u s l y move a

segment f rom one s t r a i g h t l i n e t o another one p a r a l l e l t o i t sweeping

o u t an area as smal l as one wishes. I t i s enough t o observe i n F i g u r e

8.3.1. t h a t one can move A B t o A4 BI, sweeping o u t t h e area o f t h e

shaded p o r t i o n which can be made as small as one wishes t a k i n g

A4 64 A3 B2=B3

F i g u r e 8.3.1.

A BS s u f f i c i e n t l y l a r g e .

We now t h a t A B can be moved t o a s t r a i g h t l i n e f o r m i n g an

angle o f 60 "w i th i t s o r i g i n a l p o s i t i o n w i t h i n a f i g u r e o f area l e s s than

n /6 . S i x r e p e t i t i o n s o f t h e same process w i l l g i v e us t h e f i g u r e F o f

t h e theorem. L e t M N P be an e q u i l a t e r a l t r i a n g l e o f area equal t o 10

p laced so t h a t A B i s i n t h e i n t e r i o r o f M N. Observe t h a t t h e h e i g h t

o f M N P i s b i g g e r than 1. To M N P we a p p l y Theorem 8.1.2. t a k i n g

as b a s i s N P and w i t h an E such t h a t 10 E < f-)- . We o b t a i n t h e

t r i a n g l e s 71, 7 2 , ... ,$2n . The segment A B can be c o n t i n u o u s l y moved

Page 225: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

210 8. THE B A S I S OF RECTANGLES

w i t h i n 71 f rom M N t o t h e o t h e r s i d e o f 7, n o t on N P. From t h e r e

one can move t h e segment t o t h e s i d e o f f p p a r a l l e l t o i t sweeping an

area l e s s than ' . Now we move i t aga in w i t h i n TP t o t h e -

12 x zn o t h e r s i d e o f T2

process i s l e s s than n / 6 , and t h e needle i s a t t h e end on a l i n e fo rm ing

an angle o f 60" w i t h t h e o r i g i n a l p o s i t i o n .

n o t on N P, and so on. The area swept o u t i n t h i s

8.4. THE BESICOVITCH SET.

From t h e Perron t r e e o f 8.1.2. we o b t a i n a B e s i c o v i t c h s e t as

f o l l o w s .

8.4.1. THEOREM. Thehe A u cornpct he,t F i n R2 ad niLee rneaute containing u h t p U L t 0 6 ui& Length i n euch dihecfion.

Paood. I t i s enough t o produce a compact n u l l s e t F t h a t

con ta ins a segment o f u n i t l e n g t h i n each

T h i s i s s t r a i g h t f o r w a r d f rom t h e f o l l o w i n g lemma whose p r o o f i s presented

a t t h e end.

d i r e c t i o n o f an ang le o f 45:

8.4.2. LEMMA. Given a cLobed puh&LeLogtrarn P 0 6 bididen

a,b,c,d and ri > 0 thehe A CL &uXe c o U b t L o n 06 dahed pah&eLogtlurnh

R = { w l , w2,. .., uH I thcLt

w d h one hide on a and anathe,k one on c hUCh

( 2 ) E a c h h e p e n t joining u paint 0 6 a t o anotheh po in t ad

j' c adrnh.2 a p a h a l l e l thaMn&aA;ion thud ca/LILien t o \ I w

We s t a r t a p p l y i n g t h i s lemma t o t h e c l o s e d u n i t square

Q = ABCD w i t h r11 = 1/2 o b t a i n i n g { wl, up,... , w I . Observe t h a t H:

Page 226: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.4. THE BESICOVITCH SET A

211

H i L, = u uj i s a compact s e t of area n o t g r e a t e r t han 1/2 con ta ined

j=1

i n Q and c o n t a i n i n g segments o f u n i t l e n g t h i n each d i r e c t i o n o f an

ang le o f 450, namely A t B .

To each o. we app ly aga in t h e lemma w i t h an n2 so sma l l t h a t J H i 02 c - , o b t a i n i n g { w ( j , l ) w ( j , 2 ) )...) w ( j , H j ) l . The s e t

2 2

H i H;

j=1 r = l L z = ( J ! J w ( j , r )

i s a compact s e t con ta ined i n L1 w i t h area n o t g r e a t e r t han 1/2’ and

c o n t a i n i n g segments of u n i t l e n g t h i n each d i r e c t i o n o f A e 8 . And m

so on. The s e t F = I1 L . i s a compact n u l l s e t c o n t a i n i n g segments J j = 1

i n each d i r e c t i o n o f A ^B C as r e q u i r e d .

Prrovd 0 6 Lemma. . 8.4.2. f i r s t of a l l we t a k e two s t r i p s

w1 = ASTD and w2= DLBT as i n d i c a t e d i n t h e f i g u r e 8.4.1. and such

t h a t

A l so we cons ide r t h e p o i n t V ob ta ined as i n d i c a t e d i n t h e f i g u r e , where

B V i s u a r a l l e l t o L T.

A a L B

F i g u r e 8.4.1. F i g u r e 8.4.2.

Page 227: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

212 8. THE BASIS OF RECTANGLES

Then we d i v i d e SB i n t o a f i n i t e number o f equal segments o f

s m a l l e r l e n g t h than AS . We j o i n V t o t h e d i v i d i n g p o i n t s and cons ide r

To each one o f them we app ly t h e

c o n s t r u c t i o n o f t he Per ron t r e e o f 8.4.2. w i t h an E so sma l l t h a t t h e

area o f t h e un ion o f a l l t h e Perron t r e e s ob ta ined i n t h i s way i s l e s s

than n/4. Observe t h a t by Remark 3 of 8.4. t h e upper v e r t i c e s o f t h e

small t r i a n g l e s ob ta ined i n those Per ron t r e e s never go t o t h e l e f t o f d.

We now proceed s y m m e t r i c a l l y s t a r t i n g from t h e s i d e BC . F i n a l l y we

s u b s t i t u t e each one o f t h e i n t e r s e c t i o n s w i t h P o f t h e smal l t r i a n g l e s

o f such Perron t r e e s by p a r a l l e l o g r a m s as r e q u i r e d i n t h e s ta temen t o f

t h e theorem as i n d i c a t e d i n F i g u r e 8.4.2.

each one o f t h e t r i a n g l e s VMi M i + l .

We have p o i n t e d o u t b e f o r e t h a t t h e r e a r e seve ra l d i f f e r e n t

ways t o o b a t i n B e s i c o v i t c h se ts . I n t h e n e x t Chapter we s h a l l see how t o

o b t a i n them very s imp ly by means o f t h e geometr ic t h e o r y o f l i n e a r l y

measurable s e t s . Here we s h a l l p r e s e n t another s i m p l e way due t o Kahane

[1969] . As a m a t t e r o f f a c t t h e c o n s t r u c t i o n o f Kahane, as p o i n t e d o u t

by Casas [1978] , i s a p a r t i c u l a r case o f t h e c o n s t r u c t i o n i n d i c a t e d

above by means o f l i n e a r l y measurable s e t s . However i t w i l l be i n s t r u c t i v e

t o show i t w i t h o u t appea l i ng t o t h a t t heo ry .

8.4.2. THEOREM. On t h e negment joining 0 = (0,O) t o

A = (1,O) c . o a i d a a pehdect neA La Cantox dividing OA i n t o law e . q d d o b e d h e g r n e d , .taking t h e Xwo e x h m e o n u , dividing again each

one i n r v d o u h e q d d o s e d negmena , and so on. 1e.X CO be t h e beA no

0 bXained.

On t h e segment j u i n i n g B = ( 0 , l ) t o D = (1/2,1) coaidm

u neA C1 h u m o t h d c t o CO.

LeL F be t h e u n i o n 0 6 & &abed segmenh joining a point 06 C o to anotheh p o i n t 0 6 C 1 .

Page 228: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.4. THE BESICOVITCH SET 213

Phoah. Tha t F c o n t a i n s i n f a c t segments i n a l l those d i r e c -

t i o n s i s easy.

T

F i g u r e 8.4.3.

Observe t h a t F can be viewed as t h e i n t e r s e c t i o n of a l l t h e compact

s e t s Kk ob ta ined by j o i n i n g t h e p o i n t s o f t h e k - t h phase o f t h e

c o n s t r u c t i o n o f C o t o p o i n t s o f t h e k - t h phase o f t h e c o n s t r u c t i o n o f

CI . We have K k + l ~ Kk and each Kk preserves t h e p r o p e r t y o f hav ing

p a r a l l e l t r a n s l a t i o n s o f each segment j o i n i n g a p o i n t o f OA t o ano the r

o f B D . It s u f f i c e s t o check t h i s by mere i n s p e c t i o n f o r K1 , s i n c e K P

i s e s s e n t i a l l y o b t a i n e d from KI as K1 i s ob ta ined f rom OADB. Observe

t h a t TL i s p a r a l l e l t o OR BL i s p a r a l l e l t o DS and DA p a r a l l e l

t o RS. So K1 covers segments o f a l l t h e d i r e c t i o n s above mentioned.

The f a c t t h a t F i s of n u l l measure can be proved i n t h e f o l -

l o w i n g way. Observe t h a t o f we i n t e r s e c t t h e s e t F by a l i n e p a r a l l e l

t o OA a t h e i g h t u, 0 6 1-1 6 1, t h e p o i n t s so ob ta ined have absc issae 1

~.rx + (1 - u )x ' where x 8 C1= 7C0 x ' 6 C o . So i t i s s u f f i c i e n t t o

prove t h a t f o r a lmos t each X 6 [O,-) we have

ICO + X C O l 1 = I t x + Ax' : x € C o y x ' E CoI I1= 0

To do t h i s we c o n s i d e r two s e t s l i k e C o y one on y = 0 and t h e o t h e r

on y = 1 . L e t us c a l l them D o D1 and l e t G be t h e un ion o f a l l

Page 229: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

214 8. THE B A S I S OF RECTANGLES

t h e segments j o i n i n g a p o i n t o f D O t o another one o f D1 . The s e t G

i s t h e union o f f o u r se ts Gl, , Glr , Grl , Grr each a f f i n e t o G by

an a f f i n i t y o f r a t i o 1 /4 . The s e t Glr i s t h e un ion o f segments j o i n -

i n g p o i n t s of t h e Lee@ h a l f o f Do t o t h e gigk kt h a l f of D1.

F i g u r e 8.4.4.

We have t h e r e f o r e lGll 1 = lG l r l = lGrl I = I G r r / = 1/4 1 G I and

G = Gll (I Glr (J Grl ( J Grr . So we have lGll 1’1 Girl = 0 . I f we

pe r fo rm t h e a f f i n i t y t h a t c a r r i e s Gll t o G , we see t h a t Gll 0 Glr

i s c a r r i e d t o t h a t p a r t o f G which i s below t h e d o t t e d l i n e d i n t h e

f i g u r e , and t h i s p a r t o f G has n u l l measure . By symmetry a l s o t h e p a r t

o f G under f has n u l l measure. There fo re t h e r e i s an a > 0 such

t h a t

I C o + A C ~ I ~ = o f o r a lmos t every x E cola]

1 1 Now t h i s i m p l i e s 1 7 C O + ACoIl= 0 s i n c e - C o c C O f o r each n.

There fo re I C o + A4n C 0 l 1 = 0 f o r a lmos t each A E [0,4’a] . Hence

/ C o + XColl= 0 a.e. X E L0,m)

a.e. A 6 lR and so we have shown t h a t t h e u n i o n o f t h e whade fins

j o i n i n g p o i n t s o f C O and C 1 i s a c l o s e d s e t o f p lane measure zero.

4 4”

I n t h e same way we see than \ C O + X C o l i = O

Page 230: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.5. THE NIKODYM SET 215

8 .5 . THE NIKODYM SET.

The c o n s t r u c t i o n o f t h e Nikodym s e t i s r a t h e r easy once we have

t h e f o l l o w i n g lemma which i s q u i c k l y ob ta ined by means o f t h e Perron t r e e .

Observe i t s analogy t o Lemma 8.4.2. which gave us t h e B e s i c o v i t c h se t .

8.5.1. LEMMA. L e t R be t h e c loned tectangLe ABCD od Figme 8.5.1. and S t h e one ABEF obtained b y dtLCW-ing a p d t l & d f i n e 1 t o

t h e b a A AB . I!& q > 0 be given. Then AX i~ punnib& .to &CW a SL-

i t i t e numbm od pat~&dogtramn

and a n o t h a one i n DC nu thcLt t h e y t u u a ABEF ' and

{ wl, w2, . . . , wH 3 w i t h one baA on AB

D r

A B

F i g u r e 8.5.1.

P m o d . The p r o o f i s performed r e c a l l i n g t h e Remark 2 i n 8.4 r e l a t e d t o t h e c o n s t r u c t i o n o f t h e Perron t r e e i n 8.4.2.

We f i r s t t a k e a s t r i p w1 = AJKD p a r a l l e l t o AD o f area l e s s

than n/8 . A lso we take a l i n e G H s l i g h t l y above 1 and p a r a l l e l t o 1,

so t h a t I F E H G l 6 q/8 . On JK and above DC we take a p o i n t V so

h igh t h a t lVLl > I L J I and then we t a k e t h e t r i a n g l e VLN w i t h

Page 231: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

216 8. THE BASIS OF RECTANGLES

1 \ L 1 4 \ l = . I f we apply the construction o f the Perron t ree of 8 .4 .2 . t o V L N , according to the Remark 2 in 8.4, the extension below LN o f the small triangles o f the Perron t ree will cover PQSJ where SL

i s parallel t o V N .

D

G

F

I

Figure 8.5.2.

Through Q we draw a l ine parallel t o AD and take V 1 and the tr iangle V L l N1 . If we apply the construct on of 8.4.2. t o V L l N 1 we cover with the extensions o f the small t r angles the s e t P I Q I S I J 1 . So we can advance in a f i n i t e number of steps until i s beyond the midpoint o f

EF. The Perron trees for the t r ian les V . L . N are taken with E 50

small t h a t their union i s of area less than o / 8 . We proceed now sym- metrically s tar t ing from the side C B . So we get two s t r ip s w ~ , w ~ and many small triangles R1 ,R2 , . . . , R k . Their union covers ABEF and by

choosing the E of the Perron trees small enough we get

Q, J J j

Page 232: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.5. THE NIKODYM SET 217

Now f o r each t r i a n g l e R . we can s u b s t i t u t e i t s i n t e r s e c t i o n w i t h R by

a f i n i t e number o f s t r i p s con ta ined i n R . as r e q u i r e d i n t h e Theorem as J i n d i c a t e d i n F i g u r e 8.5.3. and t h i s f i n i s h e s t h e c o n s t r u c t i o n . ( R e c a l l

t h a t by Remark 3 o f 8.4. t h e v e r t i c e s o f t h e smal l t r i a n g l e s a r e t o t h e

r i g h t o f AD and t o t h e l e f t o f CB).

J

F i g u r e 8.5.3.

From t h e preceding lemma we e a s i l y o b t a i n t h e f o l l o w i n g one

8.5.2. LEMMA. L e t R1,R2 be a3.1~ dvned pm&&vgtam i n

R2 ouch LhaA R1 R Z . LeL E > O and L e t w be vne v d t h c Awv cloned n M p o dehhmined by Rl., . Then .thehe u &.42e coUeeectivn a 6

clvne.d n-thiph R = Cwl, W Z , . . . , wk 1 A U C ~ thaA

(1) F a t u c h i = l y 2 , . . . , k , w i 11 R1 c w 0 R2

k

k

Page 233: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2 18 8. THE B A S I S OF RECTANGLES

Pkwd. T h i s lemma i s t h e p reced ing one i f R1 and R 2 a r e

r e c t a n g l e s as i n F i g . 8.5.4.

R 2 i

F i g u r e 8.5.4.

We now proceed t o remove the r e s t r i c t i o n s on R1 and R 2 . An

a f f i n e t r a n s f o r m a t i o n shows t h a t t h e r e s t r i c t i o n imposing t h a t

a r e rec tang les can be e a s i l y removed.

ho lds i f R 1 and R 2 a r e two p a r a l l e l o g r a m s as i n F i g u r e 8.5.5.

R1 and R 2 There fo re we know t h a t t h e lemma

Assume now t h a t R1 and R 2 a r e t h e p a r a l l e l o g r a m s A B C D and E F G H o f F i g u r e 8.5.6.

F i g u r e 8.5.5.

F G N

M E A D H

F i g u r e 8.5.6.

Page 234: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.5. THE N I K O D Y M SET 219

We r e p l a c e R 2 by R S = M F N H such t h a t M F i s p a r a l l e l t o A B y

A D i s on M H and R 2 c R; . We a l r e a d y know t h a t t h e lemma i s

v a l i d f o r R 1 and R: . I t i s e a s i l y seen t h a t t h e same s t r i p s we o b t a i n

s a t i s f y ( l ) , ( 2 ) and ( 3 ) f o r R 1 and R 2 .

Assume now t h a t R 1 and RZ a r e as i n F i g u r e 8.5.7. , w i t h

A B p a r a l l e l t o E F and C D p a r a l l e l t o G H . We a p p l y t h e lemma

t o R: = M B C N and R, w i t h an ~ / 2 . Each one

F P 0 G

E M N H

F i g u r e 8.5.7.

- o f t h e s t r i p s

F i g u r e 8 .5 .8 .

GI, G z , ..., wk we g e t i s i n t h e s i t u a t i o n i n d i c a t e d i n

F P Q G

I H j

w E

F i g u r e 8.5.8. -

So we can now app ly t h e lemma t o each one o f t h e p a r a l l e l o g r a m s wi 0 APQD

and R 2 w i t h ~ / 2 k , amd we g e t for each i = 1,2 ¶ . . . , k t h e s t r i p s

Page 235: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

220 8 . THE BASIS OF RECTANGLES

4 } j = 1 , 2 , . . . , r i . The co l lec t ion of a l l these s t r i p s u?; i s e a s i l y

seen t o s a t i s f y (l), ( 2 ) and (3) .

Fina l ly , i f R 1 and R Z a r e i n the general s i t u a t i o n of t he lemma one can subs t i t u t e R 2 by another parallelogram R: , R: 3 R,,

with s ides para l le l t o those of R l and apply the lemma t o R1 and R: . The s t r i p s we obtain a re a l so va l id for R 1 and Rz.

The second lemma we a r e going t o use is an easy consequence o f

t he previous one.

8 .5 .3 . LEMMA. L e t R1 and R 2 be Awu doded pamUehg/Zam buch t h a t R 1 c R Z . L e t R be a &Lrtite coUecLLon a6 cloned h-thiph,

R 1 . L e t E > 0 be given.

Then, do& each h. th ip u i y i = 1,2, ... , k

coUecLLon o d cloned h i x i p d W: , W; , . . . , u J i huch Zha.2, id we c a l l

= {ol ,UP,. .. , uk 3 , whobe union c o v m

one $an conbahuc2 anotheh dini te

i R* = { W! : i = 1 ,2 ,... , k j = 1 , 2 , . . , , j i 1 , we have:

j ( 2 ) Fon. each i and j , wi 0 R z c w i .

From the foregoing lemmas we obtain the following r e s u l t ,

8.5.4. THEOREM. Thehe AA i n R2 a b e t K 06 nURe memme huch t h a t doh each x E R2 thehe AA a na%thcLigkt f i n e r ( x ) paAning

t h a u g h x ha t h a t r ( x ) c K 1 J c x 3 .

The r e s u l t of Nikodym i s of course, an easy consequence of this theorem. In f a c t i f Q i s the uni t square and N = Q - K , then I N 1 = 1 and f o r each x 6 N the l i n e r (x) s a t i s f i e s r(x) 0 N = 1x1,

Page 236: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

THE NIKODYM SET 221 8 . 5 .

Y m o A O X ;the Theohem 8

For H > 0 l e t Q(H)

5.4.

be t h e c l o s e d square i n t e r v a l cen te red

a t 0 and o f s i d e - l e n g t h 2H. L e t us c a l l f o r b r e v i t y Q(1) = Q . We app ly Lemma 8.5.2. t o R1 = Q and R 2 = Q(2) w i t h an s1/4 > 0 t h a t

w i l l be f i x e d l a t e r . We o b t a i n a c o l l e c t i o n o f s t r i p s i l l , . We d i v i d e Q

i n t o f o u r equal c losed square i n t e r v a l s each one h a l f t h e s i z e o f Q. L e t

us denote them by Qf , i = 1,2,3,4. F i x an i and a p p l y Lemma 8.5.3.

w i t h

c o l l e c t i o n R* o f c l o s e d s t r i p s t h a t we s h a l l c a l l

R 1 = Q j , R2 = Q(3) , n = nl , E = ~ ~ / 4 ’ > 0. So we o b t a i n a

Rl . L e t us s e t

4

R2 = 0 n: i = l

We now d i v i d e each Qj one h a l f t h e s i z e of Ql . So we o b t a i n 4’ squares Q2 i = l,2,...y42.

F i x an i and app ly aga in Lemma 8.5.3. , w i t h R 1 = Q2 ,R2 = Q(4) , R = Q2 , E = ~ ~ / 4 ~ . So we o b t a i n t h e c o l l e c t i o n R* o f t h e lemma

t h a t we s h a l l denote a’, and we w r i t e

i n t o f o u r equal c losed square i n t e r v a l s , each i

i

And so on.

i k , t h e un ion o f a l l s t r i p= Rk

covers t h e square Qk-l . For each w E Rk we d e f i n e B = w - Qk-l

and l e t

acco rd ing t o Lemma 8.5.3.

Observe t h a t f o r a f i x e d i i i

i Rk Kk = 11 CB : w E R k l . We have, by t h e c o n s t r u c t i o n o f

and so we g e t I K k f ) Q ( k ) l c sk f o r each E~ . We now d e f i n e

W W

K* = l i m i n f Kk = 0 Kk. h = l k=h

We choose E~ -f 0 and so / K * I = 0 . I n f a c t , i f we f i x N and h and

then we t a k e j , j > h, j > N we o b t a i n

Page 237: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

222 8. THE BASIS OF RECTANGLES

Hence

Since t h i s ho lds f o r each N, we g e t 1 f ) K k l = 0 f o r each h and so k=h

I K * / = 0.

We now show t h a t f o r each x E Q t h e r e e x i s t s a s t r a i g h t l i n e

r ( x ) pass ing through x and con ta ined i n K* LJ {XI. L e t x E Q be

f i x e d and l e t Q:(xyn) n = l Y 2 , 3 , ... be a c o n t r a c t i n g sequence o f

t h e squares we have c o n s t r u c t e d so t h a t x E Q i ( x y n ) f o r each n. For

n = 1 we t a k e a s t r i p w 1 of R1 J(xyl)

i s some s t r i p o2

w z ( 7 Q ( 2 ) ,= w1 and so on. For n = k t h e r e i s some s t r i p wk o f

Qk c o n t a i n i n g x and such t h a t wk (1 Q ( k ) c w ~ - ~ . So t h e r e e x i s t s

a sequence o f l i n e s { r k ( x ) } pass ing through x and such t h a t r k ( x ) c w r

Since t h e w i d t h o f t h e s t r i p s uk tends t o ze ro (because of t h e f a c t

t h a t E~ -f 0 ) and one has uk I1 Q ( k ) c w ~ - ~ , one has t h a t t h e d i -

r e c t i o n s of t h e l i n e s {r,(x)} converge t o t h e d i r e c t i o n o f a l i n e r ( x )

through x.

c o n t a i n i n g x. For n = 2 t h e r e o f r 2 z j ( x 3 2 ) c o n t a i n i n g x and such t h a t

We now prove t h a t r ( x ) c K* 0 { x } L e t y E r ( x ) y f x.

Then t h e r e i s a n a t u r a l number N such t h a t i f n a N we have

Y 6 Q i ( x y n ) and y E ;(n)

L e t us take a sequence of p o i n t s

There i s an M such t h a t i f k > M, we have

{yk} such t h a t yk 6 r k ( x ) , yk + Y.

I f i > n 2 max(M,N) we can w r i t e

Page 238: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.5. THE NIKODYM SET 223

Since yi d Q i ( x y N ) we a l s o have yi d Q A ( x y n ) . Hence yi E 6,. So we

have proved t h a t f o r a f i x e d n > max (M,N) we have yi E Gn f o r each

i > n. Since 6;, i s c losed, we g e t y E in . Hence y E K* and t h i s

proves r ( x ) c K* I) { x } .

Observe now t h a t t h e above process can be per formed on any

g i ven square i n t e r v a l Q n o t n e c e s s a r i l y equal t o Q ( 1 ) . That i s ,

g i ven Q t h e r i s K* such t h a t I K * l = 0 and f o r each x E Q t h e r e

i s a s t r a i g h t l i n e r ( x ) through x so t h a t r ( x ) c K* II {XI. We

app ly t h i s t o Q 1

K: , K; ,... ,K; ,... We now d e f i n e

t h e s tatement o f t h e theorem.

= Q ( 1 ) , Q 2 ( 2 ) ,... , Q k ( k ) ,... and we o b t a i n

k=l K = 8 K i and t h i s s e t s a t i s f i e s

The f o l l o w i n g r e s u l t can be e x t r a c t e d q u i t e e a s i l y f rom t h e

p reced ing p r o o f . It w i l l be q u i t e use fu l f o r t h e c o n s i d e r a t i o n s t h a t

f o l l o w , i n t h e n e x t Sec t i on (8 .6 .4 . ) .

8.5.5. THEOREM . LeX Q be t h e d m e d ~ q w e in;tmvd pen - t a e d at Q and w a h A i d e LengZh 2 . The t h m e e & t ~ a AubAeA M 0 6 Q ob 61LeR meanme, i . e . l M l = I Q I and a h& K * c R2 0 6 null meu-

une huch thuX don each x E M t h m e LA a A i X a i g k t f i n e r ( x ) pun ing

thnvugh x and contained i n K* I) {XI i n huch a way XhaX t h e d i h e d a n

0 6 r ( x ) v&en i n a rneanmabRc way.

--

Pnood. L e t us r e t u r n t o t h e p r o o f o f t h e theorem 8.5.4.

subset M o f Q i s go ing t o be t h e complement i n Q o f t h e un ion o f

t h e boundar ies o f a l l s t r i p s we have s e l e c t e d i n t h a t process. C l e a r l y

I M I = I Q I . L e t us denote a l s o by r k ( x ) E [ O , ~ T ) t h e ang le a s s o c i a t e d

t o t h e l i n e r k ( x ) . We s h a l l show t h a t a t each s t e p k o f t h e c o n s t r u c

t i o n we can make a s e l e c t i o n o f l i n e s r k ( x ) f o r x 6 M such t h a t t h e

f u n c t i o n i s a measurable f u n c t i o n . S ince we a l s o

have r k ( x ) + r ( x ) a t each x E M as k + m we see t h a t r ( x ) i s

measurable on M.

The

x E M -f r k ( x ) E [O,T)

Page 239: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

224 8. THE B A S I S OF RECTANGLES

Consider the s t r i p s w:, ui, w:, ... s e l e c t e d i n t h e f i r s t s tep .

To t h e p o i n t s i n W: 0 M

t h e p o i n t s i n (ui - u: ) 0 M we a s s i g n t h e d i r e c t i o n of t h e s t r i p w:.

To t h e p o i n t s i n (u: - LO'.) 0 M t h e d i r e c t i o n o f u:. And so on.

So we o b t a i n r l ( x ) on M t h a t i s a s t e p f u n c t i o n .

we ass ign t h e d i r e c t i o n o f t h e s t r i p w:. To

I', j=1 J

Consider now w i f ) M and t h e s t r i p s o f t h e second s t e p c o v e r i n g

ui ( 7 Q . They a re such t h a t t h e i r i n t e r s e c t i o n s w i t h Q can proceed t o ass ign d i r e c t i o n s as above.

(u: - uj) 0 M and t h e s t r i p s of t h e second s t e p c o v e r i n g LO: we can

proceed i n t h e same way . And so on. The second assignment r 2 ( x ) i s

a l s o a s tep f u n c t i o n on M. I n t h i s way we see t h a t r ( x ) i s measurable.

a r e i n ui. We

When we now c o n s i d e r

The s e t K* o f Theorem 8.5.4. s a t i s f i e s t h e s tatement o f

ou r theorem.

8.6. DIFFERENTIATION PROPERTIES OF SOME BASES OF RECTANGLES.

L e t us now e x t r a c t some i n f o r m a t i o n about t h e d i f f e r e n t i a t i o n

p r o p e r t i e s o f B 3 and o f some subbases of B 3 from what we have a l r e a d y

seen.

From t h e e x i s t e n c e o f t h e Nikodym s e t , as we p o i n t e d o u t b e f o r e

Zygmund observed t h a t B 3 cannot even be a d e n s i t y b a s i s . I t i s n o t neces

sa ry t o go so f a r t o o b t a i n t h i s f a c t . Wi th t h e c o n s t r u c t i o n o f t h e Perron

t r e e of 8.1.2.

which t h i s f a c t i s an easy consequence.

we a r e go ing t o be a b l e t o prove a s t r o n g e r r e s u l t f r o m

8.6.1. THEOREM . CoaLdm t h e B - F diddmenLLaLion baA

Page 240: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.6. DIFFERENTIATION PROPERTIES 225

bT invahiant by homothecia genetra-ted by all U n g L a

Th h a LJ~JLLLCCA ( 0 , l ) ,(h-1,O) ,(h,O) . Then BT 0 not u der&Ltg

b a d .

{Thl;=l , whetre

P t o o ~ . L e t MT be t h e maximal o p e r a t o r assoc ia ted t o BT . I f E i s a Perron t r e e c o n s t r u c t e d f rom {Thlh,, 2n

we can w r i t e

as i n Theorem 8.1.1.

where 7, i s t h e e x t e n s i o n o f Th below t h e b a s i s o f Th between

y = 0 and y = -1 . There fo re acco rd ing t o t h e Remark 2 o f S e c t i o n 8.1.

we g e t

Therefore, acco rd ing t o t h e c r i t e r i o n o f Busemann and F e l l e r f o r d e n s i t y

bases, BT cannot be a d e n s i t y b a s i s .

Fo r each Th o f Theorem 8.6.1. l e t Rh be t h e r e c t a n g l e

i n d i c a t e d i n t h e F i g u r e 8.6.1.

F i g u r e 8.6.1.

Page 241: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

226 8. THE B A S I S OF RECTANGLES

and l e t BR be t h e B - F b a s i s i n v a r i a n t by homothecies generated by

{ R h I . If MR i s t h e corresponding maximal o p e r a t o r we have w i t h an

absol Ute cons tan t c

M T f ' 6 C M f R

and so &lR i s n o t a d e n s i t y b a s i s . T h i s o f course i m p l i e s t h a t B3 i s

n o t a d e n s i t y b a s i s .

8.6.2. COROLLARY. The. b u d oh hec&ngLen B3 d nv.t a

dennity b u i h . So we see t h a t n o t o n l y 63 i s a v e r y bad d i f f e r e n t i a t i o n

b a s i s , b u t a l s o t h a t a r a t h e r smal l subbasis o f 63 such as

t a i n i n g r e c t a n g l e s i n a smal l s e t o f d i r e c t i o n s and f o r each d i r e c t i o n

a small subset o f a l l t h e p o s s i b l e r e c t a n g l e s i n t h a t d i r e c t i o n i s a

ve ry bad d i f f e r e n t i a t i o n b a s i s . T h i s r a i s e s a number o f i n t e r e s t i n g

ques t i ons .

B R , con-

PROBLEM 1 . L e t 0 be a subse t o f [0,2n) . Consider t h e b a s i s

Ba o f a l l r e c t a n g l e s i n d i r e c t i o n s (I E Q , i . e . one o f whose s i d e s

forms an ang le (I Q 0 w i t h Ox. How shou ld @ be d i s t r i b u t e d i n o r d e r

t h a t BQ have some good d i f f e r e n t i a t i o n p r o p e r t i e s ?

We s h a l l soon see t h a t i f @ i s any s e t such t h a t i t s c l o s u r e

i s o f p o s i t i v e Lebesgue measure, t hen BQ i s a v e r y bad bas i s . But

t h e r e a re bases BQ w i t h 0 denumerable, such as BR above, t h a t a r e

a l s o bad. However, f o r s e t s 0 t h a t a r e lacunary, f i r s t Strornberg [1976]

and l a t e r CBrdoba and R.Fefferman [1977] have ob ta ined p o s i t i v e d i f f e r e n

t i a t i o n p r o p e r t i e s f o r BQ

s u l t s . The genera l problem i s s t i l l unsolved. It i s even unknown whether

Ba i s o r n o t a d e n s i t y b a s i s when 0 i s t h e coun tab le s e t o f endpoints

o f a l l t h e chosen i n t e r v a l s a r i s i n g i n t h e succes ive phases o f t h e con-

s t r u c t i o n o f t h e Cantor s e t i n [0,1] .

. I n t h e n e x t s e c t i o n we w i l l s t u d y such re-

Page 242: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.6. DIFFERENTIATION PROPERTIES 227

PROBLEM 2 . Even when B;P i s a d i f f e r e n t i a t i o n bas i s , i t s

p r o p e r t i e s can improve when we r e s t r i c t ou rse l ves t o c o n s i d e r f o r each

4 E 0 n o t CLee t h e r e c t a n g l e s i n t h a t d i r e c t i o n b u t o n l y those homothe

t i c t o t h e ones o f a f i x e d c o l l e c t i o n R o f r e c t a n g l e s i n d i r e c t i o n 4 . So we o b t a i n a new B - F b a s i s B(Q,R) generated by ( 0 R4)+€@ . The p r o p e r t i e s o f t h i s k i n d o f bases have n o t been e x p l o r e d so f a r . One

o n l y knows some r a t h e r t r i v i a l r e s u l t s . Fo r example, i f @ = [0,2n) and

f o r each 4 E 0 , R4 i s j u s t a square, t hen B(0.R) s a t i s f i e s t h e

V i t a l i p rope r t y , d i f f e r e n t i a t e s L’, ... Bu t even i f f o r example @ = {O)

and R o i s a sequence o f i n t e r v a l s { I k } w i t h e c c e n t r i c i t y t e n d i n g t o

m one does n o t know wheter, by an a p p r o p r i a t e cho ice o f { I k } y t h i s

b a s i s w i l l have b e t t e r d i f f e r e n t i a t i o n p r o p e r t i e s than those o f t h e

b a s i s o f a l l i n t e r v a l s .

4

The case i n which @ i s t h e s e t o f a l l d i r e c t i o n s and f o r each

I$ E Q we c o n s i d e r a l l r e c t a n g l e s R$ i n d i r e c t i o n I$ w i t h e c c e n t r i c i t y

n o t exceeding a f i x e d number H independent o f I$ has o f course v e r y good

d i f f e r e n t i a t i o n and c o v e r i n g p r o p e r t i e s (has t h e B e s i c o v i t c h p r o p e r t y , t h e

V i t a l i p rope r t y , . . . ) . I t s maximal o p e r a t o r i s o f weak t y p e ( 2 , 2 ) w i t h a

c o n s t a n t c(H) t h a t increases w i t h H t o i n f i n i t y . C6rdoba [1976] has

ob ta ined a measure o f t h e s i z e o f c (H) .

PROBLEM 3. Consider t h e b a s i s o b t a i n e d i n t h e f o l l o w i n g way.

For each x e R 2 t a k e a d i r e c t i o n d ( x ) E [ O , Z . r r ) and c o n s i d e r t h e

c o l l e c t i o n

x . (The b a s i s

r e n t i a t i o n p r o p e r t i e s o f Bd ?

Bd(x) o f a l l t h e open r e c t a n g l e s i n d i r e c t i o n d ( x ) c o n t a i n i n g

Bd i s n o t a Buseman-Feller b a s i s ) . What a r e t h e d i f f e -

How does t h e cho ice o f d ( x ) a f f e c t them?

I n what f o l l o w s o f t h i s S e c t i o n we s h a l l examine c e r t a i n nega -

t i v e r e s u l t s concern ing some of these ques t i ons . I n t h e n e x t s e c t i o n we

s tudy t h e r e s u l t o f Stromberg and o f C6rdoba and R.Fefferman and l a t e r

on i n Chapter 12 some theorems o f S t e i n and Wainger concern ing t h e ques-

t i o n s around Problem 3.

The f o l l o w i n g Theorem has been ob ta ined by M.T.Men2rguez and

t h e a u t h o r and i s p u b l i s h e d h e r e f o r t h e f i r s t t ime.

Page 243: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

228 8. THE B A S I S OF RECTANGLES

8 . 6 . 2 . THEOREId. L e A 0 c [0,2n) be a b e i whabe cRobwe h a pobi,tive meanwe. Then t h e B - F b a b BQ 0 4 a l l tre.etangLec?n i n di-

teCtion $ e 0 0 not a denbLty b a 0 .

Ptrood. Observe f i r s t t h a t i f R i s a r e c t a n g l e i n d i r e c t i o n

d, e such

then t h e r e

l i l 6 21R

Therefore

t h a t

s a r e c t a n g

, and so

e i n d i r e c t i o n $ e Q such t h a t 6 '3 R ,

MQf (x ) 6 Mm f ( x ) 6 2 MQ f ( x ) . Hence we can assume, i n

o r d e r t o prove t h e Theorem, t h a t Q = and t h a t = p > 0 .

$ 0

t r e e

B k

i n d

We can a l s o assume w i t h o u t l o s s o f g e n e r a l i t y t h a t each p o i n t

Q i s a d e n s i t y p o i n t o f 0 . Wi th an E > O we c o n s t r u c t a Perron

PE as i n Theorem 8.1.2. s t a r t i n g f rom a t r i a n g l e ABC w i t h

n/2 and so t h a t t h e s i d e BA i s i n d i r e c t i o n n/4 and CA i s

r e c t i on 3 ~ 1 4 .

For any p o i n t d, e Q n o t c o i n c i d i n g w i t h any o f t h e d i r e c t i o n s

we have a sequence o f nondegenerate o f t h e s ides o f t h e t r i a n g l e s Th i n t e r v a l s Ik(d,) = [d, - ak , $ + Bk] , 0 G ak , Bk so t h a t

(b ) I k ( d , ) t r i a n g l e s T,, a t A

i s i n s i d e one ang le o f those determined by t h e

A p p l y i n g V i t a l i ' s theorem we can s e l e c t a f i n i t e number o f

Page 244: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.6. DIFFERENTIATION PROPERTIES 229

such s e t s I k ( 4 ) , c a l l them { E l , E 2 ,..., EH} , s a t i s f y i n g

(i) The s e t s E a r e d i s j o i n t j

( i i ) I I J E ~ I >

(iii) One endpo in t o f each Ek i s i n @ .

( i v ) Each E j i s i n s i d e one ang le of those determined by

t h e t r i a n g l e s Th a t A .

Now i n t h e c o n s t r u c t i o n o f t h e Per ron t r e e PE of Theorem 8.1.2.

we c o n s i d e r t h e t r i a n g l e S w i t h base on BC and v e r t e x a t A w i t h

angle a t A determined by E j and make S j s o l i d a r y w i t h Thy t h e

t r i a n g l e t h a t c o n t a i n s S . A f t e r t h e t r a n s l a t i o n s t h a t t a k e Th t o 7, t h e t r i a n g l e S . goes t o t h e p o s i t i o n 3 . . L e t us c a l l ? t h e t r i a n -

g l e symmetric t o Sj w i t h r e s p e c t t o i t s v e r t e x t r a n s l a t i o n of A. I f we

c o n s i d e r t h e B - F b a s i s Bs i n v a r i a n t by homothecies generated by

s1 YS2,. . . ,SH and c a l l MS t h e co r respond ing maximal o p e r a t o r , we have

j

J ' J J j

- Therefore, s i n c e t h e t r i a n g l e s sj a r e d i s j o i n t , by Remark 1

o f 8.1. , we have

where u i s a f i x e d number t h a t depends o n l y on p . Hence

Now i t i s easy t o see, l o o k i n g a t F i g u r e 8.6.2. t h a t

and so Msf c c M @ f

Page 245: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

230 8. THE B A S I S OF RECTANGLES

F i g u r e 8.6.2.

w i t h c independent o f t h e t r i a n g l e s S j .The re fo re

S ince E i s a r b i t r a r i l y sma l l we o b t a i n t h a t BQ cannot have t h e d e n s i t y

p r o p e r t y .

Tha t one b a s i s B, i s a bad d i f f e r e n t i a t i o n b a s i s i s n o t neces

s a r i l y due t o t h e f a c t t h a t 0 has t o o many d i r e c t i o n s as i n t h e p r e -

ceding theorem. It can be mo t i va ted by t h e d i s t r i b u t i o n o f t h e d i r e c t i o n s

con ta ined i n @ . As we have seen i n Theorem 8.6.1. i f

cp = I a r c t g 1, a r c t g 2, a r c t g 3, ... 1 t hen B, i s n o t a d e n s i t y b a s i s .

I n t h e same way i t can be shown t h a t i f 0 = I a r c t g 1, a r c t g PP,

a r c t g 3p,...3 then B has n o t t h e d e n s i t y p r o p e r t y . However i f P

QP @ = { a r c t g 2, a r c t g 2', a r c t g Z 3 , . . . I t h e n B, i s a good d i f f e r e n -

8.7. I n b o t h cases Imll= 0. t i a t i o n bas is , as w i l l be proved i n S e c t i o n

L e t now cp be t h e s e t o f d i r e c t i o n s determined by j o i n i n g

t h e p o i n t ( 0 , l ) t o t h e p o i n t s on Ox o f absc issae

1 , 2 , 3 , 3x2+1 , 3x2+2 , 32,32x2. 3%2+1,...32x2+3, 2+2 , 33,. .. k A f t e r 3k we t a k e

g e t 3 k x 2 + 3 k - 1 x 2 + 3 k - 2 x 2 + ... + 3 l x 2 + 3Ox 2.

number i s

3 x 2 and then we add t h e p r e v i o u s numbers u n t i l we

The f o l l o w i n g

Page 246: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.6. DIFFERENTIATION PROPERTIES 231

k+ 1 3k x 2 + 3k -1 x 2 + ... + 31 x 2 + 30 x 2 f 1 = 3

and now we con t inue . I t i s n o t known whether

b a s i s BQ B o * ob ta ined when we t a k e as O* t h e s e t o f d i r e c t i o n s determined by

j o i n i n g t h e p o i n t

success ive phases of t h e c o n s t r u c t i o n o f t h e Cantor s e t i n t h e u n i t i n t e r

Val o f Ox.

Ba i s a d e n s i t y b a s i s . T h i s

has t h e same d i f f e r e n t i a t i o n p r o p e r t i e s as those o f t h e b a s i s

( 0 , l ) t o t h e endpoints o f t h e i n t e r v a l s taken i n t h e

The bases Bd considered i n PROBLEM 3 a r e n o t B - F bases.

I t i s q u i t e easy t o see t h a t i f one can c o n s t r u c t a Nikodym s e t N

t h a t f o r each p o i n t x E N t h e d i r e c t i o n o f t h e l i n e l ( x ) so t h a t

l ( x ) f ) N = {XI c o i n c i d e s w i t h d ( x ) t hen Bd i s n o t a d e n s i t y b a s i s .

We can f o r m u l a t e t h i s f a e t a l i t t l e more p r e c i s e l y .

such

8.6.3. ___. THEOREM. Ah~ume thcLt N d a nQ.t 0 6 ponUve rneauhe i n R 2 nuch thcLt doh. each xsN t h e m d u L i n e l ( x ) Zhotaughxbatin6qing

l ( x ) II N = {XI. LeX d be a d i d d ol( ditrecLLo~o buch tha t d o t mch

xsN t h e f ine 1 ( x ) h a t h e d4,teotion d ( x ) . Then t h e bmd Bd AA not

a deMnMq b a h .

Ptoozf . We take a compact subset F o f N such t h a t

I F / > 3/4 I N 1 . For each x c F t h e l i n e l ( x ) i n t e r s e c t s F j u s t

a t x. So, us ing t h e compactness o f F, we can draw r e c t a n g l e s R o f

d i r e c t i o n d ( x ) , i . e . t h a t of l ( x ) , c o n t a i n i n g x and c o n t r a c t i n g

t o x so t h i n t h a t

< 1/3 I R I

The re fo re t h e l ower d e n s i t y o f F a t each o f i t s p o i n t s x w i t h r e s p e c t

t o Bd i s l e s s than 1 and so Bd i s n o t a d e n s i t y b a s i s .

We have a l r e a d y seen i n 8.5. t h a t one can c o n s t r u c t a Nikodym

s e t N such t h a t t h e d i r e c t i o n o f t h e l i n e l ( x ) v a r i e s i n a measurable

way. T h i s l eads t o t h e f o l l o w i n g r e s u l t .

Page 247: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

232 8. THE BASIS OF RECTANGLES

8.6.4. THEOREM. Them ~~~2 a covLtinuauh &ieRd 0 6 ditrecfionh d a n R ouch t h a t Bd 0 no2 a dennay b a d .

Ptraod. L e t N be a s e t o f p o s i t i v e measure such t h a t t h e

d i r e c t i o n d ( x ) o f t h e l i n e l ( x ) through x such t h a t N 0 l ( x ) = Cxj

v a r i e s i n a measurable way. By L u s i n ' s theorem we can take a compact

subset F o f p o s i t i v e measure such t h a t d (x ) v a r i e s c o n t i n u o u s l y . We

extend t h i s f i e l d o f d i r e c t i o n s c o n t i n u o u s l y t o R2 , o b t a i n i n g d. The

ng t o t h e p reced ing theorem cannot be a d e n s i t y bas i s . b a s i s Bd accord

We sha l l a t e r see i n Chapter 9 t h a t a c c o r d i n g t o a r e s u l t

o f Casas [1978 1 , when d ( x ) i s a L i p s c h i t z f i e l d o f d i r e c t i o n s then

i t i s n o t p o s s i b l e t o c o n s t r u c t a Nikodym s e t N x E N

l ( x ) has d i r e c t i o n d ( x ) . I t i s n o t known y e t whether t h e L i p s c h i t z

c o n d i t i o n o f d i s s u f f i c i e n t t o make of Bd a d e n s i t y b a s i s . I n

Chapter 12 we s h a l l p r e s e n t some p o s i t i v e r e s u l t s o f S t e i n and Wainger

[I9781 f o r some smooth f i e l d s o f d i r e c t i o n s .

such t h a t f o r

When t h e f i e l d d has a coun tab le number o f va lues EdhlF=l

t h e b a s i s Bd d i f f e r e n t i a t e s ~ ( 1 + l o g + L ) .

f E L (1 t l o g L ) (R2) and Eh = { x : d ( x ) = d h l . L e t Bd be t h e

b a s i s o f a l l r e c t a n g l e s i n d i r e c t i o n dh . We know t h a t Bd d i f f e r e n :

t i a t e s i f . There fo re t h e s e t o f p o i n t s o f Eh where Bd does n o t

d i f f e r e n t i a t e f i s o f n u l l measure . Since t h e r e i s a denumerable

c o l l e c t i o n of s e t s Eh , t h e s e t o f p o i n t s o f R2 where Bd does n o t

I n f a c t , l e t +

h

h

I f i s o f n u l l measure.

Page 248: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.7. LACUNARY DIRECTIONS 233

8.7. SOME RESULTS CONCERNING BASES OF RECTANGLES I N LACUNARY DIRECTIONS.

The problem d e a l t w i t h h e r e i s t h e f o l l o w i n g . Assume @ i s

t h e f o l l o w i n g s e t o f d i r e c t i o n s Q, = { 2- , 2L , i!L , 2- ,... I . Consider 2 2 2 3 2 4 2 5

t h e b a s i s

What a r e t h e d i f f e r e n t i a t i o n p r o p e r t i e s o f t h e b a s i s

[1976] proved t h a t t h i s b a s i s d i f f e r e n t i a t e s

any E > 0 . t h a t BQ, d i f f e r e n t i a t e s L2( T h i s i s e q u i v a l e n t , s i n c e B@ i s i n v a r i a n t

by homothecies, t o t h e f a c t t h e maximal o p e r a t o r MQ, a s s o c i a t e d t o

i s o f weak t y p e ( 2 , Z ) ) . The methods used by Stromberg and a l s o by C6r-

doba and R.Fefferman i n v o l v e pu re r e a l v a r i a b l e c o n s i d e r a t i o n s o f t h e

t ype we have been h a n d l i n g i n t h i s and t h e p reced ing two chap te rs . L a t e r

on S t e i n and Wainger [1979 1, by methods o f F o u r i e r a n a l y s i s , have im-

proved these r e s u l t s .

8@ o f r e c t a n g l e s w i t h one s i d e i n one o f t hese d i r e c t i o n s .

L 2 ( log' L)4+E (R2) f o r

B o ? Stromberg

Wi th e a s i e r means C6rdoba and R.Fefferman [1977] proved

Bo

Here we s h a l l examine t h e method o f C6rdoba and R.Fefferman

w i t h a s l i g h t l y mod i f i ed v e r s i o n o f t h e b a s i s

e a s i e r t o handle. From t h i s r e s u l t t h e same c o v e r i n g theorem and t h e

weak t y p e (2,2)

f o r t h e above b a s i s .

B@

f o r t h e co r respond ing maximal o p e r a t o r can be o b t a i n e d

t h a t w i l l be a l i t t l e

We s h a l l c o n s i d e r t h e b a s i s &i o f a l l p a r a l l e l o g r a m s R

s a t i s f y i n g :

( a ) Two o f t h e i r s i d e s a r e p a r a l l e l t o Oy.

(b ) The o t h e r p a i r o f s i d e s have one o f t h e d i r e c t i o n s

T I 7 1 {-, - , ... 1

2 2 2 3

( c ) The p r o j e c t i o n p(R) o f R ove r Ox i s a dyad ic i n t e r v a l .

(d ) Each R i s so t h i n t h a t i f i i s t h e min imal i n t e r v a l

c o n t a i n i n g R we have l R l / l i l G 1/8 .

F o r t h i s b a s i s & we s h a l l prove t h e f o l l o w i n g c o v e r i n g re-

s u l t .

Page 249: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

234 8. THE BASIS OF RECTANGLES

H

H

(Here and i n the proof, t he constantc i s a pos i t i ve absolu te constant n o t depending on the co l l ec t ion a t each occurrence )

(B,)aeA , not always the same

Ptuo6. We can f i r s t s e l e c t a f i n i t e sequence C B 1 , ..., BN 3 - -- from so t h a t

N I ( ' B,I c 21 y Bk l

We can assume t h a t B1 , B 2 , . . . have been so ordered t h a t

b ( B j ) = length of projection of 9-. over Ox > length o f J proyection of B j t l over Ox = b ( B . ) J+1

Also we can assume t h a t no 9 . i s contained i n another one. J

We s t a r t choosing the R s e t t i n g R1 = B1 . We examine B 2 . I f

j

then we s e t R2 = B2 . Otherwise we leave B2 as ide . Assume R 1 = B1 , R 2 = B2 . Examine B3 . I f

2

1 9 1'31 1 I B3 0 R. J I = XB, ii, X R j i =1

then R B = B 3 . Otherwise we leave B3 as ide . Assume t h a t R 1 = B 1 ,

R P = B1 , B 3 has been l e f t . Consider B1, . I f

Page 250: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.7. LACUNARY D I R E C T I O N S 235

1 ! xBl, ( R1 + XR,) 6 7 1 8 4 1

then R 3 = B 4 . Otherwise we l e a v e B4 as ide . And so on. So we f i n i s h

ou r s e l e c t i o n i n a f i n i t e number of s teps o b t a i n i n g CR.1: t h a t s a t i s f y : J

( a ) b ( R j ) b ( R j + l )

1 h (b ) I ( XRj) XR ‘ 7 I R h + l l

h+ 1

( c ) I f Bi has n o t been chosen , then

P r o p e r t y ( i i ) i s e a s i l y ob ta ined . I n f a c t

But we have

There fo re l I R j 1 c 2 I OR j I and we g e t ( i i ) . To prove p r o p e r t y ( i ) we use ( c ) , ( d ) and t h e l a c u n a r i t y o f

t h e sequence as f o l l o w s . I f Bi has n o t been chosen, then

There fo re we have

Page 251: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

236 8. THE BASIS OF RECTANGLES

or

or

where d ( R j ) ( A ) i s true are in the si tuation o f the figure

means the direction 4 of R j . The se ts Bi for which

Figure 8.7.1.

If we intersect by a vertical l ine 1 , x X ilnd call M1

the unidimensional maximal operator w i t h respect t o intervals of get

1 we

1 1 0 Bi C {(Xyy) : M 1 ( l X R j ) (1,~) > g 1

Therefore the union of a l l se ts Bi f o r which (A ) h o l d s has a measure n o t exceeding

Page 252: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.7. LACUNARY DIRECTIONS 237

Consider now a s e t Bi f o r which (B) i s t r u e .

J R j i n t e r e s t i n g Bi such t h a t d(R.) > d(Bi) and b(Rj ) > b

Draw t h e minimal c losed i n t e r v a l Bi c o n t a i n i n g Bi . We sha

- IBi 0 R . 1 [Bi 0 R . 1

J (*I > c l j I I B j l

So we have

ake one

B i ) . 1 p rove

- Therefore Bi c Bi c Ix : MZ 1 x R . ( x ) > 2 j

3 where MZ i s t h e maximal o p e r a t o r w i t h r e s p e c t t o i n t e r v a l s o f R2. Thus

we o b t a i n t h a t t h e union of t hose B, f o r which (B) i s t r u e has a rea

1 ess than

I n o r d e r t o prove (*) we cons ide r t h e f o l l o w i n g f i g u r e

I I

4

A I 1 I I I l a I I I I

4

F i g u r e 8.7.2.

Page 253: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8. THE B A S I S OF RECTANGLES

j We have, whatever i s t h e s i t u a t i o n o f R

Bu t i t i s now easy t o show, because o f t he l a c u n a r i t y o f Q

f a c t t h a t Bi i s t h i n , t h a t 6 c. So we have

and t h e a

F i g u r e 8.7.3.

For a s e t Bi so t h a t ( C ) i s t r u e a s i m i l a r c o n s i d e r a t i o n

holds. So we o b t a i n

and t h e theorem i s proved.

8.7.2. COROLLARY. The maxim& op&on M comenponding t o

B ,455 ad weak .type (2,2).

Phood . L e t f E L 2 and A = I M f > A > 0 . If K i s any

compact subset of A and x E K t h e r e i s R, f B c o n t a i n i n g x such

t h a t

Page 254: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

8.7. LACUNARY D I R E C T I O N S 239

we a p p l y t h e theorem , o b t a i n i n g E R j I . So we have To ( R X ) X E K

Page 255: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 256: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 9

THE GEOMETRY OF LINEARLY MEASURABLE SETS

The geometric theory of l i nea r ly measurable s e t s i n R2 was developed mainly by Besicovitch. His fundamental papers on t h i s subjec t were wr i t ten i n 1928, 1938, 1939, 1964. The whole theory i s i n i t s e l f qu i t e i n t e re s t ing and beautiful and does not seem to have been suf f ic ien- t l y exploited from the point of view of i t s connections w i t h the real var iab le theory. I n the au thor ' s opinion i t shows promising signs of becoming a very useful tool t o handle some of the problems a r i s i n g in areas where one has t o look carefu l ly a t the geometric s t r u c t u r e o f s e t s of R 2 w i t h two-dimensional measure zero o r of co l l ec t ions of f igures t h a t in some sense can be assimilated t o them. e r in Chapter 8 co l lec t ions of th in rectangles of d i f f e r e n t nature. As we have seen, ce r t a in f igures associated to two-dimensional s e t s of Le- besgue measure zero,such as the Besicovitch s e t o r the Nikodym s e t can shed a powerful l i g h t on them. As we sha l l l earn in t h i s Chapter, Besicovitch's theory of l i nea r ly measurable s e t s will help us t o under- stand b e t t e r some of these s i t u a t i o n .

We have been led t o consid

The theory, of which we are going t o give a glimpse here, abounds in problems a n d theorems tha t look q u i t e elementary, The t r ea t - ment of them, however, i s often qu i t e complicated and the re a re many questions s t i l l open in the f i e l d . I t would be very des i r ab le t o have more straighforward proofs o f many o f the r e s u l t s we sha l l study. There i s in the l i t e r a t u r e no complete systematic exposit ion of t h i s beaut i fu l portion of the geometric measure theory, t h o u g h some of the r e s u l t s can be presented as pa r t i cu la r cases o f the general theory of Federer ' s book [1969].

In what follows we sha l l developed some of t he f a c t s t h a t a r e needed t o a r r i v e t o some in t e re s t ing appl ica t ions , espec ia l ly t o

241

Page 257: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

242 9. GEOMETRY AND LINEAR MEASURE

t h e tvDe o f problems we have been h a n d l i n g i n t h e l a s t Charjter. Our

e x p o s i t i o n i s s t r o n g l y i n s p i r e d i n t h e work o f who has

improved and S i m D l i f i e d some p o r t i o n s o f t h e t h e o r y o f B e s i c o v i t c h .

A.Casas [1978]

9.1. LINEARLY MEASURABLE SETS.

The Hausdor f f measure As o f dimension s , 0 c s c 2 , i n R 2 i s d e f i n e d i n t h e f o l l o w i n g way, Fo r E c R 2 and p > 0

one f i r s t cons ide rs

The q u a n t i t y ASCE1 , i nc reases as p decreases and we c a l l P

A S * ( E ) = l i m A; (E) . Then As* i s an o n t e r measure, Cara th6odorv ' s P'O

process g i v e s us t h e assoc ia ted measure A s . and each B o r e t s e t i s As-rneasurable, Fur thermore t h e measure AS i s r e q u l a r . For each s e t E t h e r e i s a s i n g l e number t, 0 c t C 2

such t h a t f o r s i t we have AS(E) = m and f o r each s > t, A s ( E ) = O .

The s e t E i s then s a i d t o be of Hausdor f f dimension t. It can, of

course , s t i l l happen A (E) = 0 o r At (E) = m . B e s i c o v i t c h [1928,

1938, 1939, 1 9 6 4 1

f i n i t e l i n e a r measure, i . e . o f those s e t s E such t h a t 0 c A 1 ( E ) < m . We s h a l l r e s t r i c t our a t t e n t i o n t o such s e t s and so we w i l l w r i t e A f o r

A' . I n t h i s chapter , un less o t h e r w i s e e x D l i c i t l y s t a t e d , "meanukable" w i l l mean

T h i s measure i s complete

t

s t u d i e d t h e geometr ic p r o o e r t i e s o f t h e s e t s o f

'I A-meaukable w a h dinite t n m u h e " .

Before we l o o k a t t h e d e n s i t y p r o o e r t i e s o f such s e t s we s h a l l

prove a u s e f u l form o f t h e V i t a l i theorem f o r t h e measure A .

Page 258: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.1. LINEARLY MEASUREABLE SETS 243

9.1.1. THEOREM. 1eR: E be a meau/Lab.ee b d . Fok each x 6 E a heqUenCe { C k ( x ) > a6 c&ohed CitLdeA centeked CLt x WLth 6 ( C k ( x ) ) + 0

A given . Let E > 0 . Then o ~ e CUM choahe a sequence {D;} ad & j o i n t J

c & c l e ~ @om (Ck (x ) IxeE such thcLt

k=l ,2 ¶ . . .

A ( E - D.) = rl J (i 1 j

( i i ) A C E ) c 1 6 ( ~ ~ ) t E j

I n o r d e r t o o b t a i n ( i i ) we prove f i r s t t h e f o l l o w i n g n r o p e r t y

t h a t , f o r re fe rence , we s t a t e s e n a r a t e l y as a lemma.

9.1.2. LEMMA. 1eX E be meanuhable and E > 0 . Then thehe

e x i ~ a 2 p > 0 , p = ~ ( E , E ) , nuch LhcLt d n f i each coReection (Ba)aeA

06 B u t e l b& such t h d 0 < 6 (Ba) < p WQ have

P4ood. We can assume t h a t (BalacA i s a coun tab le c o l l e c t i o n , - If h(E) = 0 n o t h i n g i s t o be proved. Assume A ( E ) > 0. From t h e

d e f i n i t i o n o f h(E), g i ven E > 0 t h e r e e x i s t s P O such t h a t f o r each

sequence { A j } w i t h 6(Aj ) < P O such t h a t ( J A , D E we have

k l e t , f o r each k = 1 , Z ¶... { A , } be a sequence o f s e t s whose u n i o n J k covers E - !I Bu w i t h 0 < 6(Aj) < P O and such t h a t

1 AS) + A ( E - 1) B ~ ) as k + m

J 1 6(Aj ) ?; A ( E ) - E. Assume P 6 P O . L e t us c o n s i d e r E - ! J B, and

j k Then [ A j } IJ {Ba) i s a cover of E w i t h d iameter l e s s than p o . T h e r e

f o r e

But i f we make k t e n d t o m then we g e t

Page 259: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

244 9. GEOMETRY AND L I N E A R MEASURE

P4ood ad Theo4em 9.1.1. We f i r s t choose p acco rd ing t o

t h e lemma we have j u s t proved and cons ide r c i r c l e s

l e s s than

( i ) , t hen

C,(x) o f d iameter

p , So we now have t o ca re o n l y about ( i ) , s i nce , i f we g e t

A ( E ) = A(E 0 I! D s ) 6 1 6 ( D j ) + E

Fo r each x E E we choose f i r s t one such c k ( x ) and aoo ly B e s i c o v i t c h

cove r ing theorem 3.2 .1 . o b t a i n i n g a f a m i l y I S k } o f c i r c l e s whose un ion

covers E t h a t can be d i s t r i b u t e d i n t o 5 d i s j o i n t sequences

{ S i I ,..., 1 . For one o f them, say { S i l , we must have

s i n c e o the rw ise

and t h i s i s c o n t r a d i c t o r v .

Now we have

A ( E - ( IJ S i ) ) 6 tL A ( E ) 5

We keep a f i n i t e number o f s e t s o f { S i l , c a l l i n g them {D j ) and g e t

H1 A(E - D ~ ) 6 + A ( E ) = X A ( E ) , A < 1

1 5+ 7

H1 We can now oroceed w i t h El = E - IJ D j as we have done w i t h E o and

o b t a i n IDjlHH:+l so t h a t 1

H2 H2 A ( E - 1) D j ) 6 X A ( E - I! D j ) 6 X 2 A ( E )

H1+1

Page 260: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.2. REGULAR AND IRREGULAR SETS

I n t h i s way we o b t a i n C D j I s a t i s f y i n g ( i ) and ( i i ) .

9.2. DENSITY , REGULAR AND IRREGULAR SETS.

L e t E be a measurable s e t , 0 L A ( E ) < m. Fo r x 8 R 2 we

cons ide r t h e l i m i n f and t h e l i m sup as r + 0 o f

A ( E 0 B(x, r ) ' - 2 r

where B(x,r) i s a c losed c i r c l e cen te red a t x and o f r a d i u s r > 0 .

They a r e r e s p e c t i v e l y t h e l o w t and t h e uppm devm3ity ( t h e derm%q , i f they c o i n c i d e ) o f E a t x. We denote them by D(E,x) , D(E,x) (D(E,x) if t h e y a r e e a u a l ) .

- We s h a l l f i r s t prove t h a t t h e f u n c t i o n s - D ( E , * ) , D(E,*) a r e

measurable. Fo r t h i s l e t 1 > 0 and F = I x 6 R 2 : D(E,x) > A } . L e t

p > 0, E > 0 be two r a t i o n a l numbers and l e t

p o i n t s x on which

F ( P , E ) be t h e s e t o f

- A ( E 17 B(x,r)) 2 r

A + €

f o r each r 6 p . We have c l e a r l y

We now prove t h a t each F ~ , E ) i s a c losed s e t . I f { x k 1 c F ( p , € ) , x k + x , then f o r each r b p t h e r e i s an i ndex ka such t h a t i f

k a k a we have Xk B B(x, r ) . L e t B(xk,rk) be t h e c i r c l e cen te red

a t xk and o f maximal r a d i u s con ta ined i n B ( x , r ) , We have rk c r 4 p

and l i m rk = r. We a l s o have

245

Page 261: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

246 9. GEOMETRY AND LINEAR MEASURE

There fo re A(E 11 B(x , r ) ) >, 2 r ( X + E and so x 6 F(P,E) . I n a

s i m i l a r way one ge ts t h e m e a s u r a b i l i t y o f 6(E,.).

By means o f t h e cove r ing lemma 9.1.1. we e a s i l y o b t a i n t h e

f o l l o w i n g p r o p e r t i e s f o r t h e d e n s i t y .

9.2.1. THEOREM . L e X E be a measwrabLe b e X . Then at cLemont

each x 6 E we have D(E,x) = 0 .

P m o d . L e t us f i x c1 t 0 and de f i ne __

We t r y t o Drove t h a t ACHl = 0 . L e t E > 0 and F be a compact subset

o f E s a t i s f y i n g A(E - F ) 6 E , For each x e H we have a sequence

o f c losed c i r c l e s (Dk(x)) cen te red a t x and c o n t r a c t i n g t o x such

t h a t

We app ly t h e cove r ing lemma 9.1.1. w i t h n z 0 and o b t a i n a d i s j o i n t

sequence {Ski o f c i r c l e s such t h a t

There fo re

Page 262: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.2. REGULAR AND IRREGULAR SETS

1 A ( H ) 6 cl 1 A(E (1 s k ) + q = 1. A ( E (1 ( s k ) ) t r7 = c1 k

Since E and q a r e a r b i t r a r i l y small , we have A ( H ) = 0.

9.2.2. THEOREM . L & t E be meaukable. Then CLt &oh2 each

x E E we have

1 6 D(E,x) 6 1

P t l a a d . Let us f i x c1 > 0 and def ine - F = { x e E : 6 ( E , x ) > l t a )

For each x 6 F there centered a t x cont rac t ing t o

According t o the previous r e s u l t

247

i s a sequence C C k ( x ) ) of closed c i r c l e s x such t h a t

we know t h a t we have a t almost each x E F

Therefore, f o r almost each x E F , we have

We apply the covering theorem 9.1.1. w i t h E 0 obtaining a seauence f S k } o f d i s j o i n t c i r c l e s such t h a t

Page 263: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

248 9 . GEOMETRY AND LINEAR MEASURE

t E = - A ( F ) t l+a

Hence A(F) and s i n c e E i s a r b i t r a r i l y sma l l , A(F) = 0.

Hence D(E,x) 1 a t a lmost each x 6 E.

I n o r d e r t o prove t h a t D(E,x) 2 1 / 2 a t a lmost each x E E, l e t 11s f i x P < 1/2 and l e t

For r > 0 l e t Gr be t h e s e t o f t hose p o i n t s x 6 G such t h a t i f

C(x) i s a c l o s e d c i r c l e cen te red a t x w i t h r a d i u s l e s s t h a n r we

have

I t i s easy t o see t h a t Gr i s c losed and

Gr G =

O < r e Q

We t r y t o prove t h a t A(G,) = 0 . Assume A(Gr ) > 0. Acco rd ing t o

t h e d e f i n i t i o n o f

s e t s { A ? of diameter l e s s than r / 4 so t h a t

A(Gr) , f o r any rl > 0 t h e r e e x i s t s a sequence o f

Fo r a t l e a s t one o f these s e t s Ak we have t h e r e f o r e

Page 264: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

L t x e A k ( 7 G r

9 . 2 . REGULAR AND IRREGULAR SETS

6(Ak) < (1 + Q) A ( G r Ak)

nd l e t C ( x ) be the minimal closed c i r c l e c a t x containing Ak. We have

1 6 ( c ( X ) ) 6 & ( A k ) < (1 -t Q) A ( G r (1 A k ) 6 (1 + rl) h ( G r

SO

249

ntered

we have D(A,x) = n (B ,x ) , and - D(A,x) = - D(B,x ) a t almost each x E B We can s t a t e t h i s more generally.

9 .2 .3 . THEOREM. L c L I E k ) bc a dcljucnce od meawlable bC.65

nuch ,that E = 0 Ek A &o 06 6inLf-e i\-meaAme. Then at dmob, t

each. p in t x 06 each Ek we have

Contrarily t o what happens with the two-dimensional Lebesgue measure, there e x i s t A-measurable s e t s E such t h a t the dens i ty D ( E , * ) e x i s t s and i s s t r i c t l y between 0 and 1 a t each point of a subset o f E of pos i t ive measure . This makes the whole theory more in t e re s t ing and a l so more complicated.

Page 265: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

250 9. GEOMETRY AND L INEAR MEASURE

9 . 2 . 4 . DEFSNTTTON. Let E be measurable. A point x e E wil l be called a treguRatr p o i a t of E I f D(E,x) = 1 . Otherwise x i s s a id t o be an i m e g u h t p o i a t of E . A s e t E i s ca l led treguRan when almost a l l of i t s points a r e regular. A s e t E i s sa id t o be i m e g u h t when almost a l l of i t s points a r e i r r egu la r .

By Theorem 9.2.3. t h e b e t a 6 tregul?atr p o i n t h o d E a xeg.guRuJc

b e t und t h e b e t 06 L m e g d a n point2 b an LmeguRcv~ A & .

d i s j o i n t . Both s e t s a r e

So the study of the s t r u c t u r e of E can be reduced t o the study of regular s e t s a n d o f i r r egu la r s e t s . Regular and i r r egu la r s e t s have sharply contrasting geometric, p roper t ies , as we sha l l see.

Before we go on t o consider some of them we prove a useful ex-

tension of the covering theorem 9 .1 .1 .

9.2.5. THEOREM. L e A E be any meabutrabLe set. Fotr each x e E

Let {Hk(x)} be a bqUenCe a4 rneccnutluble ne,t% con,taining x , conttuc - Ling t o x ( i . e . 6 ( H k ( x ) ) -f 0 ) , aMd nuch Ahat

with c1 independent o h X . Le,t E > 0.

Ptrood. By Lemma 9.1.2, i f we consider only s e t s Hk(x) t ha t a r e su f f i c i en t ly small , i t wi l l be s u f f i c i e n t t o prove ( i ) . f o r any ri , 0 c n < - , we have a t almost each x e R 2 , for any sequence of su f f i c i en t ly small c i r c l e s c k ( x ) contracting to x and centered a t x,

We know t h a t c1

4

Page 266: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.2. REGULAR AND IRREGULAR SETS 251

Therefore, f o r a lmost each x B E we can s e l e c t a sequence

CHk(x)1 so t h a t , if C,(x) i s t h e s m a l l e s t c i r c l e cen te red a t x

c o n t a i n i n g Hk (x ) (and t h e r e f o r e 7 1 B(Ck(x)) 6 6 ( H k ( x ) ) c b(Ck(x ) ) ,

We app ly t h e c o v e r i n g lemma 9.1.1 and o b t a i n a d i s j o i n t sequence

{ c k j so t h a t

{ H k } we have

A ( E - I J C ~ ) = 0. If we t a k e t h e co r respond ing s e t s

A ( E - IJ H k ) = A ( E (1 ( IJ (Ck - H k ) ) ) =

We can take a f i n i t e number o f s e t s Hk so t h a t

h l 1 t q - g * A ( E ) = A A ( E ) , A 1 1 M. A ( E - 0 Hk) 6

1 1 t + - 2)

h l We can r e p e a t t h e process w i t h El = E - 11 Hk and so on. I n t h i s

way we o b t a i n f i n a l l y t h e s tatement o f t h e theorem. 1

Page 267: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

252 9. GEOMETRY AND LINEAR MEASURE

9.3. TANGENCY PROPERTIES

From t h e d e f i n i t i o n s i t i s easy t o show t h a t i f S i s a r e c t i -

f i a b l e curve (more p r e c i s e l y , t h e graph o f a r e c t i f i a b l e cu rve ) o f f i n i t e

l eng th , then S i s measurable and i t s A-measure c o i n c i d e s w i t h i t s

l e n g t h . On t h e o t h e r hand i f S i s such a curve, x i s one o f i t s p o i n t s

which i s n o t an endpo in t o f t h e cu rve and C(x) i s any c losed c i r c l e

cen te red a t x we have

when C(x) i s s u f f i c i e n t l y s m a l l . T h e r e f o r e D(S,x) >, 1 and so we

have O(S,x) = 1 a t a lmos t each x e S. Hence we have t h e f o l l o w i n g

r e s u l t .

9.3 .1 . THEOREM. E v a y tLecti&iabLe cuhve 06 dinite LengRh 0

U hegdUh b d .

We know t h a t a r e c t i f i a b l e cu rve has a tangen t a t a lmos t each

o f i t s p o i n t s .

l i k e a r e c t i f i a b l e curve and an i r r e g u l a r s e t i s something comp le te l y

o p p o s i t e t o a r e c t i f i a b l e cu rve .

widen a l i t t l e t h e n o t i o n o f tangent , an i r r e g u l a r s e t has a tangen t a t

a lmost none o f i t s p o i n t s .

We s h a l l see t h a t i n many respec ts a r e g u l a r s e t behaves

We s t a r t by showing t h a t , even i f we

9.3.2. PEFTNTTIUN. L e t E a measurable s e t and x e E be

such t h a t 6(E,x) > 0. The tangent dt x t o E i s d e f i n e d as t h a t

un ique s t r a i g h t l i n e t, i f i t e x i s t s , such t h a t f o r each, E , 0 < E < i, t h e d e n s i t y a t x o f t h e s e t E - R( t ,E) i s zero, where R(t,E) i s t h e

shaded c losed s e c t o r i n t h e f i g u r e below.

Page 268: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.3. TANGENCY PROPERTIES 253

We s h a l l now prove a r e s u l t f rom which t h e non-ex i s tence o f t h e

tangen t a t a lmost each p o i n t of an i r r e g u l a r s e t i s i nmed ia te .

9.3.3. THEOUEM. Le.2 E be an &egulah A&, a (0) a dixed dobed angle a d arnpLLtude ct , 0 < ct < T , with v M e x . c d 0 and L e i

8*(0) denote t h e VppUAih? angle. FOR each x e R z leA: a ( x ) and

u * ( x ) denote t h e ;thaMnlcuXaMn oh a(0) and a*(O) t o x . Then cd

& o ~ t each x e E we have

1 a ( E 0 a(x) ,x) + D ( E 0 a*(x),x) x 5 s in ct

Phood. We can assume E t o be bounded. We t ry t o p rove t h a t _I_

t h e s e t o f p o i n t s x e E such t h a t

1 (*) D(E ('I a ( x ) , x ) + 6 ( E o a*(x) ,x) < 4 s i n a

To do t h a t i t s u f f i c e s t o show t h a t i f we f i x E] , E ~ , 0 < €1 , 1 4 0 < s p , E I + E Z < - sen ct t hen t h e s e t E ( E ~ , E ~ ) o f p o i n t s x e E

such t h a t

i s o f n u l l measure. Assume i t i s n o t so L e t E ( E I , E 2 , r O ) be t h e subse t

o f E(E],Ez) o f p o i n t s x 8 E ( E ~ , E z ) such t h a t f o r each r < r o we

Page 269: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

254

have

9. GEOMETRY AND LINEAR MEASURE

A ( E f7 u(u) f? C ( x , r ) ) < E12r

A ( E 17 u* (x ) f Y C (x , r ) ) 6 ~ ~ 2 r

where C(x, r ) means t h e c losed c i r c l e o f c e n t e r x and r a d i u s r. I t i s

easy t o show t h a t E ( E ~ , E ~ , ~ ~ ) i s measurable. And we have

E(EI ,E~) = \ I E ( E ~ , E ~ , ~ ~ ) I J Z , A ( Z ) = 0 O < r o e Q

and so some E ( E I , E ~ , ~ o ) has p o s i t i v e measure. From t h e d e f i n i t i o n o f

E ( E ~ , E ~ , ~ ~ ) by c losed convex s e t s { A k } such t h a t

A ( E ( ~ 1 ~ ~ 2 , r - o ) ) we see t h a t i f q > 0 t h e r e must be a cove r ing o f

There fo re t h e r e i s some A k y l e t us c a l l i t A, such t h a t

We can take a compact subset F o f E ( E ~ ,E2 , r0 ) 0 A such t h a t

and f o r each p o i n t x o f F we have, if r < r o

We s h a l l now t r y t o prove by geometr ic c o n s i d e r a t i o n s t h a t t h i s contra-

d i c t s El+ E~ < T s i n CI . 1

Page 270: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.3. TANGENCY PROPERTIES 255

We t a k e a1,bl E F , al E a*(bl), bl E o(al) such t h a t

d(al,bl) = sup d(a,b) : a E F 11 a * ( b ) , b E F 17 o ( a ) 1

Th is can be done i f t h e s e t i n c u r l y b racke ts i s n o t e m p t y - s i n c e F i s

compact. (If t h a t s e t i s empty,what we a r e go ing t o do by t h i s process

we s t a r t now i s t r i v i a l ) .

From t h e e l e c t i o n o f al,bl i t i s c l e a r t h a t

and s i n c e d(al

A ( F (1 a(al

A ( F 11 o*(bl

bl) < r o we have

If we c a l l P I t h e i n t e r i o r o f a ( a l ) II a * ( b l l f1 C (a l ,d (a l ,b l ) ) (1

1 ) C(bl,d(al,bl)), we have A(F (1 PI) s ( € 1 + ~ 2 ) 2 d ( a l , b 1 )

If

s i b l e , a2,b2 E Q I (1 F , a2 Q o*(bz) , b2 E o(a2) such t h a t

O1 = R 2 - P I , then O1 I1 F i s compact . L e t US now take , i f pos-

D e f i n e as b e f o r e

The s e l e c t i o n process can be f i n i t e o r i n f i n i t e . I n any case observe

t h a t if we p r o j e c t t h e segments a . b

P2,02 and c o n t i n u e i n t h i s way as l o n g as p o s s i b l e .

on one o f t h e s i d e s o f t h e ang le

p a r a l l e l y t o t h e o t h e r t h e p r o j e c t i o n s a r e d i s j o i n t and so, s i n c e J j

a(0) &(A) < ro we have d (a . ,b . ) -+ 0 i f t h e r e a r e i n f i n i t e segments 1

J J a . b There fo re i n any case we have t h a t J j ‘

F - 0 P j = F 11 0 Qj j>l j>l

cannot c o n t a i n two d i f f e r e n t p o i n t s a,b such t h a t a E &(b ) , b Q .(a).

Page 271: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

256 9 . GEOMETRY AND L INEAR MEASURE

Hence f o r each two points a ,b i n F - II P i the segment ab forms an j > l

angle w i t h the b issec tor l i n e of o(0) of amplitude biqger than a n d

so F - P j i s contained in a Lipschitz ( the re fo re r e c t i f i a b l e ) curve.

Since F i s assumed t o be i r r egu la r , we necessar i ly have j>l

A ( F - IJ P . ) = 0. j > l J

We now estimate

projections of a . b over other s ide 1" and a" b"

J j

j j

We can then wr i te

A ( F 0 ( IJ P j ) ) , Let us c a l l a! J J b! the i > l

the s ide u l ' of a(0) para l l e ly t o the the ones over 1 " pa ra l l e ly t o 1 ' .

O n the other hand

4 , 6 ( A ) s i n c1

Since n > O i s a r b i t r a r i l y small we get

9.3.4. 'TtEfJREM, L e t E be an ih 'w jda t r beX. Then ,the b& - 06 poi& x a E at urkich t h e tangent t o E e x A a 2 0 6 nu& m m u m .

The proof is obvious from Theorem 9 . 3 . 3

Besicovitch defined a Z - A ~ as a measurable set whose in te r - On t he o ther hand

Y-6e t i s a measurable s e t contained i n a conmutable union of r ec t i - sec t ion w i t h any r e c t i f i a b l e curve has measure zero. a f i abl e curves.

Page 272: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.3. TANGENCY PROPERTIES 257

I t i s obvious t h a t any i r r egu la r set i s a Z-set and one can e a s i l y observe t h a t the statement and proof of Theorems 9.3.3. and 9 .3 .4 . a r e va l id i f we merely assume E t o be a Z-set .

Besicovitch [19381 proved a l so the following important f a c t .

9.3.5. THEOREM. I6 E b a 2 - h d , ,then D(E,x ) s 314 at

a h a o t each x 6 E .

From t h i s theorem we e a s i l y obtain the following charac te r iza- t i o n of i r r egu la r s e t s .

T h i s gives us e a s i l y the charac te r iza t ion of regular s e t s

9.3.7. THEOREM. A rneuuhable A & E b hegdan i d and o n l y

id AX A a h o b t a Y - A ~ ( i . e . id thehe. e.xhd.4 N c E , A ( N ) = 0

ouch ,that E - N h a Y-set).

P h O O d Of course any s e t E t h a t i s almost a Y-set i s regular . - We have A ( E ) < .

Let us now assume A ( € ) > 0 and E regular . Let cil = S U P I A( y ( X E ) : y r e c t i f i a b l e curve 1 . Since E i s not a

Z-set we have cil > 0 and the re e x i s t s a r e c t i f i a b l e curve y1 such t h a t ACE I1 r l ) > . Consider E l = E - y1. If A ( E l ) = 0 then we ge t t he statement o f the theorem. I f A ( E 1 ) > 0 , since E l i s again n o t a Z-set we can f ind a r e c t i f i a b l e curve y2 such t h a t

a1

1 1 ACEI (7 y2) > scx2 = 7 sup A ( E l (1 y ) : y r e c t i f i a b l e curve)

H

1 J And so on. I f the process is f i n i t e , c l e a r l y A ( E - LJ y . ) = 0. I f

i n f i n i t e , then c1 -f 0 . Call Em = E - II yj and assume A(Eoo) > 0 .

Then we can find a r e c t i f i a b l e y such t h a t A(Em I1 y ) = ci > 0 and this cont rad ic t s t he e lec t ion of the ci f o r CI s u f f i c i e n t l y small .

j

j j

Page 273: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

258 9. GEOMETRY AND LINEAR MEASURE

m

j . There fo re h(Em) = 0 and E - E,c " y

We a r e n o t go ing t o p resen t he re t h e p r o o f o f Theorem 9.3.5.,

s i n c e i t i s p r e t t y l o n g and compl icated. We o n l y remark t h a t as a con-

sequence o f t h e p rev ious theorems we o b t a i n t h e f o l l o w i n q c h a r a c t e r i z a -

t i o n o f r e g u l a r and i r r e g u l a r s e t s i n terms o f tangency p r o n e r t i e s . The

p r o o f i s s t a i g h t f o r w a r d s t a r t i n g f rom 9.3.6. and 9,3.7.

9.3.8. TffEOREM. A m~anutra6Le he,t E 4eguLa.k 4 and vnP.rr

id Lt han a 1ange.d aR: demvh-t each 0 6 L t b poha%.

9.4. PROJECTION PROPERTIES.

A r e c t i f i a b l e cu rve ( O f p o s i t i v e l e n g t h ) has o r thogona l

p r o j e c t i o n o f p o s i t i v e l i n e a r measure on eve ry s t r a i g h t l i n e wi th t h e

p o s s i b l e excep t ion o f t hose l i n e s i n a s i n g l e d i r e c t i o n . T h i s prop-

e r t y , t o g e t h e r w i t h t h e c h a r a c t e r i z a t i o n o f a r e g u l a r s e t as a lmos t

an Y-set, p e r m i t s us t o e s t a b l i s h e a s i l y t h a t t h e same p r o o e r t y i s

shared by t h e r e g u l a r se ts o f p o s i t i v e measure ( B e s i c o v i t c h 1119281

p. 426).

Our main o b j e c t i v e here w i l l be t o show t h a t f o r an i r r e g u l a r

i n t h e sense o f t h e Lebesgue measure on t h e u n i t c i r c l e ) t h e pro-

s e t t h e oppos i te i s t r u e , namely f o r a lmos t each d i r e c t i o n

here

j e c t i o n i n t h a t d i r e c t i o n eve r any s t r a i g h t l i n e i s o f Lebesgue u n i d i -

mensional measure zero. T o prove t h i s we g i v e f i r s t some n o t a t i o n s and

d e f i n i t i o n s .

( "a lmos t "

9.4.1. NOTATION. I f x 6 R 2 0 c e l < O 2 < T , r > rl then

(a) d(x,81) w i l l mean t h e l i n e through x i n d i r e c t i o n 81.

Page 274: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.4. PROJECTION PROPERTIES 259

( b ) a(x,a1,e2) w i l l mean t h e b i s i d e d open s e c t o r o f v e r t e x

x and extreme s i d e s i n d i r e c t i o n s e1,02, i . e .

a(x,e1,e2) = ~ ~ C d ( x , e ) : e l < e < e 2 3 - E X )

0

( c ) o(x,el,B2,r 1 = o(x,el,e2) (I B ( x , r )

(d ) 1-1 w i l l mean t h e o r d i n a r y Lebesgue measure on [ O , T I ) .

(e ) If A C [O,T) t hen d(x,A) w i l l mean t h e un ion o f

t hose l i n e s through x whose d i r e c t i o n i s i n A, i . e .

d(x,A) = ( J I d ( x , e ) : e E A 1

9.4.2. DEFINITION. L e t E be a measurable s e t , x 6 E and

e E [O,T). We say t h a t e i s a d k e c t i u n ad CandenhatLon oh &h&t

ondeh 0 6 E at x when x i s a l i m i t p o i n t o f E II d(x,0) We sav

t h a t 8 e ( 0 , ~ ) i s a di)Lec.tion ad candenhation 0 6 hecand mdeh oh E

at x when g i v e n any t h r e e D o s i t i v e numbers q,p, E t h e r e e x i s t r,

0 < r i p, and elYe2, w i t h o s a1 < 0 < e 2 < ~ r , 0 2 - < E such t h a t

We*say t h a t x b a hadiCLtion p o i n t ad E when 1-I-almost each d i r e c -

t i o n i s a d i r e c t i o n o f c o n s i d e r a t i o n

E a t x. ( o f f i r s t o r second o r d e r ) o f

Observe t h a t i f E i s an i r r e g u l a r s e t we have

A(E 0 o(xyely 0 , ) ) = A(E 17 a(x,B1,82)) and ana logous ly

A(E I7 o(x,01,ez, r ) ) = A(E 1) o(x,B1,02,r)) s i n c e t h e i n t e r s e c t i o n

of E w i t h any s t r a i g h t l i n e o r c i r cumfe rence i s o f ze ro measure.

- Observe a l s o t h e f o l l o w i n g way o f o b t a i n i n g t h e s e t o f d i r e c

t i o n s o f condensat ion of t h e second o r d e r t h a t w i l l be use fu l f o r t h e

p r o o f o f t h e n e x t theorem. If q , p , ~ a r e t h r e e p o s i t i v e numbers t h e

s e t H(x,q,p,~) of d i r e c t i o n s c1 f ( 0 , ~ ) such t h a t t h e r e e x i s t s r ,

e l < c1 < e2 < TI , e2 - e l < E so t h a t 0 < r < p, and a1,e2, 0 c

A(E (1 a

i s c l e a r l y an open subset o f

Page 275: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

260 9. GEOMETRY AND LINEAR MEASURE

i s

o f second o r d e r o f E a t x .

p-measurable and i s p r e c i s e l y t h e s e t o f d i r e c t i o n s o f condensat ion

Our n e x t goal w i l l be t o p rove t h a t a lmos t each p o i n t o f an

i r r e g u l a r s e t E i s a r a d i a t i o n p o i n t of E. F i r s t we s t a t e two easy

1 emmas.

9.4.3. LEMMA. L c t E b e a r n c a n w m b l e b a and x any p o i n t - 0 6 R 2 . Then t h e h u b h d 0 6 joining x t o t h e pointn a 06 E , a # x , a v - r n U u h a b l e O&.

[Q,T) 06 ~ c ~ o ~ de;tenminc?d by a%& f i n e n

- Phood. Assume f i r s t t h a t t h e d i s t a n c e from x t o E i s

p o s i t i v e , and t h a t A(E) = 0. Then,by p r o j e c t i n g f r o m x t h e c o v e r i n g

d e f i n i n g

by x and t h e p o i n t s o f E i s o f v-measure zero. I f we have h(E)=O we o b t a i n t h e same r e s u l t by c o n s i d e r i n g t h e subsets

1 Ei = { z E E : d(x,z) a 1 , i = 1,2,3 ,...

A*(E) = 0 , we e a s i l y see t h a t t h e s e t o f d i r e c t i o n s determined

I f E a compact measurable s e t , t hen t h e s e t o f d i r e c t i o n s

o f t h e s tatement , i f x B E , i s a l s o compact and so w n e a s u r a b l e .

Analogously we can remove t h e c o n d i t i o n x B E as b e f o r e .

Any measurable s e t E i s a coun tab le u n i o n o f comoact subsets

p l u s a s e t o f ze ro measure. This proves t h e lemma.

9.4.4. LEMMA. L e A E be a meanutmbLe and x 8 E . TCrcn t h e

n e t 06 d-ihe&an?) a6 CandeVLbation ad &ht ohdeh ad E ax x L$

p-meuuhabLe.

Phoad, L e t G(x,r) f o r r > 0 be t h e s e t o f d i r e c t i o n s

determined by j o i n i n g x t o t h e p o i n t o f E 0- B(x,r) - {XI . The

s e t G(x,r) i s p-measurable acco rd ing t o t h e p rev ious lemma , We have

t h a t

1 m

G(x ) = I\ G(x,F) n = l

i s t h e s e t o f d i r e c t i o n s o f condensat ion o f f i r s t o r d e r o f E a t x . So

Page 276: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.4. PROJECT I ON PROP ERT I ES

G(x) i s measurable.

26 1

9.4.5. IHEOREM. AenasR each po in t od a n LW~eguRan b e t E LA

a t i ad id t ion p a i n t .

We sha l l f i r s t prove the following lemma from which the theorem i s an easy consequence.

9.4.6. LEMMA . L e t E be an h h e g d a n ne.2, Abbume t h a t - x 8 E batib6ie.h t h e 6oUowing condition:

L e t c1 e ( 0 , ~ ) be a dihecLion buch tha2

Pnood oh t h e Lma. 9.4.6. Since 0 (G(x) ,a ) = 0 we can T u

take e 1 , e 2 , 0 < e l < ~1 < e 2 < T , 0 2 - e l < min(E, ) such t h a t

1 and s ince G(x) = 0 G(x, E) , we have a l so a p ' < p such t h a t n = l

Page 277: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

26 2 9 . GEOMETRY A N D LINEAR MEASURE

We k n o w from condition ( * ) t h a t t he re e x i s t s r < p l < p such t h a t

If h(E f’r a ( x , e , , e 2 , r ) ) > q 2r(e2 - 8 , ) then c1 8 H(x,q,p,~) and we have the statement. Assume

The s e t G ( x , p ’ ) t’r ( e l ,e ,) i s u-measurable and so we can find a n open s e t I ( therefore I i s a union o f d i s j o i n t oDen i n t e r v a l s ,

I = \ J (@;,$; ) ) such t h a t i

Let us d i s t r i b u t e {(@;,I$!) i n to two co l l ec t ions in the following way:

We then have

We a l so have ( r eca l l 9 . 4 . 1 . ( e )

Therefore, by condition ( * ) and

Page 278: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.4. PROJECTION PROPERTIES

Hence

263

Now we know t h a t , f o r each i 8 Al ,

and a l so , f rom (**I,

For each i E Al l e t ( Y ' Y ; ) c ( e l , O , ) be t h e u n i o n of a l l t hose

open i n t e r v a l s (m, , m 2 ) c o n t a i n i n g ($;,$;) and con ta ined i n ( e , , 0 2 )

such t h a t

j y

(***) A ( E o(x,ml,m2,r)) q 2r(m2 - ml)

I t i s easy t o see t h a t t h e (Y!,Y'!) J J S O ob ta ined a r e d i s j o i n t and

A lso i t i s c l e a r t h a t i f J = IJ ( Y ! , Y ' ! ) each p o i n t o f J, by (***),

i s i n H(x,q,p,&) and so

j J J

There fo re we have

T h i s means, s i n c e €I1 < c1 < 0 2 , and e 2 - e l i s a r b i t r a r i l y sma l l , t h a t

Page 279: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

264 9. GEOMETRY AND L I N E A R MEASURE

P m a 6 o6 Theonem. 9.4.5. Let E be an i r r egu la r s e t . Ac- cording t o Theorem 9.3.3. we know t h a t i f we f i x t j l , 0 2 , 0 < e l < e , <IT, e 2 - e l < - we have a t almost each x e E 71

Therefore we can a l so say t h a t a t almost each x e E we have f o r each

& s couple (el ,e , ) , e l € Q, e 2 E Q , 0 < e l < e 2 < T , e2- e l <

Since E is i r r egu la r , the function

A ( E (1 u(x ,e l ,e2 , r ) ) of e 1 , e 2 , r

i s continuous and so we can omit i n the preceding paragraph the condi- t i on B Q , 0, a Q . By excluding a subset o f E of n u l l measure we can assume t h a t we have the condition 9.4.6. f o r each x 6 E.

(*) of the statement of Lemma

Now i f p(G(x)) = ~ i , x i s c l e a r l y a point of r ad ia t ion , As-

sume p(G(x)) < IT . We have t h a t p-almost each point c1 6 [O,T) - G ( x ) s a t i s f i e s D (Gfx), a ) = 0 . If we apply the lemma 9.4.6. we have

point a e [ O , I T ) - G(x) i s i n H ( x , q , p , ~ ) f o r any fixed q,p,E ,

Since we have t h a t p-almost each point i n t0.r) - G ( x ) i s in H(x) and so

p(G(x) 1J H ( x ) ) = IT . Hence p a l m o s t each c1 i s a condensation d i rec t ion o f E a t x , and so x i s o f rad ia t ion of E .

1.1 c1 e H ( x , q , p , E ) o r DpCH(x,q,p,E), a ) > 0. Therefore p-almost each

H(x) = 0 (H(x,q,p,c) : 0 < q E M , 0 < p 6 Q , 0 < E B Cp 3

From theorem 9.4.5. we e a s i l y obtain the following important proyection property.

Page 280: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.4. PROJECTION PROPERTIES 265

The proof will be straightforward from the following four lemmas.

- 9.4.8. LEMMA. LeA E be an i m ~ e g d a h .bat. Then, doh u-al

moht each dineotion e 6 [O,IT) , d m a h t each x E E A nuch t h a t 0 A ad condmhation 04 E at x.

Pnood. Consider R2 x 10,~) with the measure A x u , By

theorem 9.4.5. we know that, for A-almost each x B E c R 2 , u-al-

most each direction e a [ O , T ) is a condensation direction of E at

x . Therefore, by Fubini’s theorem, for p-almost each A-almost each x 6 E is such that 8 is a condensation direction of

E at x. This is the lemma.

8 6 [O,r),

9.4.9. LEMMA. LeA E be any memumble beA oa ze,ko m m u h e .

Then i,t~ phoyeotion o v a any nLt;ltaigkt f i n e Lib 0 6 null meanme.

Phood . If r ( K ) means the projection of K we have

that d(.rr(K)) 6 S ( K ) and SO A*( T C E ) ) < A * ( E ) . Hence, if A(E) = 0 we have A(IT(E)) = 0 .

9.4.10 LEMMA . LeA E be a nubbeA oh a m m w l a b l e he2 A,

and Re2 I T ( E ] be Rhe a h t h o g o d ! phoyect.ion 0 4 E ove,k Ox . Ahhwne

t h a t each p a i n t a E n(E) A phojection 06 i n ~ i n i t d y many poivztn 0 6

-

A . Then A(T(E)) = 0

P m o 6 . We can assume that A is in the unit cube

Q = i(x,y) : 0 6 ,x i 1 , 0 6 y < 1 1 , Let N be a natural number,

We partition Q into 2N dyadic strips parallel to Ox, Set

-

N for r = 0,1,2, . . ., 2 -1.

Let E(r,N)I = E f’r S(r,N) , A(r,N) 0 i m a 2 -1 let Tm be the collection of a

numbers

N = A f’l S(r,N) . 1 m-tuples of

For

nteger

Page 281: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

266 9. GEOMETRY AND LINEAR MEASURE

N k = ( k l , k 2 , ..., k m ) , 0 c k l < k z < ... < k, c 2 -1

We define

m

t h a t i s , a p a i d P 0 6 [0,1) h i n F(m,N) when P h phvjeOtia~ ad

CLt L m t m pa in tb 06 A LoccLted in m didde,tent bxXLpb ad t h e 2N we have.

Sa we cRecvtey have

m m

n ( E ) c f ) F ( m , N ) m=l N=[liog,m]tl

Let us estimate the measure o f F ( m , N ) . description of F ( r n , N ) , t ha t

We have c l e a r l y , from the above

2N- 1

and in tegra t ing

1 Therefore A ( F ( m , N ) ) c A ( A )

Observe t h a t F ( m , N ) c F ( m , N t l ) and so

Therefore A(n(E)) = 0

9.4.11. LEMMA, L e t E be a nubbet 06 a rneabu.tabRe b& A,

and aSbUe t h d t doh each

06 conden5at;ian 0 6 becond a h d a 06 E at a . L e t n(E) be t h e

a 6 E t h e v e h t i c d dine&an 0 a dLteOtion

Page 282: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.4. PROJECTION PROPERTIES 26 7

The easy n r o o f o f t h e Lemma Dresented here i s due t o R.Moreno.

P/rvad. We can assume t h a t A i s con ta ined i n t h e s t r i p

{ (x,y) : 1 6 y < 2 I . L e t a 6 E and .rr(a) i t s p r o j e c t i o n ove r Ox.

u(a,e ' ,e" , r ) w i t h 4 i < ~ r / 2 < ei; , 'di - O i J. 0 , rkJ. 0, such t h a t

We know t h a t f o r each f i x e d q > 0 t h e r e i s a sequence o f s e c t o r s

k k k

Therefore, i f I k = n( 0 ( a k , e i Y e i , r k ) ) , we have w i t h a cons tan t c in-

denendent o f A,a,k, A ( I k ) 6 c 2 r k { 4; - 0;) c

We e a s i l y see t h a t I k c o n t r a c t s t o a n ( a ) . So we can a n o l y

V i t a l i ' s lemma t o n ( E ) and o b t a i n a sequence EJiI o f d i s j o i n t i n -

t e r v a l s such t h a t

There fo re

A*( TI ( E ) ) c A * ( T ( E ) - (I Ji) t A ( IJ J i ) =

and so A ( IT ( E ) ) = 0 .

Phoolj ad ,the Theohem. 9.4.7. Acco rd ing t o Lemma 9.4.8.

t h e r e i s a p - n u l l s e t N c [ O , T I ) such t h a t , i f 0 E [ O , T I ) - N , f o r

L e t us f i x 0 E [O ,? r ) - N . Then

A-almost x 6 E t h e d i r e c t i o n 4 i s a condensat ion d i r e c t i o n o f E a t x.

Page 283: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9. GEOMETRY AND L I N E A R MEASURE

where

E o = Cx E E : 8 i s not of condensation o f E a t x 1

El = {x E E : 0 i s o f condensation of f i r s t order of E a t XI

EZ = { x e E : 0 i s o f condensation o f second order of E a t x )

By Lemma 9 . 4 . 2 . , since ~ ( E o ) = 0 , the projection in d i r ec tion e i s o f measure zero.

By Lemma 9.4.10, A ( n ( E , ) ) = 0 and by Lemma 9.4 .11 . A ( n ( E 2 ) ) = 0 . Therefore the projection n ( E ) o f E i s a lso of zero-

measure.

9.5. SETS OF POLAR L I N E S .

Let A be a subset of R 2 and l e t C = C ( 0 , l ) be the cir- cumference of radius 1 centered a t 0. For each x E R2 l e t p ( x ) be the polar l ine of x with respect t o C a n d l e t us denote by ( p ( A ) the union of the collection of polar l ines of points of A, i . e .

In th i s Section we shall be concerned w i t h some of the two- dimensional theoretic properties of the s e t p(A) related with the geo- metric and A-measure-theoretic properties o f the s e t A .

denated by A.

F i r s t of a l l l e t us announce t h a t , as we shall inmediately prove, the choice of the c i rc le C perties we are going t o s t u d y .

i s rather irrelevant for the pro-

Page 284: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.5. SETS OF POLAR L I N E S 269

I n t h e f i r s t p lace, observe t h a t i f A i s any con t inuous c u r v e

w i t h endpo in ts a,b, a # b, t h e n p(A) i s a X-measurable s e t o f i n f i - n i t e A-measure.

We s h a l l f i r s t p rove t h a t , as expected, when A i s an i r r e g u l a r

se t , t h e oppos i te w i l l ho ld . The p r o o f o f t h i s f a c t i s a u i t e s t r a i a h t -

f o rward f rom Theorem 9.4.7.

9.5.1. THEOREAd. Lei E be a n L w u g u R a h h e i . Then n(E)

ih a A - n & h e i .

Pmad . From theorem 9.4.7. we know t h a t f o r p-a lmost each - 8 B [CI,.) t h e i n t e r s e c t i o n o f t h e s e t (I d(x,O) (he re d(x,e)

means t h e l i n e th rouqh x i n d i r e c t i o n e ) w i t h any l i n e i s o f XEE

A-measure zero. There fo re we see,by p o l a r i t y , t h a t f o r u-a lmost each

8 E [O,IT) t h e l i n e g ( e ) , o r thogona l t o d(0,B) th rough t h e o r i q i n ,

i n t e r s e c t s t h e s e t n(E) i n a s e t o f A-measure zero. T h e r e f o r e meas-

u r i n g A (p (E) ) i n p o l a r coo rd ina tes , we have A(D(E)) = 0

For r e g u l a r s e t s we s h a l l f i r s t p rove t h e f o l l o w i n g f a c t ,

9.5.2. THEOREM. L e i E be a hegduJL hQ,t. Then , doh

A - a h o h t each x 6 E we have, doh each z E p ( x ) and doh each r > 'Y

We s h a l l deduce t h i s theorem f rom t h e f o l l o w i n g a u x i l i a r y

The f i r s t one o f them i s q u i t e i n t e r e s t i n g i n o r d e r t o have r e s u l t s .

more f l e x

open be.Z

iiztavLt M

b i l i t y i n h a n d l i n g r e g u l a r and i r r e g u l a r s e t s .

9.5.3. THEOREM. L e i E be a meanwlable b e i contained i n a n

G ad R 2 . L e i f : G + H be a L i p b c k i t z d u n c t i o n v d CVUA - Whohe iinvehbe f - l : H + G e u k 2 a n d h &o a Lipbck i t z

Then f ( E ) Lh & a meanwLable. Id A(E) = 0 .then

A ( f ( E ) ) = 0 . 16 E Lb hegLLeah, f ( E ) Lh hegdah. 16 E h - t e g d a h , f ( E ) &eguRm.

Page 285: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

270 9 . GEOMETRY AND LINEAR MEASURE

P m v $ . Assume A ( E ) = 0 . Then i f {An? i s a cove r o f E,

C f ( A n ) l i s a cover o f f ( E ) and 6 ( f ( A n ) ) c M 6(An). T h e r e f o r e

A * ( f ( E ) ) c M A * ( E ) f o r any E , and i f A(E) = 0, t hen h ( f ( E ) ) = 0 . If E i s measurable, t h e n E = ( IJ K j ) ( J Z, CK.1 b e i n g a sequence

j = 1

of i n c r e a s i n g compact s e t s w i t h A ( K j ) .f A (E) and A(Z) = 0, There fo re

m

J

A ( f ( E ) ) = A ( IJ f ( K j ) ) + A ( f ( Z ) ) , A ( f ( Z ) ) = 0 and

A ( f ( E ) ) 6 M A(E) < m . Hence f ( E ) i s measurable.

If E i s r e g u l a r , E = A IJ B w i t h A ( B ) = r)

A c b yk , yk cont inuous r e c t i f i a b l e curve. There fo re

f ( E ) = f ( A ) (J f ( B ) , A ( f ( B ) ) = 0 f (A ) C ( 1 f ( y k l y f ( Yk)

r e c t i f i a b l e . So f ( E ) i s r e g u l a r .

rn k = l

k= 1

F i n a l l y , i f E i s i r r e g u l a r , we c o n s i d e r f ( E ) , We know t h a t

f ( E ) i s measurable. L e t i t s r e g u l a r p a r t be f ( B ) , Then B i s r e a u l a r

and B c E , t h e r e f o r e A ( B ) = 0 and A ( f ( B ) ) = 0. T h e r e f o r e f ( E ) i s

i r r e g u l a r .

The Theorem 9.5.3. a l l o w s us e a s i l y t o see t h e e f f e c t t o

changing t h e p o l a r i t y c i r c l e i n t h e d e f i n i t i o n of a(A) . I f i n s t e a d o f

t a k i n g p o l a r l i n e s p ( x ) of t h e p o i n t s x o f A w i t h r e s p e c t t o C ( 0 , l ) we take them, p * (x ) ,

conic C* , t h e new s e t D*(A) = \ J p*(a) i s o b t a i n e d f r o m o(Rj by xaA

a nondegenerate n r o j e c t i v e t r a n s f o r m a t i o n and so, by an a p o l i c a t i o n o f

Theorem 9.5.3. we e a s i l y see t h a t t h e Theorems 9 , 5 . 1 . , 9.5.2. nre-

serve t h e i r v a l i d i t y i f we change p b y p*.

w i t h respec t t o any o t h e r f i x e d non-degenerate

A l s o we see t h a t t h e p r o j e c t i o n r e s u l t s o f t h e p rev ious s e c t i o n

can be fo rmu la ted more g e n e r a l l y . Fo r example, by means o f a p r o j e c t i v e

t r a n s f o r m a t i o n we g e t f rom Theorem 9.4.7. t h e f o l l o w i n g f a c t .

9.5.4. THEOREM. L&t E be a n y LwegguRah n&t. L e X r be

any n,ikaigkt .&fie. Then dvh A - d m v A t e a c h p a i n t x 6 r t h e p o j e c f i v n v d E @om x aveh any aXheh f i ne nvA: panbing t h o u g h x 0 0 4 zehv

A-rneuuke.

Page 286: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.5. SETS OF POLAR LINES 2 7 1

The n e x t two r e s u l t s a r e easy a u x i l i a r y lemmas w i t h which we

s h a l l p rove Theorem 9.5.2. Some o f t h e computat ions a r e e a s i e r w i t h

t h e f o l l o w i n g remark.

I f x 6 R 2 - {!)I we s h a l l c a l l q ( x ) t h e l i n e th rough x

or thogonal t o Ox. I f A c R 2 - C O 3 t hen q(A) = I I q ( x ) . Observe

t h a t , f o r a s e t A such t h a t i s bounded and con ta ined i n R 2 - 1Q1 i f A* i s t h e s e t o b t a i n e d f rom A by an i n v e r s i o n w i t h r e s p e c t t o

C(0 , l ) , then by a p p l y i n g Theorem 9.5.3. we see t h a t A i s measurable

i f and o n l y i f A* i s so, A ( A ) = 0 i f and o n l y i f A ( A * ) = 0 and

A i s r e g u l a r o r i r r e g u l a r acco rd ing t o t h e r e g u l a r i t y o r i r r e g u l a r i t y

o f A* . Fur thermore , observe t h a t p ( A ) = q(A*) .

x BA

There fo re Theorem 9.5.2. w i l l be proved i f we prove t h e same

statement s u b s t i t u t i n g p by q .

9.5.5. LEMMA. LeR: U be t h e c lon ed heotangle

U = { ( x , y ) e R 2 : a - a h x c a t a , D - d c y c 0 t d I

D i u a h ~1 > 0, !I < D , 0 < d <

V a l

, a > 0 . LeL A be Lhe cloned i n t e 4 -

Then thehe c d a 2 a cav~6Lant M M(a,D) > 0 auch . tha t d o t each p L 1 and dotr each c i h d e B(z,p) contained i n A one hcu

(See F i g . 9.5.1.).

P/roud. The p r o o f i s s t r a i g h t f o rward by obse rv ing t h a t t h e -- maximum o f I ( U t’r q(C(z,p) ) ) under t h e r e s t r i c t i o n C(z,p) t A

f o r a f i x e d p i s g i v e n by t h e c i r c l e i n d i c a t e d i n t h e f i g u r e 9.5.1.,

t h a t f o r t h i s c i r c l e

o f t h e h o r i z o n t a l s t r i p determined by U and t h a t even t h i s shaded

U 0 q(C(z,p) ) i s con ta ined i n t h e shaded p o r t i o n

Page 287: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

272 9. GEOMETRY AND LINEAR MEASURE

p o r t i o n has an a r e a less than some c o n s t a n t M(a,D) times p .

s = (a,O)

F i g u r e 9.5.1.

9.5.6. LEMMA. L & U and A be a6 i n t h e prreceding lemma. - Let s = (a,O) . Then t h m e cdh a con6,tunt N = N(a ,d,D) > 0 and a b a l l B ( s , r ) * 0 < r < 1 con ta ined i n A buch t h a t id y 6 B ( s , r )

and sy m e a n 6 t h e A & 06 point2 06 t h e begment j o i n i n g s t o y

we have

Pko06. First we can f i x ro so small t h a t a l l l ines q ( z ) f o r

z 8 B(s , ro) intersect both h o r i z o n t a l s i d e s of U . For a f i x e d p ,

0 c p < ro, if A(SY) = p , the m i n i m u m of X(U (1 q(SY)) is g r e a t e r

272 9. GEOMETRY AND LINEAR MEASURE

p o r t i o n has an area l ess than some constant M(a,D) t imes p .

s = (a,O)

Figure 9.5.1.

9.5.6. LEWA. L e X U and A be a6 i n t h e peceding lemma. - L e t s = (a,O). Then thehe cdd a con~xixtant N = N(a,d,D) > 0 and

a b a l l B(.s,r) , 0 < r < 1 cona%Lne.sf i n A 6uch that i 6 y Q B(s,r)

and 5 m a n h t h e ~ e , t 06 pointn 06 t he btgmekLt joining s t o y

we have

w. F i r s t we can f i x ro so small t h a t a l l l i n e s q(z) f o r

z a B(.s,ro) i n te rsec t both ho r i zon ta l sides o f U . For a f i x e d p,

0 < p < r o , i f h(sy) = p , the minimum o f X(U (1 q(sy)) i s g rea ter

Page 288: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.5. SETS OF POLAR LINES 273

than the area o f the shaded portion o f Figure 9.5.2. In i t the point e i s obtained as in t e r sec t ion of t he circumference C o f diameter Og

w i t h t h a t C(s,p) o f center s and radius p . This area is (2d) ' t ana and one has

& = D + d sin c1 cos 6

and cos B -f C O S T as p + 0 where T i s the angle o f the tangent a t x t o C with the ax is Ox, as indicated in Figure 9 .5 .3 .

So one has

( 2 d ) ' t an a = ( 2 d ) 2 s in c1 p = P cos c1

and i t i s c l ea r t h a t this N(a,d,D) > 0

quant i ty can be estimated from below by

Figure 9.5.2.

Page 289: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

274 9. GEOMETRY AND LINEAR MEASURE

F i g u r e 9.5.3.

Phood 06 Theohm 9.5.2. L e t E be r e g u l a r . Acco rd ing t o

Theorem 9.5.3. t h e r e i s N c E , A(N) = 0 , such t h a t E - N c (I yj,

yj cont inuous r e c t i f i a b l e arc.For a lmost each s 6 E - N t h e r e i s one

y j , c a l l i t s imp ly y , such t h a t s 6 (E - N) f I y and s i s a

d e n s i t y p o i n t o f y and E I1 y . We s h a l l prove t h a t f o r such a p o i n t

s and f o r each b 6 q ( s ) , b # s , i f U(b) i s any neighborhood

o f b, then X(U (1 q ( E ) ) > 0

We have

A ( E (1 y fl B ( s , r ) ) = 2 r 1 i m

r+O

We can assume t h a t s i s t h e p o i n t (a,O) of t h e p rev ious

lemmas, t h a t b i s t h e c e n t e r o f t h e r e c t a n g l e U o f these lemmas,

and we t a k e as t h e neighborhood U p r e c i s e l y t h a t r e c t a n g l e . F o r a

number n, 0 < T- < 1, t h a t w i l l be c o n v e n i e n t l y f i x e d l a t e r we can

t a k e r > 0 so t h a t B (s , r ) c A, B(s,r) s a t i s f i e s t h e s tatement o f

Lemma 9.5.6. and

Page 290: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.5. SETS OF POLAR LINES 275

Let y,z be the endooint of the continuous arc yrcy f1 B(s,r)

passing through s. If ysZ means the polygonal line ( J SZ we

have

The second inequality by Lemma 9.5.6.

From (**) we get

and the last one by (*) above,

We can cover y, - E with a countable union ( I K of small circles

contained in A so that j

We have by Lemma 9.5.5.

Hence

If n > % then X(U (1 q(E)) > 0. This concludes the oroof. M+ 7

L

The Lemma 9.5.5. allows us to obtain in an easy way the

following expected result.

9.5.7. THEOREM. L e t E be u A - n U n e t . Then X(p(E)) = 0

Page 291: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

276 9. GEOMETRY AND LINEAR MEASURE

Phoo6. We can assume t h a t t h e s e t E i s i n t h e s e t A o f

Lemma 9.5.5. For E: > 0 t h e r e i s a cover of E by a coun tab le un ion

o f smal l c i r c l e s u K j c A so t h a t C G ( K j ) 6 E . Therefore, bv Lem-

ma 9.5.5.

And so A(q(E)) = 0.

I n t h e c o n t e x t o f t h e Theorems o f t h i s S e c t i o n i t i s i n t e r e s -

t i n g t o know t h a t B e s i c o v i t c h [1964] proved t h a t , i f one counts m u l t i -

p l i c i t y , i . e . if one weighs each D o i n t o f p(E) w i t h t h e number o f t imes

i t i s covered by l i n e s p ( x ) w i t h x E E , then f o r eve ry r e g u l a r s e t E

w i t h A(E) > 0, t h e l i n e s cover an i n f i n i t e a rea . More o r e c i s e l y

However Davies [1965] c o n s t r u c t e d a r e g u l a r s e t E such t h a t

A ( E ) > 0, X(p(E)) < m .

9.6. SOME APPLICATIONS.

We s h a l l now show how t o use some of t h e p reced ing theorems i n

o r d e r t o o b t a i n c e r t a i n r e s u l t s connected w i t h t h e t h e o r y o f t h e pre-

ceding Chapter 8.

F i r s t o f a l l we s h a l l g i v e a ve ry easy c o n s t r u c t i o n o f a

B e s i c o v i t c h s e t .

Page 292: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.6 . SOME APPLICATIONS

Figure 9.6.1.

277

9.6.1. Cvb%i%ucaon oh a R e n i c o v ~ c h net . Fo& t h e ebbed

uvLit syuahe Q o , Let Q1 = ~ ( Q o ) be the. union 0 6 t h e dout bhuded

dyadic cLobed bquafieh 0 4 F i g . 9 .6 .1 .

we appLy ,the hame opehai ion

bquahen a h i n i n g i n tkis Way , Q2 C 0, C 0 0 . And ha on. 1 ~ 2

K = Q1 0 Q2 0 Q 3 ... Then K A a n LV~eguRah net o h p o h U v e m e u - me.

To each one a() thehe h o w l bquuten

0 . LeL Q 2 be t h e union oh t h e a2 cloned

L e t $ : R 2 + R 2 be t h e I;o.Uowiny ,OLan~dom&on :

$ ( x , y ) =((1 + x ) cos 2 n y , (1 + x ) sen 2 n y ) Then $ ( K ) i~ a&# in - &egsLLedh and

cvnttai~d CLt L e u t vne f i n e i n each di/recLion.

p ( $ ( K ) ) = B A a b e t 0 6 a3dv-dOnenniond meau&e zeho t h a t

The s e t K is comnact and, usinq the natural covers f o r K,

i , e , t he squarerof Q , we see t h a t A ( K ) s L?. Therefore K i s measurable . Since i t s projection over Ox i s of length 1, we have

A ( K ) > 0. Further, the nrojection of K over the two diaqonals o f

j

Q a i s of zero measure and t h a t over Ox and Oy has measure 1. There

fore K must be i r r e g u l a r ,

Lemma 9 .5 .3 . t e l l s us t h a t $ ( K ) i s a l so i r r egu la r of nosi - t i v e measure. Moreover, s ince K has a t l e a s t one ooin t on each l i n e

y = a , 0 5 a ,< 1 , $(K) d i f f e ren t from 0 . Therefore n($(K)) contains a t l e a s t one l i n e i n

each d i r ec t ion and

has a t l e a s t one noint over each ray from r)

A ( P ( $ ( K ) ) ) = 0

Page 293: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9. GEOMETRY AND LINEAR MEASURE

Take a s e t L which i s t h e un ion of some l i n e s . Can one g i v e

an easy c r i t e r i o n t o dec ide whether t h i s s e t L

l i n e s of t h e n o i n t s of an i r r e g u l a r s e t ? I n o t h e r words, l e t L = \J

and l e t

i s t h e u n i o n of t h e p o l a r

d, ,€A

E = { a : d, = ~ ( a ) l

i . e . E i s t h e s e t o f po les of t h e l i n e s d, w i t h r e s p e c t t o C ( 0 , l ) . Can one g i v e a c r i t e r i o n , so t h a t by d i r e c t i n s p e c t i o n o f one can de te r -

mine whether E i s i r r e g u l a r (and so L i s of A-measure z e r o ) ?

The f o l l o w i n g r e s u l t , due t o A.Casas [1979], answers t h i s

ques t i on i n an easy way.

9.6.2. THEOREM. L e t L = I! da w h a e each d, LA a ,€A

ha%a&ktfine. L e t

E = Ca e R 2 : p(a) = d, , a E A 1

Then E A & e g W -id and ovtey id t h e doU0wLng &zue:

W e g i x Awo f inen s , t , huch t h a t doh each a e A s f da , t # d, . On s ,take a poin t S not i n L and an ohientdtion. On t

t a k e a poivLt T not

S, = d, (I s and

&om S t o S , and

H =

i n L and ah ahienta.tLan. Foh each d, let

TT, t h a t aham T t o T, . Then t he . hQ,t

= d, ('1 t. LeX SS, be the. higned din,tance Ta

Q, = (SS,, TT, ) ER' : 01 e A 1

Pk0o.d. App ly ing Lemma 9.5.3. we can assume t h a t s and t

a r e pe rpend icu la r and t h a t S c o i n c i d e s w i t h T. L e t R, be t h e pro-

j e c t i o n o f S = T over T,S, ,

Consider t h e f i g u r e 9.6.2. and t h e mapoing

Page 294: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

9.6. SOME APPLICATIONS 279

We can assume t h a t t he s e t o f points closure i s bounded and contained in R 2 - Exy = 01 , Then we can a m l v Lemma 9.5.3. and

{Ra : ct E A ) i s such t h a t i t s

Y y - t

X

O E S E T s_ X E S 0 I u ,

1

Figure 9.6.2.

so 10, : a B A I i s i r r egu la r i f and only i f {Rct : ct 6 A) i s i r regular B u t {Ra : a B A 1 i s i r r egu la r i f and only i f E i s i r r e g u l a r . So we have the theorem.

Now i t i s easy t o understand b e t t e r the nature of the s e t of Kahane presented i n 8 . 4 . 2 .

9.6.3. THEOREM. The neL ad LLnU L = IJ da phehnnted i n M A

8.4.2 0 nuch tthcLt E = {a 6 R 2 : p(a) = da , ( 'a 6 A ) } b anihheguLm

b&

P h O O d . By Theorem 9 .6 .2 . i t i s enough t o show t h a t the set - G o x CO , where G O is the Cantor type set on [O,l] we have cons t ruc ted in 8.4.2., i s i r r egu la r . B u t t h i s i s Droved in exac t ly the same way we have followed in 9.6.1.

The l a s t appl ica t ion we sha l l give concerns the Nikodym s e t and the problems ra i sed a t the end of 8.5.

Page 295: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

2 80 9. GEOMETRY AND LINEAR MEASURE

We know t h a t t h e r e e x i s t s a con t inuous f i e l d o f d i r e c t i o n s

0 : R2+ [OJ) and a s e t N o f p o s i t i v e A-measure A ( N ) > 0, such

t h a t f o r each x 6 N , d(x , 6 ( x ) ) n N = { X I . By means o f t h e theorems

o f t h i s Chapter we can prove t h e f o l l o w i n g r e s u l t .

9 . 6 . 4 . THEOREM. l e i 8 : R 2 + [O ,TT) be a Lipncki tz d i d d

a6 d i n e o t i v a . T h e n , them c a n n v t be. any ne;t N 0 6 d u l l ,tLuv-dimeMnioncLt? mea4uhe. , i .e. X(R2 - N ) = 0 , nueh thcLt doh each x 6 N , d ( x , 0 ( x ) ) 17 N = {::I .

P ~ a a d . Assume t h e r e i s such a s e t N. F i x a l i n e 1 such t h a t

1 17 N i s o f f u l l one-dimensional measure. Assume 1 i s Ox. Fo r each

a e Ox - ( 0 3 t h e r e i s a l i n e d(a, ( a ) ) assigned by t h e f i e l d so t h a t

d(a, 0 ( a ) ) The p r o j e c t i o n of t h e p o l e s o f t h e

l i n e s corresponding t o p o i n t s o f N o v e r Ox i s a l s o o f f u l l measure.

There fo re t h e r e i s a subset o f such po les t h a t i s o f p o s i t i v e A-measure

and r e g u l a r .

e ( a 1 v a r i e s i n a L i p s c h i t z way. Therefore t h e s e t of po les of

forms a L i p s c h i t z curve.

Hence t h e un ion of t h e corresponding p o l a r l i n e s , t h a t i s A-a1 -

- most con ta ined i n R2 - N - Ox , has p o s i t i v e A-measure. B u t t h i s c o n t r a

d i c t s A m 2 - N) = 0 . Hence t h e theorem i s proved.

Page 296: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 10

APPROXIMATIONS OF THE I D E N T I T Y

Many aporox i rnat ion problems i n modern A n a l y s i s t a k e t h e f o l l o w i n g

t h e c o n v o l u t i o n i n t e g r a l

form. To f i n d o u t whether o r under which c o n d i t i o n s on k e L1(Rn) , /k = 1, kE * f , where k E ( x ) = E - ~ k(:) ,

E -f 0 , and f e Lp(Rn) , converges t o f . It i s r a t h e r easy t o prove

t h a t kE * f + f E + 0. I n f a c t , . i f g e g o (R'), we can w r i t e .

i n t h e LP-norm as

Hence, s i n c e 1 1 kE l l = 1 1 k l l = 1 , u s i n g M inkowsk i ' s i n t e g r a i neclual i t y ,

Given r~ > 0 we f i r s t f i x a g e to such t h a t 2 ]If - gl(, c ;.

Then we have, f o r each y E Rn, E z 0, 1 1 g ( * - EY) - q ( - ) l l and f o r each f i x e d y 6 R n , \ \ g ( - - EY) - g ( - ) \ \ -f 0 as E + 0 . Therefore, by t h e dominated convergence theorem,

c 2 ( l g ( ( ,

J

f o r E s u f f i c i e n t l y smal

A more d e l i c a t e

. T h i s proves t h a t kE * f -+ f

problem c o n s i s t s i n o b t a i n i n g t h e

LP) . p o i n t w i s e

convergence. Calderbn and Zygmund [1952] have g i v e n a r a t h e r genera l

r e s u l t f o r r a d i a l k e r n e l s t h a t i s presented in S e c t i o n 10.1., t o g e t h e r

281

Page 297: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

282 10. APPROXIMATIONS OF THE IDENTITY

with a generalization due t o Coifman. Section 10.2. dea ls w i t h some

r e s u l t s t h a t a r e ava i lab le f o r kernels which a r e not rad ia l b u t a r e nonincreasing along each ray emanating from the o r ig in . In 10.3. we examine a general r e s u l t of F . Zo [19761 t h a t can be obtained by means of t he Calder6n-Zygmund decomposition which one can deduce many o ther useful r e s u l t s . we sha l l study some r e s u l t s o f P.A.Boo [1978] and of M.T.Carrillo p979]

concerning ce r t a in necessary conditions f o r a kernel t o y ie ld a good approximation of the i d e n t i t y in

(Lemma 3 . 2 . 7 1 , and from In Section 10.4.

L'(R").

10.1. RADIAL KERNELS.

I t i s r a the r obvious t h a t , f o r g e g o (R'), we have, i f kE(x) = E - ~ k($) k E L ' ( R n ) , i k = 1 , f o r E -f 0

k E * gcx) - g(x) a t each x e R n E'O

In f a c t ,

By the dominated E -+ 0.

tends t o zero as

Therefore i t i s s u f f i c i e n t t o prove , in order t o obtain the convergence of kE * f t o f f o r f e L p a . e .

tyne (.D,p) f o r the maximal operator K* where K * f ( x ) = sup \ k E * f (x ) . (1 & p 6 m), the weak

E>O

Page 298: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.1. RADIAL KERNELS 233

K * f ( x ) = sup I kE * f ( x ) \ E > o

PhvaZj. L e t f > 0 , f E L’ be f i x e d . Consider , f o r each - j E Z , t h e s e t

By t h e hypotheses on k, C . i s a s p h e r i c a l s h e l l . I f J

N k ( x ) , i f 2-N-1 < k ( x ) 6 2 I 0 , o the rw ise

N k ( x ) =

and

K E f ( x ) N = kE N * f ( x ) , KN* f(x) = sup I k z * f ( x ) l E>O

we then have

So , i f we prove

w i t h c independent of N ,f , X , we s h a l l have t h e weak t y p e (1,l) f o r K* . Since K* i s o b v i o u s l y o f t y p e (m,m) , we

NOW, s i n c e k ( x ) i s non inc reas ing w i t h 1x1

Bj i s t h e c losed b a l l cen te red a t 0 whose r a d i u s i s

e x t e r i o r r a d i u s o f C j ’

have o u r theorem.

we can w r i t e , i f

equal t o t h e

Page 299: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

284 10. APPROXIMATIONS OF THE IDENTITY

There fo re

1 f ( x - z ) d z c M f ( x ) , where M i s t h e

j

H a r d y - l i t t l e w o o d opera to r over b a l l s . The re fo re , f o r each F > 0,

I N KN* f ( x ) b 2Mf(x) 1 2’ \ a j \ c 2Mf(x) k

j=-N

Hence t h e KN* a r e o f un i fo rm weak t ype (1,l) , as we wished

t o prove.

When k

r a d i a l majorant , def ined by

i s n e i t h e r r a d i a l n o r p o s i t i v e , one can c o n s i d e r i t s

K(x) = sup I k ( t ) l It1 c 1x1

A s u f f i c i e n t c o n d i t i o n t o o b t a i n t h e conc lus ions o f t h e above theorem

f o r k i s t h a t k , which i s now p o s i t i v e , r a d i a l and non inc reas ing

a long rays , be longs t o L1(Rn). I n f a c t , t h e maximal o p e r a t o r K* i s

ma jo r i zed by t h e one k* corresponding t o k .

T h i s c o n d i t i o n , however, i s n o t necessary as we s h a l l see i n

t h e f o l l o w i n g sec t i ons .

Page 300: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.1. R A D I A L KERNELS 285

The theorem above, and its proof, remains valid if,instead of

assuming that k(x) is nonnegative and nonincreasing with 1x1, we as-

sume that for some

with 1x1 . > 0, k(x)(x(-' is nonnegative and nonincreasing

10.1.2. THEOREM. L e t k a 0, k 8 L1(Rn) be hadiae a&d auch

t h a t doh aume a > 0 k(x) 1 x / -a n v n i n c h m i n g w i t h I X I . The.&, w i t h

t h e h m e nv&un a!! in ThevLm K* ih 06 weah Rype

(1,l) aHd o d .type ( p , p ) , 1 i p c m . Hence, id /k = 1

a.e. doh each f e Lp , 1 c p < m .

10.1.1. we 5eL t h a t

kE * f -f f,

PkvvZ;. Since k(x) is radial we can define

and kN such that

if 2-N-l < k(x)lxl-' c 2N

, otherwise

N k (x) =

Consider, as before, with f 2 0,

with a independent of j

On the other hand

Page 301: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

286 10. APPROXIMATIONS OF THE IDENTITY

1 f ( x - Ey)dy 6 bMf(x) ' J B j

Where b i s independent o f j and f , and M i s t h e Hardy -L i t t l ewood

maximal oDerator . Hence

Bu t

and so K * f ( x ) 6 c M f ( x ) . We thus g e t t h e r e s u l t .

10.2. KERNELS NON-INCREASING ALONG RAYS.

When t h e approx ima t ion k e r n e l k i s n o t r a d i a l and i t s r a d i a l

n i a j o r i z a t i o n i s n o t i n L'(R") , one can s t i l l g e t some genera l p o i n t w i s e

convergence r e s u l t s w i t h s u i t a b l e c o n d i t i o n s on k . One of t h e r e s u l t s

i n t h i s d i r e c t i o n belongs t o R. Coifman and i t s p r o o f

r o t a t i o n method as f o l l o w s .

10.2.1. THEOREM. L e t k 8 L1(Rn) , k a rl , each x U L t h 1 i 1 = 1, .the ~ u n o t i v n v b r > 0 , k ( r x

cheaing i n r ~ L t h 6ume c1 independent 0 6 2 . Then

u t i 1 i zes t h e

be Ouch tha-t doh

r-' i n nunin-

t h e maximal

Page 302: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.2. KERNELS NON-INCREASING ALONG RAYS 287

L e t

m

T- f ( x ) = s u p I p ln - ' k ( p j ) f ( x -Epy )dp d?, f o r 7 e Ct

f i x e d . Assume t h a t f o r each y E C+ f i x e d , we can p rove t h a t t h e

o p e r a t o r T- s a t i s f i e s . Y

&>O -a Y

w i t h c independent o f j . Then, by M inkowsk i ' s i n t e g r a l i n e q u a l i t y

c* I l f l l p

and t h e theorem will be proved.

Now, i f x = z t sy s 6 R , z e Y , Y hyperp lane o r thogona l

t o 7 , we can w r i t e

I n t h e d e f i n i t i o n o f T- we observe t h a t Y

i s non inc reas ing i n p, p > 0. Hence f o r 7 , z 6 Y f i x e d we can

Page 303: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

288 10. APPROXIMATIONS OF THE IDENTITY

app ly t o T - f ( z + s i ) t h e theorem 10.1.1, , and o b t a i n Y

m W 1 ITy f ( z + s y ’ ) l p ds c c [ f ( z + s Y ) I p ds -m J -00

Thus t h e theorem i s Droved.

As we can observe, t h e r e s t r i c t i o n t o p 1 1 a r i s e s f rom t h e

f a c t t h a t f o r P = 1 we j u s t have t h e weak t y p e (1,l) f o r t h e o p e r a t o r

I t i s an open problem, w i t h i m p o r t a n t i m p l i c a t i o n s , t o f i n d

o u t whether t h e r e s u l t c o u l d be ob ta ined f o r P = 1 , i . e . whether one

can a f f i r m , i n t h e hypotheses o f t h e theorem t h a t K* i s o f weak tyDe

(1,l).

I t i s however easy t o deduce t h a t K* s a t i s f i e s t h e i n e a u a l i t y ,

f o r x > 0, 1 x 1 < m , f 6 L ~ g + L

T h i s i s a consequence o f t h e f a c t t h a t

I1 K * f l l pcl C II f l l f o r l < p < 2

and o f t h e method o f e x t r a p o l a t i o n .

By c o n s i d e r i n g t h e l e v e l curves o f a k e r n e l t h a t i s non- increa-

s i n g a long r a y s and u s i n g t h e Theorem 3.8.1. on summation o f weak tyDe

i n e q u a l i t i e s one can g e t t h e f o l l o w i n g u s e f u l app rox ima t ion theorem, which

belongs t o M . T . C a r r i l l o [1979] .

10.2 .2 . THEOREM. L e i k e L’( Rn) , k > 0 , be non-inchu- - n i n g d o n g hayn. Annume &o t h d t t h e b&

Page 304: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.2. KERNELS NON-INCREASING ALONG RAYS

A = C x : k ( x ) a , ' ) , j e l

dhe cvnwex, bvunded , and t h a t 4 a j = 2' l A j l , t h e bequence { a j }

b a t i h ~ i e h t h e doUullting c o n d i t i o n

5

Then t h e maxhai! v p m u t o h K* co&fu?bponding t o t h e hefind? k b vd weak

t y p e (1,l) and ad bR;/Long type (m,m) . Thenedofie , id .fk = 1, do4

each f 6 L p m n ) , 1 6 p < m , we have kE * f + f a.e.

Pkvvd. L e t f e L1(Rn) , f a 0 and f o r N E N

k ( x ) if 2-N 6 k ( x ) 6 ilN

0 o the rw ise I kN(X) =

I f , Kfi f ( x ) = sup I k f ( x ) l , i t w i l l be enough t o Drove t h a t

Kfi i s o f weak t y p e ( 1 , l ) w i t h a cons tan t independent o f N.

E>O N , E

We have

There fo re

L e t us c a l l

Page 305: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

290 10. APPROXIMATIONS OF THE IDENTITY

Since each A i s bounded and convex , the operators M j a r e uniformly of weak type (1 , l ) (Cf. Theorem 3.2.10. ) We have f o r each E > O

j

N N

-N K;f(x) = sup k x f ( x l c 1 Z J ( A j I M.f(x) = 1 a j M j f ( x )

&>O N Y E -N J

and using Theorem 3 .8 .1 . , and the condition on the Ea.1 we ge t the weak type (1 , l ) f o r Kfi and therefore f o r K*. The type ( m p ) i s t r i v i a l .

J

Of course the Theorem 10.2.2. admits a natural extension. Instead of requiring t h a t the s e t s A be convex and s a t i s f y the entropy condition of t he previous theorem one can requi re t h a t they a r e contained in convex s e t s B j t ha t s a t i s f y t h i s condition o r in the union of a fixed number of such s e t s . We sha l l now give an example of t h i s type of exten - s ion , proving t h a t the following kernel t h a t a r i s e s i n t he s t u d y of the multiple Poisson in tegra l (see R u d i n [1969] ) y ie lds a good approximation of the iden t i ty .

j

10.2.3. APPL7CATlON. Le,t k : Rn + R be dedined by

Then t h e O p U u L t O h K* dedined by

.i~ 0 6 weak t y p e (1,l) .

P h o O 6 . Let us s e t , fo r s impl i c i ty of no ta t ion , n = 2 . We consider the level s e t s

A j = I ( x , Y ) : 1 2 Z J I , j = o , -1 , - z , . . . ( 1+x2) l l + y 2 )

We have

Page 306: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.2. KERNELS N O N - I N C R E A S I N G ALONG RAYS 29 1

There fo re

The s e t s B . ( a n t l i k e w i s e t h e set; C.) a r e i n t e r v a l s and J b . = Z J 1 B . I = 4 & 2 Jh/4b . We then have

s o K* i s o f weak t y p e (1,l) .

1 b j l l g b j / < a and -02

J J

We s t a t e another two a p p l i c a t i o n s . T h e i r p r o o f s a r e l e f t as

easy exe rc i ses .

10.2.4. A P P L I C A T I O N , L e L H = { ( x , y ) 6 R 2 : l x y l c 1)

- F and k (x ,y ) = (x’ f y’) x H ( x y y ) , 1 < a < 2 . Then K* oh weak

t y p e ( 1 5 1 ) .

10.2.5. A P P L I C A T I O N . LeL 1 C . I be any hequence 0 6 bounded J convex h& c o ~ ~ t ~ r t i n 5 t h e o h i g i n and huch t h a t I C . I = 2-j . Le,t J

m

k ( x ) = 1 x (.x). Then t h e m a x h d apm.atoh K* c o ~ e ~ p o n d i n g t o k 1 c j

For a k e r n e l t h a t i s t h e p roduc t o f another two f u n c t i o n s

k(x,y) = g ( x ) h ( y )

[1979]) . we can s t a t e t h e f o l l o w i n g r e s u l t s ( M . T . C a r r i l l o

10 .2 .6 . THEOREM. L t - t k ( X I y X 2 ) = g ( X i ) h(X2) , 9 >, 0, h >, 0,

( x l , x 2 ) B Rn1+n2 u h a e

bin5 d o n 5 hayh.

g e L (R”) , h B L (R”) and both me nonincten_ Ahhume Ah& t h e h&

m e bounded and convex . L e L a j = 2’ ! A j \ , b . = 2j I B . ] and anmme

, 1 b j l l g b j l < m . Then t h e m a x h d t h a t 1 a j l l g a.1 < m

J J +m +m

t + -m J -m

Page 307: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

292 10. APPROXIMATIONS OF THE IDENTITY

The proof follows the same idea of Theorem 19.2.2. and i s l e f t as an exerc ise .

By means of t h i s Theorem one e a s i l v sees t h a t , for example, the maximal ooerator K* of

i s of weak type (1,l).

Shapiro [1977] and Di tz ian [1977] have obtained previously some s l i g h t l y l e s s general r e s u l t s of t he type of 10.2.2 and 10 .2 .6 .

I t i s s t i l l an open question t o find out whether any oos i t i ve kernel k a 0 nonincreasing along rays and in L’ defines a maximal operator K* of weak tyne (1 , l ) .

10.3. A THEOREM OF F. ZO.

The theorem we present here requi res l e s s s t r ingen t conditions than the theorem of Calderbn and Zygmund. on the decomposition lemma o f CalderBn and Zygmund we have in 3.2.7. approximation theorem 10.1.1. i s an easy consequence of .Zo ’ s theorem 119761.

The technique of proof i s based The

10.3.1. THEOREM. L e t (kO1)asI be a ~um,Zy 0 6 ~ u ~ c t i u m i n L’(Rn) duch t h a t

Page 308: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.3. A THEOREM OF ZO 293

a .

) = sun I ka(x-y) - kc l ( x ) \ , .then a

s cp < , wah cp independent ad y 6 R',

x ) = sun lkcl x f ( x ) , K* 0 6 weak t upe CtE I

Phaa6 . The s t r o n g t y p e (m,m) i s t r i v i a l , s i n c e

I n o r d e r t o Drove t h e weak t ype (1 , l ) , assume

f 8 L1(Rn) , X > 0. We aon ly t h e lemma o f Calder6n-Z.vqmund (3.2.7)

t o f and 1-1 > 0 , where 1-1 w i l l be c o n v e n i e n t l y chosen l a t e r . We

o b t a i n

a lmost each x B G = ( I 0 . , f ( x ) c 1-1 , and

f > 0 ,

IQj3 , a sequence o f d i s j o i n t dyad ic i n t e r v a l s such t h a t a t

J

f = f . s 27J l - I c *I 4 j J

D e f i n e

Hence K*g(x) G v c l ( Z n + 1). We choose such t h a t wc1(Zn + 1) = 7. x Thus

Page 309: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

294 10. APPROXIMATIONS OF THE IDENTITY

Observe t h a t 1 b(x)dx = 0 s u p p b c G . L e t Gj be t h e cub ic

i n t e r v a l c o n c e n t r i c w i t h Q

We can w r i t e

Qj - - and o f s i z e f o u r t imes as b i a as Q j , G = Qi. j

Now

A1 so

But

where y i s t h e c e n t e r o f Q t h u s j j .

J

Hence

Page 310: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.3. A THEOREM OF ZO 295

Therefore

Thus K* i s of weak type (1,l)

Observe t h a t , i f 1 e L1(Rn) i s nonnegative , of k’(Rn - COI)

and such tha t f o r x # 0 ,

Then the family ( lE)E,O , l E ( x ) = ~ - ~ l ( : ) s a t i s f i e s ( i ) and (ii) of the theorem. In f a c t .f lE(x)dx = / l (x )dx and

-n

Whis t h i s remark , t he following Corollary i s easy.

and

Jhen

6vhe

a . e ,

one. with

10.3.2. THEOREM. L e L 1 e L ’ ( R n ) f l %&’(Rn - l o ) ) , 1 > 0 - . L e L k 6 L1(Rn) be ouch t h u t / k ( x ) I G l ( x ) C Vl(X)l 6 ~

K* h 06 weak t y p e ( 1 , l ) 0 6 n h u n g type 1 < a < m, and thehe -

I x p

4 I k = 1 , 6vh each f e L p , 1 f D < a, lim k E * f ( x ) = f ( x ) ,

The Theorem 10.1.1. i s now an easy consequence of t he l a s t For k E L’(Rn) , k 2 0 , k rad ia l and k(x) nonincreasing 1x1 , we def ine , i f k ( l x 1 ) = k(x)

*

Page 311: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

296 10. APPROXIMATIONS OF THE IDENTITY

10.4. SOME NECESSARY C O N D I T I O N S ON THE KERNEL TO DEFINE A GOOD APPROXIMATION OF THE I D E N T I T Y .

L e t k e L’(Rn) and cons ide r , as before , t h e o p e r a t o r

K* f ( x ) = sup \ k E * f ( x ) \ . Assume t h a t K* i s o f weak t y p e (1,1) E>O

What can be deduced about t h e k e r n e l k? T h i s i s t h e t ype o f a u e s t i o n

we a r e go ing t o handle i n t h i s Sec t i on .

10.4.1. - 10.4.4., be long t o M . T . C a r r i l l o [1979]

o f p rev ious theorems o f Boo [1976] . The l a s t theorem 10.4,5 belongs

t o 800 [1976] .

The f i r s t s e t o f theorems,

and they a r e ex tens ions

m 10.4.1. THEOREM. Led k e L (R’) . L e L { ~ ~ l ~ = ~ be a Aequsrzce

huch thcLt E 4 0 and E ~ + ~ / E j -f 1. Let un w m . e j

K*f(x) = sup I k E * f ( x ) \ j j

A A A W ~ t h a t K* A 06 weak .type (1,1) . Then

ess . sup. 1x1 I k ( x ) / ~1

Phuud. Assume t h a t ess.sup. 1x1 l k ( x ) l = 40 T h i s means t h a t

f o r each b i g T 3 0 t h e r e e x i s t s E = E(T) c R1 , I E ( > 0, such t h a t

f o r each x e E we have

Page 312: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.4. NECESSARY C O N D I T I O N S 297

We can assume t h a t E c (0,m) . L e t us t a k e a d e n s i t y p o i n t x 0 6 E o f

E . We have

I E (1 B(xo, r ) I 1 i m = I r+O I B ( x o , r ) I

The re fo re t h e r e e x i s t s r o > 0 such t h a t ro < x o and

3 ( E f1 B ( x o , r o I I > ( B ( x o , r o ) l L e t us s e t E* = E 0 B ( x o , r o ) and

1 e t

We can f i n d a number n o such t h a t , f o r m > n,,we have

and SO 1, 0 Im+l # fi . There fo re

m

L e t E j = E~ E* and F = (I E j . j = n o

I f x E E j > n o , then $- 6 E" E and so j j

There fo re

3 We s h a l l i n m e d i a t e l y prove t h a t IF1 >, E ( xo + ro ) and so we

s h a l l have n0

Page 313: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

298 10. APPROXIMATIONS OF THE IDENTITY

But, i f K* i s o f weak t y p e (1,l) t hen we n e c e s s a r i l y have, acco rd ing

t o Theorem 4.1.1.

C ICx : SUD \ k E ( x ) ] > XI1 c T;

j j

f o r each A, > 0 w i t h c > 0 independent o f A . T h i s c o n t r a d i c t s t h e

i n e q u a l i t y (*) f o r T s u f f i c i e n t l y b i g , and so t h e theorem i s proved.

I n o rde r t o see t h a t I F \ > & E ( x o + r o ) we Droceed i n no

t h e f o l l o w i n g way. We f i r s t choose p > n o so b i g t h a t

From t h e i n t e r v a l s Ino, Ino+l , ..., Ip we can choose two

each o f them of d i s j o i n t i n t e r v a l s seauences {JI , . . . ,Js} {TI ,TV}

such t h a t

There fo re , f o r a t l e a s t one o f them, say f o r t h e f i r s t one, we have

1 p C I J j I 7 I IJ

S

i =1 n0

3 Each Ji c o n t a i n s a s e t Ei such t h a t (Ei) > 4 IJi I and so

3 m

3 m [I I 1 > - E (xo + r o ) . = g (IJ I,- m 16 no

n0 P+ 1

The f o l l o w i n g r e s u l t i s an n-dimensional ex tens ion o f t h e

p reced ing one. The method o f p r o o f i s analogous and w i l l be omi ted .

10.4.2. THEOREM. LeR: k E L'(Rn) , n > 1 . L e L { E . } be "1 x

j ~j a hequence A O thak E .C 0 and E ~ + ~ / E~ + 1 . L e t kE ( x ) = k ( r ) ,

j

Page 314: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.4. NECESSARY C O N D I T I O N S 299

K*f(x) = sup Ik * f(x)/ . L e l Un dedine t h e dunct ivn H vn t h e ul.tit

nphehe C 0 6 Rn by

Ej j

H f i ) = ess. sup. rn fk(ry

Annume &at K* A v d weak t q p e (1 , l ) . Then

buch t h a t doh each X > 0

r>O

whetre u A ,the. Lebugue meauhe a n C . When the kernel k of the preceding theorems i s continuous

one can give a somewhat simpler formulation.

10.4.3. THEOREM. L e l k e L’(R’) be cvrztinuvun and

0 0 K*f(x) = s u p (k, * f(x)l . Adoume . t ha t K* A v d weah t y p e (1,l)

Then sup 1x1 lk(x)l < m

x e R

10.4 .4 . THEOREM. L e i t k 6 L1(Rn) be ContinuvUc),

K*f(x) = sup Ik, * f(x)l nnd doh 7 6 C E>O

H(y) = sup rnl k(ry)l r>0

Abnume t h a t K* 0 6 weak .type. (1,l) . Then thehe c > 0 nuch t h a t doh each h 0

These theorems allows us to construct in a simple wayy for

example, radial kernels k e L1(Rn) operator K* i s not of weak type (1 , l ) . ( O f course k cannot be

nonincreasing , according to Theorem 10.1.1.). Take for example k e L1(R’) k continuous k(-x) = k(x) and such that for each j e Z , k(j) = 4‘1 Then K* i s not of weak type (1,l) . In R2 one can extend the preceding

such that the corresponding maximal

Page 315: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

300 10. APPROXIMATIONS OF THE IDENTITY

- - k r a d i a l l y t o k so t h a t s t i l l k E L 1 ( R 2 ) . The corresDonding maximal

ope ra to r K* i s n o t o f weak t ype (1,l) .

We have a l r e a d y seen i n Theorem 10.1.1. and t h e remark t h a t

follows i t , t h a t i f k E L1(Rn) , f k = 1 , and t h e f u n c t i o n T d e f i n e d

by E (x ) = ess sup I k ( t ) \ i s i n L1(Rn) , then f o r each f e L1(Rn) ,

k E * f ( x ) + f ( x ) a t a lmost each x €Rn. The f o l l o w i n g theorem, due t o Boo [1976] , i s a p a r t i a l converse o f t h i s r e s u l t . L e t us r e c a l l t h a t f o r

a f u n c t i o n f E L1(Rn) a D o i n t x E R” i s c a l l e d a LebQngue p o i n t 06

I t l c 1x1

We know t h a t a lmost each p o i n t o f Rn i s a Lebesgue p o i n t o f f 6 L1(Rn).

10.4.5. TffEOREM. 1eL k E L’ 17 L”(Rn), /k = 1 and dnnwne

t h a t j $ x each f E LI@P) ,

dt each Lebague p o i n t 06 f . Then t h e unction E(x) = ess sup I k ( t ) I LA in L’.

l t l 4 x l

Phood. We s h a l l prove t h a t i f !k = m , then t h e r e e x i s t s - g 8 L’(Rn) , w i t h g (0) = 0 , 0 i s a Lebesgue p o i n t o f g and s t i l l

l i m SUP € 4

L e t X be t h e subse t o f

f o r 1x1 > 1 , f ( 0 ) = 0 , f ( x ) = 0

Tha t i s

f u n c t i o n s f o f L1(Rn) such t h a t

and 0 i s a Lebesgue p o i n t o f f .

The s e t X i s a l i n e a r subspace o f L1(Rn). I f f o r f o X we d e f i n e

Page 316: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.4. NECESSARY CONDITIONS 301

then ] I f ( l i s a norm i n X . We s h a l l now show t h a t X w i t h II.llx i s a Banach space.

I n f a c t , l e t { g . ) c X be a Cauchy sequence i n X . S ince J

we have t h a t Eg.1 i s a l s o a Cauchy sequence i n L'(Rn). We t a k e a

subsequence Chj l of I g j 3 such t h a t J

and Drove t h a t E h . 1 converges i n X . T h i s , of course, i m o l i e s

t h a t a l s o 19.3 converges i n X . J

J

For Chj1 we have 1 1 h j - hj+llll c IB (Q, l ) \Z - ' and so,

by F a t o u ' s lemma, we e a s i l y see t h a t I h . 1 converges a.e. and i n L ' t o a f u n c t i o n . We can s e t g(O) = 0 , g ( x ) = 0 i f 1x1 > 1.

We a l s o have

J g E L1

4 l i m i n f 1 1 h j - hi l l 2-j+l i - t w

Wi th t h i s we e a s i l y have g 6 X and h j -f g(X) . Hence X i s a Banach

space.

Page 317: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

302 10. APPROXIMATIONS OF THE IDENTITY

Observe now t h a t for a fixed E > 0 , the mapping $E defined from X t o t by

i s l inear and bounded, since

Therefore ( $ e ) E > O i s a family of bounded l inear functionals from X

t o Ic . If we can show t h a t E + L' implies t h a t there exis ts E~ + 0,

f i E X with 11 f i l l L c , such t h a t I @ E i ( f i ) l + m , then, by the uniform boundedness principle, th i s means t h a t there must exis t g E X such t h a t lim sup I$Ei(g)l = and so we obtain the contradiction

t h a t Droves the theorem. E . ' 0

1

So our goal i s t o construct for each fixed E > 0 , using t h a t /k = 00 , a function f E E X , I ( f,l( c c such tha t lim SLID l$,(f,)l=w.

Observe f i r s t tha t f F = imolies the following . Let us c a l l ,

E - t O

for s = 0,1,2,3,.., and E > 0

m r

Page 318: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

10.4. NECESSARY CONDITIONS 303

00 ME(s) There fo re , if E + L 1 , we have 1 - + m as E + 0 ,

s=o 2ns

We now rnroceed t o d e f i n e t h e a n n r o p r i a t e f . Since E

ME(s) = ess s u p Ik,(x)l , s = 0,1,2,... we have a s e t o f

p o s i t i v e measure EE(s)

2-s-1 < E I x l < 2 - s

M E W < 1x1 < 2-’ , \ k E ( - x ) l > I E E ( s ) = { x : 2 - s - l

L e t us s e t

Now we s e t

g,, S ( X ) fE:(X) = 1 -

m

s=O zns Ns

where Ns , s = 0,1,2,.., i s chosen so t h a t N s t m , and

(Take, for example Ns = as f o r ci > 1 and c l o s e t o 1)

We see t h a t f E ( 0 ) = 0 , f E ( x ) = 0 f o r 1x1 > 1 . A lso , i f

< r 6 2-k , we have 2 - k - l

Page 319: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

304 10. APPROXIMATIONS OF THE IDENTITY

X

On t h e o t h e r hand

m

<2-s k , s ( x ) ( d x =

And so l @ E ( f E ) l -f m as E + 0. T h i s concludes t h e o r o o f o f t h e theorem,

Page 320: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 11

SINGULAR INTEGRAL OPERATORS

One of the most basic operators in Fourier Analysis i s the Hilbert transform, formaily defined through

The in tegra l value. from the ro l e i t plays in the estimation of t he pa r t i a l sums of t he Fourier s e r i e s of a function. I t s type has been studied very ea r ly by Lusin, M.Riesz , Kolmogorov among o thers . This was done i n i t i a l l y mainly th rough complex methods, as was usual in the onedimensional Fourier a- na lys i s pr ior t o the f i f t i e s . Besicovitch [1923]

pioneer of the introduction of rea l methods in t h i s area and very ea r ly he obtained the existence of the above in tegra l f o r almost every x , f i r s t when f 4 L2(R1) [1923] and then 119261 when f E L ' (R ' ) by purely rea l methods.

has t o be understood in the sense of Cauchy's principal One of the main reasons f o r the imDortance of t he operator stems

however was the

The grea t spread of the i n t e r e s t i n real methods i n Fourier Analysis came i n Zygmund in which they studied the n-dimensional analogues of the Hil- ber t transform by rea l methods, The a p p l i c a b i l i t y o f t h e i r r e s u l t s and of t h e i r methods t o the s t u d y of pa r t i a l d i f f e r e n t i a l equations or ig i - nated an increasing i n t e r e s t in t h e elaboration of purely real techniques f o r the problems of Fourier Analysis.

1952 w i t h the now c l a s s i ca l paper of CalderBn and

This Chapter i s conceived in the context of the whole book

as a t e s t i n g ground f o r the goodness of some of the methods developed in e a r l i e r Chapters. lrle f i r s t show how the general r e s u l t s permit us t o obtain w i t h ease some of the theorems which, f o r long t ime, have been

305

Page 321: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

306 11. SINGULAR INTEGRAL OPERATORS

considered p r e t t y d i f f i c u l t and s o p h i s t i c a t e d . F i r s t we dea l w i th t h e

H i l b e r t t rans fo rm , LP- theo ry and p o i n t w i s e theo ry , and then w i t h t h e

Calder6n-Zygmund opera to rs . I n t h e t h i r d Sec t i on we deal w i t h t h e t h e o r v

o f s i n g u l a r i n t e g r a l ope ra to rs w i t h g e n e r a l i z e d homogeneity t h a t we s h a l l

use l a t e r on i n Chapter 13.

11.1. THE HILBERT TRANSFORM.

1 L e t h(x) = x f o r x # 0 , and f o r E > I), l e t

The fhunCCLtc?d H A ~ . w L ~ ~X.LZ~IA@~ ( a t E ) o f f a Lp(R1), f o r some D,

1 & p < m, i s d e f i n e d as H,f(x) = h, * f ( x ) , and t h e H i l b e r t t rans -

form i s d e f i n e d as H f = l i m H E f , whose e x i s t e n c e i n some sense we E'O

s h a l l have t o prove. The maximal H i l b e r t t rans fo rm i s d e f i n e d as

H* f ( x ) = sup I H E f ( x ) l . E'O

We s h a l l t r e a t s e p a r a t e l y and independen t l y t h e L1- t h e o r v and

t h e L 2 - t h e o r y .

l l . l . A . The L'-Theory.

The p a t h we f o l l o w i s v e r y s imp le . By means o f a lemma o f

From here, based on t h e dec reas ing

Loomis [1946]

over f i n i t e sums o f D i r a c d e l t a s .

cha rac te r o f t h e ke rne l x on R ' - 0

t h a t H* i s of weak t y p e (1,l) over f i n i t e sums o f D i r a c d e l t a s and

so of weak t y p e (1,l) , accord ing t o Theorem 4.1.1. T h i s g i v e s us e a s i l y t h e a-e'. convergence o f H E f f o r f 6 L' (R ' ) ,

we Drove t h a t t h e H i l b e r t t r a n s f o r m i s o f weak t y o e (1,l)

1 , we e a s i l y a r r i v e t o t h e f a c t

11.1.1. LEMMA, LeL a . a R , j = 1,2,3 ,..., N und X > 0. J

Page 322: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.1. THE HILBERT TRANSFORM 307

N L e L f = 1 A j whehe 6 . A i h e D&c d&a concenLated CLt a . .Then

, j=1 J .?

P h a a 6 . By l o o k i n g a t t h e granh o f t h e f u n c t i o n

1 N y = c

j=1 J

N > A } ] = 1 ( v j - a,i) where i t i s q u i t e c l e a r t h a t ICx : ~

1 j=l x-a j j=1

v . j = 1,2, . . .yN a r e t h e r o o t s o f t h e eaua t ion - j y

N N . N N 1 1 x-a.- - A i . e . o f A r! ( x - a . ) = 1 r! (x-a,)

.j = 1 J j=1 " .i=1 ,i#k

From here we e a s i l y o b t a i n , by t h e Cardano-Vieta r e l a t i o n s

j=1 J 1 j=1 j= l

N N N N N 1 y . = - + 1 a j . Hence 1 (y j - a . ) = x . Thus we g e t J

Since t h e second te rm can be handled as t h e f i r s t one.

11.1.2. TffEUREM. The maximal HLLbeht opeh.aXoh H* A 06 weak

.type ( 1 9 1 ) .

Phoo6. Accord ing t o Theorem 4.1.1. i t i s s u f f i c i e n t t o n rove

t h a t H* i s o f weak t y n e (1,l) over f i n i t e sums o f D i r a c ' d e l t a s , L e t

a . E R , j = 1 , 2 , ..., N, h > 0 , and f = SLi where S. i s t h e

D i r a c d e l t a concen t ra ted a t a We have t o m o v e t h a t

-

3 j=1 J

j *

Page 323: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

308 11. SINGULAR INTEGRAL OPERATORS

w i t h c independent o f f and X

We take an a r b i t r a r y compact s e t K con ta ined i n

{ x : H * f ( x ) > X I - { a ,a2 ,..., aN 1 . I f x 8 K, t h e r e e x i s t s E ( X ) > f l

such t h a t I H f ( x ) ! X . We t a k e a f i n i t e number o f d i s . i o i n t

i n t e r v a l s Ik = L X ~ - F. xk) , xk + € ( x k ) ] k = 1 y 2 y . , . , M , w i t h E(X)

M Xk E K such t h a t I K I C 21 ( I I k l . For each k = I , ? ,... ,M, l e t

1

f k = X I k i . e . f k i s t h e sum of t h e D i r a c d e l t a s o f f sunpor ted

by t h e i n t e r v a l I k . L e t us d e f i n e f i + f - fk , i . e . f i i s t h e

sum o f t h e D i r a c d e l t a s o f f w i t h suDDort o u t s i d e Ik. We can w r i t e

There fo re

! i f * ( t ) = k

i s decreas

Thus IHf;

i n [xk -

! H f c ( x k ) l > A . Now t h e f u n c t i o n o f t

ng over I k , s i n c e H f $ ( - ) has no s i n g u l a r i t y o v e r I k . t) I > X f o r each t i n [xk , xk + c ( x k ) ] o r f o r each t

E(Xk) xk 1 s i n c e IHf;(xk)( > A . L e t us c a l l h t h e h a l f i n t e r v a l of Ik where t h i s happens. We have then

{ I H f Z l > X 3 3 2- I k . We can a l s o w r i t e 1

We s h a l l t r y t o es t ima te t h e l a s t s e t . We have H f i = H f - H f k and

so

Page 324: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.1. THE HILBERT TRANSFORM 309

Hence

Therefore we can s e t using Lemma 11.1.1.,

Since IKI i s a r b i t r a r i l y c lose t o l{H*f > XI1 we get out theorem.

i s a comnact i n t e r v a l , i t i s

c l e a r t h a t Hg(x) e x i s t s a t a .e . x E R ’ . Therefore Hffx) e x i s t s f o r f e L’ a t a .e . x s R 1 , and a l so H i s of weak type (1 , l ) .

I 5 For g = 1 a j x I , where j

11.1.8. The L2-Theory.

The L2-theory of the truncated Hi lber t transform i s very simole by means of the Fourier transform. We have

w i t h c independent of E and x . Therefore , i f f E L2(R1) , . We know t h a t f o r I ( H E f ( ( 2 c I I f l ( 2 with c independent of f ,E

g = 1 a j x I j where I i s a comnact in te rva

e x i s t s a . e . By an easy d i r e c t computation one can

HEg -+ Hg(L2) as E -f 0 . From these f a c t s we sha each f E L2 the l i m i t of HEf as E + O i n L 2

N

j=l j

check t h a t

1 deduce t h a t f o r e x i s t s , In f a c t ,

Page 325: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

310 11. SINGULAR INTEGRAL OPERATORS

t a k e a sequence {g,} o f s imp le f u n c t i o n s as above such t h a t qk -f f ( L ' ) .

Then we have

Given n > 0 one takes gk so t h a t 2c I ( f - gk112< n / 2 . Once

gk i s f i x e d , i f ~ , 6 a r e smal l enough we have 1 1 HEgk - H6gk1I2c n / 2 . There fo re H E f i s a Cauchy sequence i n L 2 and so converges t o a f u n c t i o n

H f i n L 2 . Fur thermore we have 1 1 H f l 1 2 c c I I f ( I 2 . 1 ;; With t h i s r e s u l t and t h e f a c t t h a t i s dec reas ing i n R'- I01

we s h a l l o b t a i n , as b e f o r e , t h e weak t y p e (2 ,2 ) o f H*.

11.1.3. TffEOREM. The maximal ffLLbent opehaton H* A a6 weak

N P m v d . L e t f = 1 c j x E j c . > 0,

j=1 Ej J - d i s j o i n t compact

i n t e r v a s , and X > O . We t a k e a compact s e t K con ta ned i n

e x i s t s E ( X ) > 0 such t h a t f ( x ) I > X , We t a k e a f i n i t e

number o f d i s j o i n t i n t e r v a l s I k = [ xk - E ( x ~ ) , xk + E ( x ~ ) ~ w i t h

{ H * f > XI - {endpo in ts o f t h e i n t e r v a l s E j l . Fo r each x 6 K t h e r e

M

1 Xk E K , such t h a t I K I < 2 I [I I k I . ' Fo r each k = 1 , 2 , . . . , M y l e t

f k = f X and ft = f - fk . As b e f o r e , i n t h e p r o o f o f Theorem

11.1.2, we have I k

and so I H f t ( x k ) l > X . Now t h e f u n c t i o n Hf;(-) i s non inc reas ing on I k s i n c e t h e

suppor t o f f i i s o u t s i d e Ik . Thus we can oroceed as i n t h e p r o o f o f

Theorem 11.1.2. and a r r i v e t o t h e weak t y o e (2,2) o f t h e o a e r a t o r H*.

Page 326: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.1. THE HILBERT TRANSFORM 311

The convergence a lmost a.e. o f

and t h e t y p e ( D , P ) , 1 < p < m,Of H* and H a r e easy consemences

of what we have proved a l ready .

H E f , f o r f e Lp , 1 6 p < m y

We add he re a couple of remarks. F i r s t , i n t h e t r e a t m e n t o f

t h e weak t y p e (2,2) o f H* we have fo l l owed a p a t h d i f f e r e n t f rom t h e

one used f o r t h e weak t y p e (1 , l ) . something 1 i ke

One c o u l d be tempted t o t r y t o p rove

and t h e apo ly Theorem 4.2.1. t o o b t a i n t h e weak t y p e (2,2) f o r H* . But t h e i n e q u a l i t y ( x ) above i s f a l s e , I n f a c t we have t h e e q u a l i t y

and so we cannot have f o r a f i x e d c < m, L c - f o r b i g X . x2 The second remark i s t h e i n t e r e s t i n q p r o o f t h a t can be o b t a i n e d

o f t h e s t r o n g t y p e (2,2) of H f o r s imo le f u n c t i o n s w i t h o u t making use

o f t h e F o u r i e r t rans fo rm. I t i s v e r y easy and makes use o f t h e f o l l o w i n g

lemma due t o B e s i c o v i t c h [1923] .

11.1.4. LEMMA. L e L tl , 1 = 0,?1,+2 ,.'. be t h e neyuence - a 6 h i g k t endpointd 06 t h e dyadic in tem& 06 R' 06 Length 2-N

x . , i = 0,?1,+2,.. . F m i ' i = o ,il ,+2, ..,

and &A

be t h e .sequence v d .the,& midpointd. Then we have id 1

A a n a h b i t m t y nequence 0 4 nvnncgaLiue nWnbe?Ld

With t h i s lemma one e a s i l y o b t a i n s t h e f o l l o w i n g r e s u l t .

11.1.5. TtlEOREM. The. o p e n a t o h H A ad n,7hong .type (2,2) u u a finem combinLttioa v 6 charcaotehinLic d u n o t i v u oh bounded i n t a v a h .

Thehedohe AX can be dedined a n L2 and AX'A ad b a u n g .type (2,2).

Page 327: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

312 11. SINGULAR INTEGRAL OPERATORS

N Phuod. For a f u n c t i o n f = 1 a j xI. one has t o Drove

j=1 J

It i s an easy e x e r c i s e t o reduce t h i s

lemma by s u b s t i t u t i n g t h e i n t e g r a l s by

n e q u a l i t y t o t h a t o f t h e p reced ing

a p w o D r i a t e Riemann sums.

Phood 0 6 Lemma 11.1.4. It i s s u f f i c i e n t t o Drove t h a t , i f

1 - 7 , m. > 0, i = l,Z,...,n , then

1 s.= i 1

To do t h i s we can w r i t e

m. m.

1 n

1 mi m.- 1 s . - 1 ) ( s . - 17 n " 1

= 1 m i 1 - + 2 J J 1=1 1 i = l 1=1 (Si - 1 ) * l t i < j < n

But

1 n 1 ~ < 8 1=1 (S i - l I Z

< n 2 i mf and so E - 1 m

i=l i = l

On t h e o t h e r hand , i f i < j .

Page 328: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.2. C A L D E R ~ N - ZYGMUND OPERATORS 313

1 n l n l c K] = 1 =1 J -'j c J1 l-si - 1 =1 J

-~ 1 n

(Si - l ) ( s . - 1 ) -

T h i s proves t h e above i n e q u a l i t y .

11.2. THE CALDER~N-ZYGMUND OPERATORS.

The Calderdn-Zygmund opera to rs , t h e n-d imensional analoques

o f t h e H i l b e r t t rans fo rm, a r i s e i n a n a t u r a l way when c o n s i d e r i n q c e r t a i n

problems r e l a t e d w i t h t h e d i f f e r e n t i a t i o n o f a Newtonian p o t e n t i a l .

t h i s m o t i v a t i o n one can see CalderBn and Zygmund [I19521 . For

1 The k e r n e l h ( x ) = o f t h e H i l b e r t t r a n s f o r m has seve ra l

i m p o r t a n t f e a t u r e s t h a t a r e r e s p o n s i b l e f o r t h e good behav iou r o f t h e

H i l b e r t t rans fo rm. F i r s t h ( 1 ) + h ( -1 ) = 0 , i . e . h has mean v a l u e

ze ro ove r t h e u n i t sphere o f R1.

x # 0 , i . e . h i s homogeneous o f degree -1. Besides h has a p r e t t v

smooth behaviour , h E e(R1 - { O } ) . T h i s , as we s h a l l see, i s n o t

necessary f o r o b t a i n i n g r e s u l t s i n Rn s i m i l a r t o those we have o b t a i n e d

about H and H* . So we s h a l l cons ide r a CalderBn-Zygmund k e r n e l k

i n Rn , i . e . a f u n c t i o n k : Rn -t R ( o r E ) such t h a t

Second h(Xx) = X-'h(x) , f o r A > 0,

ii) k h x ) = X-'k(x) , f o r X > 0 , x # 0 .

We s t i l l need some smoothness c o n d i t i o n on k t o o b t a i n a reasonable

behaviour f o r t h e o p e r a t o r s we a r e going t o d e f i n e , I t t u r n s o u t t h a t

t h e i n t e g r a l L i p s c h i t z c o n d i t i o n t h a t f o l l o w s i s a l r e a d y s u f f i c i e n t f o r

t h i s .

Page 329: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

314 11. SINGULAR INTEGRAL OPERATORS

iii) There e x i s t s c > 0 such t h a t f o r each v e Rn

1 I X I ,4 I Y

O f course, f o r

L i p s c h i t z c o n d i t i o n

( k ( x ) - k ( x - y ) l d x h c < m.

i i ) i t i s s u f f i c i e n t t h a t k s a t i s f i e s a

I n f a c t , we t h e n have

Fo r c o n d i t i o n (*) , i n v iew o f

t o assume k 6 Q1(Rn - I01 )

t h e homogeneity o f k i t i s s u f f i c i e n t

The Calderdn-Zygmund o n e r a t o r o f k e r n e l k i s now d e f i n e d

f o r m a l l y as

K f ( x ) = k * f ( x )

I n o rde r t o g i v e a meanino t o t h i s c o n v o l u t i o n one f i r s t cons ide rs t h e

t r u n c a t e d k e r n e l s

k ( x ) , i f E 6 1x1 c n i 0 , othe rw ise

k,,-,(x) =

and, f o r f e Lp(Rn), 1 h n < m , one d e f i n e s

kE,,f(x) = kE,T) * f ( x )

The ques t i on now i s whether t h e l i m i t o f KE,T) f e x i s t s i n

some sense.

CalderBn and Zygmund, i n t h e i r now c l a s s i c a l paper o f 1952 ,

Page 330: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.2. CALDERBN - Z Y G M U N D OPERATORS 315

obtained very general s a t i s f a c t o r y r e s u l t s , proving the ex is tence of t he l imi t in L p , 1 < p < m , f o r f E L p , and t h e existence of t he l i m i t a t almost each x 6 Rn f o r f 6 L p , 1 c p < m under some additional conditions. Zygmund [19671 and l a t e r on by Riviere [19731, who f i n a l l y proved tha t the simple Lipschitz in tegra l condition ( i i i ) on t he kerne ls , together w i t h the usual assumptions ( i ) and ( i i ) , su f f i ces t o obtain t h e convergence in Lp and the pointwise convergence results.

Their r e s u l t s were l a t e r refined by CalderBn, M. Weiss and

goes t h r o u g h some o f t he genera chapters. F i r s t we sha l l obtain truncated kernel s k E ,Tj the a to r s KE,TI . This r e s u l t s eas

We present here t h i s r e s u l t , following a d i f f e r e n t path t h a t theorems we have obtained in previous bv studying the Fourier transform of the

uniform boundedness in L 2 of t he oper- l y leads t o the ex is tence of

n - f w

From i t we sha l l ob ta in , using the method of majorization shown i n 3 . 6 . , the strong type (2,2) of t h e maximal operator K*

Finally we sha l l show, by means of t he Calder6n-Zygmund decom- posit ion lemma of 3.1, the weak type (1 , l ) of the maximal operator K*. From t h i s one e a s i l y obtains the almost everywhere convergence of KE,.,f f o r f e ~ P , 1 c D < m , a s ~ + ~ , q + a .

11.2.A.

11.2.1. THEOREM. l&t k : R n + R b~ a 6unc;tion ouch t h a t

i ) 1 lk(:)/di < m ,

The Uniform Boundedness i n L 2 of the Truncated Operators.

k ( i ) d i = 0 c c

i i ) For x # 0 , X > 0 , k ( X x ) = A-’k(x)

Page 331: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3 16 11. SINGULAR INTEGRAL OPERATORS

independent v d ~ , q . Themdohe , dux f E L2 , K f = l i m K f ( L 2 ) EYn € 4 .n-

Pxaad. We w o v e t h a t t h e r e e x i s t s c > 0 such t h a t f o r each

x E Rn , ItF rl ( x ) l

t h e n us, f o r f e L2 ,

c c < . The Parseva l -P lanchere l theorem g i v e s

i . e . , KE,q i s u n i f o r m l y o f t y p e (2 ,2 ) .

For g E @:(Rn) we have

6 a 1 I k ( y ) l l y l d y = a 1'' dp I k ( ? ) J d.7 , E l

E1GIY

where a = max I V g ( x ) l , and so one e a s i l y sees t h a t KE g ( x )

converqes a t each x and i n L 2 as E + 0, n + m , There fo re , by ap-

p r o x i m a t i n g f E L2(Rn) by f u n c t i o n s i n $' :(Rn) one ge ts t h a t K E Y q f

converges i n L2(Rn) t o a f u n c t i o n K f and t h a t 1 1 K f l 1 2 c c I I f1I2 .

YV x 6Rn

Therefore, a l l we have t o do t o prove t h e theorem i s t o o b t a i n

t h a t

Page 332: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.2. CALDER6N - ZYGMUND OPERATORS 317

h

( x ) I L c < m w i t h c independent o f ~~q . I k c d l

For b r e v i t y l e t us c a l l h ( x ) = kE ( x ) . We s h a l l f i r s t p rove Y r l

t h a t

for each y, w i t h c independent o f y.

If 1x1 2 41yl , we have

Thus i f we denote

we o b t a i n

Page 333: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

318 11. SINGULAR INTEGRAL OPERATORS

The t h i r d i n t e g r a l , over S3 , i s t r e a t e d i n t h e same way . Thus we g e t

w i t h c independent o f y .

We nex t prove t h a t t h e F o u r i e r t rans fo rm o f h i s bounded

u n i f o r m l y i n E, q . fi x = o , then \6(0)l = .r kE,n ( v )dv = 0 . Assume x f 0 I

1 , so t h a t (x,z) = . We can and cons ide r f i (x ) . Take z = - X

21x12 w r i t e

d ,v= 1 I,j . j=1

We have [ I 1 \ c c, as proved before. For 1121 we w r i t e , i f

121 IYI < 4 1 4

If I z I > 1 ~ 1 , we t a k e y 1 = $,- I z I , so t h a t Iy11 = I z I . Thus

Page 334: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.2. C A L D E R ~ N - ZYGMUND OPERATORS

F i n a l l y ,

11.2.B. The Strong Type ( 2 2 ) o f t h e Maximal Operator .

11.2.2. THEOREM . L e l k be M -in 11.2.1. Then, .id , t h e maxim& openatoh K* A 0 6 W M ~

Phaaa. I n o r d e r t o p rove t h a t K* i s o f t y p e (2,2) we can, - bv Theorem 3.1.1. r e s t r i c t ou rse l ves t o n rove t h e t v n e ( 2 , 2 ) over a

dense s e t o f f u n c t i o n s . L e t g be a l i n e a r combinat ion o f c h a r a c t e r i s -

t i c f u n c t i o n s o f d i s j o i n t open bounded s e t s whose boundar ies have n u l l

measure. For such a f u n c t i o n , if x i s n o t on any o f t h e boundar ies

o f such se ts ,

~ g i x ) = l i m K ~ C X ) e x i s t s and €,I? P O

n-

g(X) = KEg(X) - Krlg(x) , where K6g(x) = l i m K s , s g ( ~ ) . rl-

Hence, f o r such x , t h e r e e x i s t s E ( X ) > 0 such t h a t

319

Page 335: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

z ) d z ( .

0 1 Since, f o r a lmost a l l

w r i t e f o r such p o i n t s y

i f l e s s than o f equal t o

y E B (x , E ( x ) ) = BE , Kg(Y) e x i s t s , we can

t h a t t h e l a s t member o f t h e w e c e d i n g i n e n u a l i t v

Now we have, i f M i s t h e Hardy -L i t t l ewood o p e r a t o r ,

and SO, s i n c e K and M a r e of t y p e (2,2) ,

For 1 3 g , u s i n g Kolmogorov's i n e q u a l i t y f o r K w i t h p = 2 , s = 2 , 0 = 1 (Theorem 3.3.1.) we can w r i t e

Page 336: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.2. C A L D E R ~ N - ZYGMUND OPERATORS 321

and so,

The e s t i m a t e f o r I l g ( x ) i s a l i t t l e more d e l i c a t e . L e t us

d e f i ne

[ o , i f l v l < 1

Then, i f x - z = EV , x - y = EU ,

NOW, if v = rG , V E c , r > 0,

0 , i f r < l

$ ( v ) = +(rS) =

I k ( r G ) - k ( r i - u )dv , i f r 2 1

i .e . , i f u = rt ,

Page 337: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

322 11. SINGULAR INTEGRAL OPERATORS

So 4 i s non inc reas ing a long rays i n 1x1 > 1

I f we d e f i n e

I k ( ? ) - k ( i - u ) l du , i f I v I < 1

+*(v )= $*(rV)= I k ( r V ) - k ( r i - u ) l d u , i f I v I 2 1.

Then $* o b v i o u s l y m a j o r i z e s $I , and i s non inc reas ing a long ra.vs i n

Rn. A l so we have

I k ( v ) - k (v -u ) ( d u dv =

i,v,,14* = I,,,,, I,,,,:

by c o n d i t i o n (iii) on k . And a l s o

+*(v)dv c I k ( c ) I d u dv + 1, 1 I k ( E - u ) ( d u dv I,,,,, V J d \Ul<K

T h u s I +* < - . Now

and we know a l r e a d y by t h e r o t a t i o n method t h a t t h e l a s t o p e r a t o r i s o f

t y p e (2,2) .

Hence K* i s o f weak t y p e (2,2) and t h i s concludes t h e p r o o f

o f t h e theorem.

Page 338: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.2. C A L D E R ~ N - ZYGMUND OPERATORS 323

11.2.C. The Weak Type (1,l) of t h e Maximal Operator .

11.2.3. TffEOREM. 1eA k b e ah i n Tkteahem 11.2.1. Then K*

A 0 6 weak t y p e (1,l) .

P m o 6 . L e t now f be any nonnegat ive f u n c t i o n i n L1(Rn)

w i t h compact suppor t . L e t A > 0 and app ly t o f and A t h e CalderBn-

n t Zygmund descomposi t ion lemma, o b t a

dyad ic i n t e r v a l s such t h a t

n i n g a sequence (9 .1 of d i s j o J

D e f i n e now

and l e t , f ( x ) = g ( x ) f h ( x ) . C l e a r l y supp h c ( L J Q,i) and

1 0, h ( x ) d x = 0 . A lso g ( x ) c ZnA a .e. and b o t h g and h have

J compact suppor t . We have

We a l r e a d y know t h a t K* i s o f weak t.ype ( 2 , Z ) . Therefore, x i f A i s any compact s e t con ta ined i n { x : K*g(x) > 1 , by Kolmo-

g o r o v ' s i n e q u a l i t y w i t h 0 = 1 , s = p = 2 , we have,

Hence, remembering t h a t g ( x ) c Z n I a.e, , we g e t

Page 339: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

324

S ince

11. SINGULAR INTEGRAL OPERATORS

Therefore, a l l we have t o do now i s t o prove t h a t

As before, K* f ( x ) c 2 sun IKEh(x ) l . (Observe t h a t , s i n c e h has

compact suppor t , K h ( x ) KEh(x) - Knh(x) and b o t h KEh(x) and

K h ( x ) e x i s t and a r e f i n i t e ) . Hence f o r each

E ( X ) > 0 such t h a t

E N

EYn x 8 Rn , t h e r e i s an n

We s h a l l now show, f o l l o w i n g Calder6n and Zvqmund

f i x any a r b i t r a r y f u n c t i o n

[1973]

x E Rn + E(X) e ( 0 , ~ ) , then

t h a t i f we

and t h i s w i l l conclude t h e p r o o f o f s t e p C .

We c a l l Io j t h e c u b i c i n t e r v a l w i t h t h e same c e n t e r zi as

Qj and f o u r t imes as b i g i n d iameter . L e t us c o n s i d e r t h e f u n c t i o n

L l ( x ) = IJ 1,. [ ( h ( z ) ( + I] I k ( x -2 ) - k (x -z i ) l dz

J J where p > 0 w i l l be c o n v e n i e n t l y chosen i n a moment. We have

Page 340: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.2. CALDER6N - ZYGMUND OPERATORS 325

u s i n g c o n d i t i o n (iii) on k and t h e f a c t t h a t

We now s e t

i s extended over a l l i n d i c e s j such t h a t Osj i s e n t i r e l v where r con ta ined i n

{ z : I z - x I > E ( x ) } , t h e sum lz i s extended o v e r t h e rema in inq J

i n d i c e s , and

Now, i f x d I! g j we have J

1 s i n c e \ h ( z ) d z = 0 . So I 1'1 c L l ( x ) .

O j j

C

1-1 We s h a l l i n a moment a l s o show t h a t 1 G - 11 + L l ( x ) l .

J There fo re we s h a l l t hen have

Page 341: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3 26 11. SINGULAR INTEGRAL OPERATORS

and t h i s w i l l conclude t h e p r o o f o f t h e theorem.

C To show t h a t 1121c IX + L l ( x ) ( , we f i r s t observe t h a t i f J

1 IP31 > 7 I Q j I then

Thus

and so

and so

Page 342: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.3. GENERALIZED HOMOGENEITY

Hence

so

327

where the last written sum is extended over all indices j such that

Qj intersects Iz : Iz-xI c E(x)I . But since x t 0 6 each such Q is contained in

j

j

3 E ( X ) } 2 I z : 1 2 - X I > - 1 (1 { z : IZ-XI c 2

and so, using condition (i) on k ,

11.3. SINGULAR INTEGRAL OPERATORS WITH GENERALIZED HOMOGENEITY.

The classical operators of the CalderBn-Zygmund type that we

have studied in the preceding Section have been generalized in different

directions. to a w l y the same methods of CalderBn and Zygmund to differential operators

of parabolic type.

The motivation for such generalizations was initiallv to trv

Such generalizations have proved later also very

Page 343: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

328 11. SINGULAR INTEGRAL OPERATORS

u s e f u l i n o r d e r t o deal w i t h s p e c i f i c Droblems i n F o u r i e r a n a l v s i s where

t h e geometry i s o f a more i n t r i c a t e n a t u r e .

a p p l i c a t i o n s w i l l be g i v e n i n Chapter 1 2 .

An example o f such t y n e o f

The f i r s t g e n e r a l i z a t i o n s i n t h i s d i r e c t i o n appeared i n t h e

Dapers o f Jones [1964] , Fabes [1966] , Fabes and

Guzmdn [1968,1970 a, 1970 b ] , and o t h e r s ,

R i v i G r e [1966,1967] ,

Much o f t h e t h e o r y we a r e go ing t o developed runs p a r a l l e l t o

c l a s s i c a l one o f CalderBn and Zygmund once we have s e t o u r Droblem i n

t h e a p p r o p r i a t e geometr ic c o n t e x t . We s h a l l e x p l a i n i t f o l l o w i n q t h e

l i n e o f t hough t o f Guzmdn [1968, 1970 a l .

The problem we a r e go ing t o handle i s t h e f o l l o w i n g . L e t A

be a f i x e d n x n m a t r i x w i t h r e a l elements. Consider, f o r A > q, t h e

mapping

x e~~ -f T ~ X = e A1ogX E R n

The t r a n s f o r m a t i o n TI i s a s o r t o f d i l a t a t i o n ( f o r A = I , TAx = Ax)

I f we assume t h a t A has e igenvalues w i t h p o s i t i v e r e a l Dar t , t h e n we

have f o r each x e Rn - I01 , TAx + 0 as A > 0 and l T A x l -f as

A + - .

We s h a l l cons ide r k e r n e l s k : Rn - I01 + R s a t i s f y i n g , w i t h

r e s p e c t t o t h e d i l a t a t i o n s TI, an homogeneity n r o o e r t y s i m i l a r t o

t h a t o f t h e CalderBn-Zygmund k e r n e l s w i t h r e s p e c t t o t h e o r d i n a r y d i l a t -

a t i o n s , i . e .

k ( x ) -tr A k (TAx) = A

We s h a l l ask ou rse l ves whether i t i s p o s s i b l e t o get,from such

ke rne ls , convo lu t i on opera to rs t h a t s a t i s f y s i m i l a r theorems as those o f

Calder6n and Zygmund ob ta ined i n 11.2.

As one c o u l d expect , i t t u r n s o u t t h a t t h e t r i c k t o do i t

c o n s i s t s i n t r u n c a t i n g a p p r o p r i a t e l y such k e r n e l s (even t h e H i l b e r t

t r a n s f o r m f a i l s t o be a good o p e r a t o r

Such a t r u n c a t i o n i s determined by t h e d i l a t a t i o n s TA.

i f t h e t r u n c a t i o n i s n o t adecuate) .

I n o r d e r t o f i n d

Page 344: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.3. GENERALIZED HOMOGENEITY 329

i t we s h a l l f i r s t observe t h a t t h e r e i s a m e t r i c P , i n v a r i a n t bv

t r a n s l a t i o n s , assoc ia ted i n a n a t u r a l way t o t h e m a t r i x A, which

behaves w i t h r e s p e c t t o t h e d i l a t a t i o n s

m e t r i c I - I 11.3. A,where we s h a l l examine some o t h e r n i c e p r o p e r t i e s o f t h i s m e t r i c

t h a t w i l l enable us t o prove i n a s t r o k e some usefu l theorems on apnrox i -

ma t ion i n 11.3.B and on s i n g u l a r i n t e g r a l o p e r a t o r s i n 11.3.C.

TA e x a c t l y as t h e Euc l i dean

behaves w i t h r e s p e c t t o t h e o r d i n a r y d i l a t a t i o n s , i .e.

p (TXx) = Ap(x) f o r each A > 0 and x E Rn , T h i s w i l l be done i n

11.3.A. The M e t r i c Associated t o a M a t r i x A.

I n t h i s s e c t i o n , A w i l l denote a f i x e d n x n r e a l m a t r i x

whose e igenvalues have p o s i t i v e r e a l p a r t . Fo r t e c h n i c a l reasons t h a t

w i l l be apparent l a t e r on we s h a l l assume t h a t t h e r e a l p a r t o f t h e

e igenvalues i s b i g enough (how b i g w i l l depend o n l y on n ) . T h i s w i l l

n o t l essen t h e g e n e r a l i t y o f t h e theorems on approx ima t ion and on s i n g u l a r

i n t e g r a l s we a r e l o o k i n g f o r , Fo r A > 0, TX i s t h e mapoing

x e R n + TXx = e A 1 o g X e R n

We s h a l l i n t r o d u c e t h e m e t r i c p assoc ia ted t o A i n t h e f o l l o w i n g way.

11.3.1. LEMMA. Fotl each x a R n -I03 thehe u unique

n u m b 0 p ( x ) , 0 < P ( X ) < ~0 , nuch t h a t IT-1 X I = 1 . Let ub b e t

d o p(0 ) = 0 . The duncaXon p : Rn + COY-) bo dedined b ~ m ! ~ h & L a

t h e doU0eolLling p o p a i i a :

-

P ( X I

Page 345: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

330 11. SINGULAR INTEGRAL OPERATORS

Thenedotle , id we dedine p*(x,y) = p ( x - y ) , the^

- p* : Rn x Rn + LO,-) a m W c i n Rn f hcd d invahiant by a%~m& L L O V l A .

Phoud. For each x e R n - { O } we d e f i n e f o r X 6 (0,m)

The f u n c t i o n Ip : ( 0 , ~ ) + (0,m) s a t i s f i e s

The m a t r i x A t A*

Therefore, f o r each z 6 Rn - { O ) , (z,(A + A*)z) > 0 and so + ' ( A ) < O

f o r each X > 0. Hence +(A) i s s t r i c t l y dec reas ing on ( 0 , a ) . It i s

c l e a r t h a t $ ( I ) -f m as X + 0 and +(A) -+ 0 as X -+ m. Hence

t h e r e i s a un ique va lue p ( x ) > 0 such t h a t + ( p ( x ) ) = 1.

is a symmetric m a t r i x w i t h p o s i t i v e e igenva lues .

Tha t p(Tllx) = y p ( x ) i s a s imp le consequence o f t h e d e f i n i -

t i o n and o f t h e m u l t i p l i c a t i v e group p r o p e r t i e s of t h e d i l a t a t i o n s

x ) . I n f a c t A,X2

T A ( i . e . TI T1 x = T 1 2

Hence p(Tllx) = p p ( x ) . P r o p e r t i e s ( i i ) and ( i i i

o r d e r t o prove ( i v ) we f i r s t observe t h a t ( T -lx( A 1 i f p(T -1 x ) = p ( x ) < 1, i . e . i f and o n l y i f

x

X I = 1

a r e simDle. I n

L 1 i f and o n l v

P ( X ) 6 A. There-

f o r e i n o rde r t o show ( i v ) we o n l y have t o prove t h a t

We have

1

Page 346: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.3. GENERALIZED HOMOGENEITY 331

where I( P I( f o r a real n x n matrix P means the Euclidean norm of P as an operator on ( R ~ , I - \ ) , i . e , l l P I \ = max{(Pxl : 1 x 1 = 11 . I t i s not d i f f i c u l t t o show t h a t ( 1 PI1 = max E eigenvalues of P*P) ) 112

Now i t i s easy t o prove t h a t i f A has eigenvalues w i t h rea l par t b i g enough (how big depends only on n ) we have, f o r each 1-1 >r)

1 1 e - A u \ ~ c e-v A+A*

In f a c t ,

m i n (eigenvalues o f 7 ) a 1.

A have real pa r t big enough . Therefore we get ( 1 e-A’ll 6 e-’

1 1 e-Aull = max { eigenvalues o f e - I c e-u, i f A+A* B u t this i s so i f t he eiqenvalues o f

f o r p > 0.

So we obtain f i n a l l y

and hence p ( x + y ) c p ( x ) + p ( y ) .

We sha l l now s t a t e and prove some proper t ies of the metric p t h a t will be useful l a t e r on.

( i l Thehe LA a C O I L A ~ ~ ~ ci > 0 nuch t h a t id p(x ) c 1 (and eqlLiwaeentey 1x1 6 1) we have

(GI Thehe LA a constutant B > 0 nuch t h a t .id p ( x ) a 1 (and equivaeentey 1x1 > 1) we have

Page 347: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

332 11. SINGULAR INTEGRAL OPERATORS

H e m c1 and $ depend o n l y on t h e mathix A.

Pltood. Let p(x) G 1. Then (recalling that for 'CI > 0

1 1 e-Ap/l 6 e-u )

On the other hand we have , i f = e -A log P(X) x,

with c1 > 0 depending only on A. Hence (p(x))" g 1x1.

Let now p ( x ) > 1. Then, i f X = e -A log P(X) I

and so p(.x) & 1x1. On the other hand

1x1 = leA log 2 1 s 1 1 e A log = max {eigenvalues of

for some $ > 0. Therefore (x/' 6 p(x).

Associated with the metric p and the dilatations TA, A > O

one can define in a natural way a system of polar coordinates. For any x e Rn - (01 we consider

-A 109 P(X) x = T (p(x))-1 = x e c

where 1 i s the unit sphere i n Rn

Page 348: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.3. GENERALIZED HOMOGENEITY 333

The m a m i n g x 6 R n - { O l -+ (:, p ( x ) ) 6 1 x ( 0 , ~ ) d e f i n e s

a system o f p o l a r c o o r d i n a t e s .

g r a l on R"

f o l l o w i n g way

I t i s n o t d i f f i c u l t t o see t h a t any i n t e -

can be expressed i n t h i s s y s t e m o f p o l a r c o o r d i n a t e s i n t h e

tr A-1

dp h ( x ) d x = h(eA l o g P - x ) I ( A i , i ) l d i p

Jx eRn ~ D = O JieL

Here dx means t h e o r d i n a r y Lebesgue measure on t h e u n i t sphere C .

To see t h i s i t s u f f i c e s t o l o o k a t t h e Jacobian o f t h e t rans -

f o r m a t i o n ( o r e q u i v a l e n t l y a t t h e exp ress ion o f t h e volume element i n

terms o f d? and dp ) .

11.3.8. A Theorem on APDrOXimatiOn.

L e t us r e c a l l Theorem 10.1.1. I f we have a r a d i a l f u n c t i o n

and i f we s e t , f o r E > O , x e R n k e L1(Rn) , w i t h k > 0 , /k = 1,

k E ( x ) = E - ~ k(--) X

Then t h e maximal o p e r a t o r K* d e f i n e d by

K * f ( x ) = sup l kE * f ( x ) 1 E>O

i s o f weak t y p e ( 1 , l ) and so kE * f ( x ) -f f ( x ) a t a lmos t each x e R n .

The same t y p e o f theorem and a l s o t h e same t y p e o f p r o o f i s

v a l i d i f we r e p l a c e t h e Euc l i dean m e t r i c by t h e m e t r i c p a s s o c i a t e d

t o t h e m a t r i x A o f t h e t y p e cons ide red i n 11.3.A. So we a r r i v e a t

t h e f o l l o w i n g r e s u l t .

11.3.3. THEOREM. L e / t @ e L1(Rn) ,I$ > 0 , .f@ = 1 and

@ ( x ) = @(y) id p ( x ) = p (y ) ( i . e . @ h "mLddi&" w&h t a p e & t o p 1. Fuh E > O and x e Rn be2 un dedine nuw

Page 349: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

334 11. SINGULAR INTEGRAL OPERATORS

Then t h e maxim& 0p-u~ a* dedined by

.i~ 0 6 weak t y p e (1,1), 06 Q p e (m,m) ( and t h ~ ~ e & ~ ~ e 0 6 ba%ttlong t y p e

(p,p) 1 < p 01). Hence +E * f ( x ) - + f ( x ) at &ont each x e R n 9 doh each f 6 Lp (Rn) , 1 c p < m.

Observe t h a t i f A i s any m a t r i x w i t h e iqenvalues w i t h nos i -

t i v e r e a l p a r t and E z 0 , ~ > 0, E = rlH , H > 0 we have

T h i s a l l o w s us t o assume t h a t t h e r e a l p a r t o f t h e e igenvalues o f A i s

b i g .

The p r o o f o f t h e Theorem 11.3.3. r u n s parallel t o that of

Theorem 10.1.1. One has o n l y t o observe t h a t , for 110, t h e s e t

EX = I x s R n :

volume

a r r i v e proceeding as i n 10.1.1. t o

p (x ) L XI i s an e l l i p s o i d cen te red a t t h e o r i g i n of

Atr A I E I ( and t h a t t h e s e t s EX a r e nes ted convex s e t s . We

a * f ( x ) L c S f ( x )

where S i s t h e f o l l o w i n g maximal o p e r a t o r

Bu t s i n c e E,

Theorem 3.2.10., t h a t S i s o f weak t y p e (1 , l ) . The t y p e (m,m) i s

obv ious. So one o b t a i n s t h e theorem.

i s a f i x e d f a m i l y o f nes ted convex s e t s we know, by

Page 350: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

11.3. GENERALIZED HOMOGENEITY

11.3.C. Genera l ized S i n g u l a r I n t e g r a l Operators .

335

Once we have t h e r i g h t way o f t r u n c a t i n g t h e k e r n e l we a r e

using,one can s t a t e a theorem o f t h e Calder6n-Zvgmund t v n e f o r t h e c o r

resnondinq s i n g u l a r i n t e g r a l o n e r a t o r s . We can do i t as i n 11.2.1.,

11.2.3., 11.2.3. For examnle we have t h e f o l l o w i n g r e s u l t s .

11.3.4. THEOREM. l& k : Rn + R be u @mtiun duck - t h a t

k ( x ) -tr A (ii) Fuh x # 0 , A > 0 , k (TXx) = A

(iii) Therre exi,&b c > 0 nuch t h a t h u h each y E R n

Tl- S i m i l a r statements f o r t h e s t r o n g t y n e (2,2) o f t h e maximal

o n e r a t o r and f o r t h e weak t y p e (1 , l ) of t h e maximal o p e r a t o r can be

ob ta ined .

The n r o o f o f t hese theorems can be performed p a r a l l e l t o t h a t

o f t h e corresDonding theorems f o r t h e c l a s s i c a l case. We s h a l l o m i t

here t h e d e t a i l s and r e f e r t o t h e worksqubted a t t h e b e g i n i n g o f t h i s

Sect ion.

Observe t h a t i f k s a t i s f i e s (i), (ii), (iii) w i t h a m a t r i x

A t h e n i t s a t i s f i e s t h e same p r o p e r t i e s w i t h t h e m a t r i x HA, H > 0.

Page 351: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

336 11. SINGULAR INTEGRAL OPERATORS

There fo re we do n o t l o s e g e n e r a l i t v by assuminq t h a t t h e r e a l p a r t o f

t h e values o f A i s big enough.

Page 352: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 12

DIFERENTIATION ALONG CURVES. A RESULT OF STEIN AND WAINGER

I n Chapter 8 we have mentioned some problems i n d i f f e r e n t i a -

t i o n t h e o r y f o r whose s tudy t h e o n l y t o o l s a v a i l a b l e u n t i l t h e p r e s e n t

t ime a r e t h e ones which t h e r e c e n t F o u r i e r A n a l y s i s has developed.

I n t h i s Chapter we present , as a sample, one o f t h e i n t e r e s t i n g

problems s u c c e s s f u l l y handled w i t h such methods f i r s t by Nagel, R i v i s r e and

and Wainger [1974, 1976 a, 1976 b l and then more comp le te l y by S t e i n and

Wai nger [ 19781.

The s t r o n g l y geometr ic c h a r a c t e r o f t h e problem c o n t r a c t s

w i t h t h e a n a l y t i c a l s u b t l e t i e s o f t h e methods used here f o r i t s s o l u t i o n

I t would be v e r y i l l u m i n a t i n g t o have a good geometr ic unders tand ing o f

t h e s i t u a t i o n and t o o b t a i n a n i c e s o l u t i o n o f t h e problem i n terms o f

t h e usual c o v e r i n g p r o p e r t i e s t h a t a r e o r d i n a r i l y used f o r such problems

as those shown i n Chapter 6 th rough 8. Besides, such a t y p e o f s o l u t i o n

would p robab ly t a k e care o f t h e l i m i t i n g case, (What happens c l o s e t o

p = l ? ) , an open problem which t h e a n a l y t i c a l methods we a r e go ing t o

use cannot handle.

The problem we a r e go ing t o s tudy he re i s t h e f o l l o w i n g . L e t

( y l ( t ) , ..., y n ( t ) ) , t e [O,m), be a f i x e d con t inuous c u r v e y ( t ) =

i n Rn w i t h y ( 0 ) = 0 . For each x 8 Rn and f o r f 6 Lp(Rn) , 1 c p c m , l e t us cons ide r

Under what c o n d i t i o n s on f and y can one say t h a t t h i s

l i m i t e x i s t s and i s f ( x ) a t a lmost each x e Rn?

337

Page 353: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

338 12. DIFFERENTIATION ALONG CURVES

O f course, i f f E $$ (R')), then t h e above l i m i t e x i s t s and i s

f ( x ) a t each x E Rn,

maximal o p e r a t o r i s o f weak t y o e

each f B Lp(Rn) and f o r a lmost each x E Rn.

So i f we a r e a b l e t o show t h a t t h e co r respond ing

(p,p) we o b t a i n t h e same n r o o e r t y f o r

As we s h a l l see, by means o f a c l e v e r s u b s t i t u t i o n of t h e max-

ima l ope ra to r , we s h a l l be a b l e under some c o n d i t i o n s on y t o n rove t h e

t y o e (2,2) by u s i n g t h e Parseva l -P lanchere l theorem. The tvDe (p,n)

f o r 2 < p 6 m i s t r i v i a l by i n t e r D o l a t i o n between 2 and m . For t h e

t y p e (p,p), 1 < p < 2 , one embeds ou r m o d i f i e d o o e r a t o r i n an a n a l v t i c

f a m i l y and u s i n g t h e theorem o f S t e i n on i n t e r n o l a t i o n f o r such a f a m i l v

one can o b t a i n t h e t y p e

d e t a i l t h e p r o o f of t h e t y p e (2,2) which i s e a s i e r .

t y p e (p,p), 1 < p < 2 , i s much more i n v o l v e d . We r e f e r f o r i t t o t h e

DaDer o f S t e i n and Wainger [1978] .

(p,p) , 1 < p < a . We s h a l l he re o r e s e n t i n The o b t e n t i o n o f t h e

12.1; THE STRONG TYPE (2 ,2) FOR A HOMOGENEOUS CURVE.

We s h a l l cons ide r t h e curve y ( t ) = e A lo' v, f o r t > o , y(0) = 0 , where v i s a f i x e d v e c t o r o f t h e u n i t . sphere o f Rn and

A i s one of t h e m a t r i c e s we have considered i n 11.3. w i t h e igenvalues

w i t h p o s i t i v e r e a l Dar t . I f we make t h e s u b s t i t u t i o n t = u , H > 0

HA lg v and so we can assume w i t h o u t loss t hen r(u) = y(u ) = e

o f g e n e r a l i t y t h a t t h e e igenvalues o f A have r e a l p a r t s t h a t a r e b i q

enough. Such a cu rve w i l l be c a l l e d homogeneous.

H

H

It i s easy t o r e a l i z e t h a t f o r t h e theorem we a r e g o i n g t o prove

i t is s u f f i c i e n t t o assume t h a t t h e c u r v e y ( t ) i s n o t con ta ined i n a

hyperp lane,

t h e theorem we l o o k f o r .

Otherwise t h e same r e s u l t f o r a l ower dimension g i v e s us

I n a n a t u r a l way we s h a l l need t o c o n s i d e r t h e m e t r i c P as- s o c i a t e d t o A . t h a t we have cons ide red i n 11.3. The p r o p e r t i e s we

have proved t h e r e w i l l be v e r y u s e f u l here.

For f B Lz (Rn) and x B Rn we d e f i n e

Page 354: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

12.1. THE STRONG TYPE (2,2) 339

Mf(x) = sup i’ / f ( x - y ( t ) l d t E?O 0

I t i s not d i f f i c u l t t o see t h a t i f f E R n + E i s a measura- ble func t ion , the function

i s f o r almost each x E R n a measurable function of t and so the max- imal oaera tor M i s well defined a t almost each x E R n ,

For M we sha l l prove the following r e s u l t

12.1.1. THEOREM. The maxim& V p Q h a t o h M dc6ined above A 0 4 b&Vng type (2,2).

Let us f i r s t proceed h e u r i s t i c a l l y in order t o understand b e t t e r the idea behind the Droof. Assume f r 0 and wr i t e , f o r brev i ty , f t ( x ) = f ( x - y ( t ) ) . inequal i ty

One could be tempted t o wr i t e , u s i n g the Schwarz

Therefore

I f we use the Parseval-Plancherel theorem, havina i n t o account t h a t

we get

- 2 . i r i ( c , Y ( t ) ) has alwavs which, of course, leads nowhere. The f ac to r e

Page 355: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

340 12. DIFFERENTIATION ALONG CURVES

modulus 1 and so we cannot expect a n y t h i n g f rom ( * ) .

L e t us t r y t o modi fy ou r scheme. L e t us cons ide r , i n s t e a d o f

E E I f t ( x ) d t

0

t h e f o l l o w i n g r e l a t e d means

We have, of course, Nhf(x)

observ ing the F i g . 12.1.1. we o b t a i n

2 M f ( x ) . But, on t h e o t h e r hand,

t

- 0

t

0

F i g u r e 12.1.1.

2h

E

1 E f t ( x ) d t dh >

TE

Hence M f ( x ) 6 - 1 sup iE Nhf (x )dh l g 2 E>O 0

We have now s u b s t i t u t e d f t ( x ) by Nhf(x) and perhans we a r e l u c k i e r

w i t h Nhf if we proceed a s before. We have n

Page 356: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

12.1. THE STRONG TYPE (2,2) 341

Now

I f we c a l l

X > 0 , we can w r i t e

TXx = e A 1 g ' x , T; x = e A*lg ' x , f o r x e ~ n ,

2

A Nhf(5) = ./ e -2 Ti i (Tsh v *6 )ds ;(<) = f' e-2.rri(v,TETfi<)ds i(~)= 1 1

= n(T; 5 ) ? ( < I 2

hav ing se t , f o r y E Rn , n ( y ) e -2n i ( v ,T:Y) ds

1

- Now, proceeding as i n t h e p rev ious a t tempt , v i a Schwarz i n e q u a l

i t y and Parseval -P1 anchere l theorem, we have

I f we c o u l d prove t h a t f o r each 5 w i t h 1 6

i s t h e m e t r i c assoc ia ted t o A*) we have

and

then we c o u l d w r i t e

f o r h >, 1

f o r O < h s l

Page 357: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

342 12. DIFFERENTIATION ALONG CURVES

1 m m

I f we s p l i t t h e i n t e g r a l , use t h e two i n e q u a l i -

t i e s (*) and (**) and undo t h e change T*.q = 5 , i n each o f t h e 2J

terms o f 1 we g e t j

2 n 2 2

II M f l l c c II f l l = c II f l l 2’

b

a The i n t e q r a l s o f t h e t y p e e2.rri f ( u ) du have been s t u d i e d

by van de r Corput (C f . Zygmund [1959] v o l . I, D. 197) and by means o f

h i s r e s u l t s we s h a l l be a b l e t o prove t h e i n e q u a l i t y (*I. The o t h e r ine-

q u a l i t y (**) i s o b v i o u s l y f a l s e , s i n c e n ( T t 5 ) r+ 1 as h -f 0 u n i f o r m l y

i n 15 : But we have i n s t e a d by t h e mean v a l u e theorem,

i f r ) < h r l , 1 c p * ( S ) c 2 ,

1 G p* (< ) c 2 I .

where c i s t h e maximum o f t h e a b s o l u t e va lue o f t h e g r a d i e n t o f n on

t h e s e t

There fo re we have

i n 11.3. between 1 . 1 and p*.

In(T{ < ) - 11 G c hB , by t h e i n e q u a l i t i e s shown

So we can again t h i n k o f m o d i f y i n g o u r m a j o r i z a t i o n o f ( 1 Y f ( 1 2

by p e r t u r b i n g

preserves i t s behaviour f o r b i g h b u t has t h e d e s i r e d behav iou r f o r h

c l o s e t o 0.

Nhf by some o p e r a t o r so t h a t t h e F o u r i e r t r a n s f o r m

TO do t h i s A

Q(0) = = 1 , and

e t us t a k e a f u n c t i o n 4 such t h a t 8 @:(Rn) , $(<) = 0 i f p*(5) >, 1. We can then w r i t e , i f

x ) f o r h > 0 ,

,-.

Page 358: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

12.1. THE STRONG TYPE (2,2) 343

There fo re , if we c a l l O* f ( x ) = sup * f ( x ) ( , we h>O

Now, acco rd ing t o 11.3.3, we know t h a t 1 ) @*fjI2 G c ) ) f

the f i r s t t e rm we have

have

2

1 1 2

)I2. To e s t i m a t e

Therefore , if 1 6 p * ( < ) 6 2, we have , f o r h > 1 , p*(T; 5 ) > 1

and so +h(E) = 0 , and f o r 0 < h G 1, 1 G p*(E) 6 2 , A

Therefore we have mod i f i ed Nhf as we needed and so we o b t a

now ( I Mf112 c l l f l 1 2 - L e t us w r i t e t h e scheme o f t h i s w o o f a l i t t l e more f o r m a l l y

n

Phoad ad Theahem. 12.1.1. Let f a 0 . Consider , f o r h > 0,

We choose $ such t h a t 6 V m ( R n ) , ;(<) = 0 i f p * ( < ) > 1 and -tr A

+(T x) and $(o) = I$ = 1 . W r i t e +,(x) = h h-

@ * f ( X ) = sup \+h*f(x) I h>O

We know t h a t I ( @*f((q 6 c I ( f ( 1 , We can s e t

Page 359: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

344 12. DIFFERENTIATION ALONG CURVES

Now

l a s t t e rm i s l e s s than o r equal t o ' '

h

But t h e f a c t o r F(h,<) = \n( (Tt 5 ) - + ( T i 5 ) i s such t h a t , i f

1 6 P * ( C ) 6 2 Y

( * I F(h,S) = In(T; < ) I c - , w i t h ~1 > 0 , f o r h a 1 ha

(**) F(h,<) c ch' w i t h B > 0, f o r 0 < h c 1.

The i n e q u a l i t y (*)

as we have i n d i c a t e d b e f o r e ,

w i l l be proved i n t h e f o l l o w i n g lemma. Hence,

and so M i s o f s t r o n g t y p e (2,2) as we wanted t o p rove .

I n o r d e r t o p rove t h e i n e q u a l i t y (*) we have used i n t h e p r o o f

o f t h e theorem we s h a l l u t i l i z e t h e f o l l o w i n g lemma o f van de r Corout .

12.1.2. LEMMA. C o a i d e h t h e i n t e g h a l -

J a

wlzehe f 0 a heal &nct ian .in kntl( [la,b]) and ~ n w n e Aha t tioh Oame

j, 2 6 j 6 n + l

we have

we have I f ( j ) ( u ) l > aj > 0 6uh each u e [a,b] . Then

Page 360: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

12.1. THE STRONG TYPE ( 2 , Z ) 345

whme c j dependn o n l y o n j .

The p r o o f f o r j = 2 can be seen i n Zygmund El959 , v o l . I ,p.197]. For j > 3 t h e p r o o f i s ob ta ined i n a s i m i l a r way.

T h i s r e s u l t enables us t o p rove t h e i n e q u a l i t y (*) as f o l l o w s .

12.1.3. LEMMA . WLth t h e n o t a i i o n uned i n t h e Theohem 12.1.1. and phood, connididen i h e iM-tegkal

Pkaa/,. L e t us f i x X > 1 and s e t , f o r I < \ = 1 , s > 0 ,

Now cons ide r

We s h a l l prove

w i t h 6 > 0 and c > 0 independent o f S , t .

Observe f i r s t t h a t t h e c o n d i t i o n t h a t y ( s ) i s n o t con ta ined

i n an a f f i n e hyperp lane i s e q u i v a l e n t t o t h e f a c t t h a t t h e s e t o f v e c t o r s

n - 1 B = { V , A v , ..., A v 1

Page 361: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

346 12. DIFFERENTIATION ALONG CURVES

is a basis in R n .

In fact if y ( s ) = e A l g 'v is in the hyoerolane (x,w) = r)

with IwI = 1 (recall that y ( 0 ) = 0) we have

(eA I g s v,w) = 0 for s > 0

Differentiating and setting s = 1 we get

(v,w) = (Av,w) = .... = (A"'v,w) = 0

An-l and so B = { v,Av, ..., v 1 cannot be a basis. Conversely if B is not a basis there is some w, IwI = 1 , such that

(v,w) = (Av,w) = ... (A"' v,w) = 0

n-1 + If zn + c1z ... + c, is the characteristic polynomial of A we

get Hence

A" + clAn-' + ... + cn,'A -t cnI = 0 and so (Anv,w) = (An+lv,w)=...=D

(eAlgSv,w) = 0 for each s > 0

and y ( s ) is in the hyperplane (x,w) = 0 .

Now observe that

... + c z + c, i s the characteristic polynomial n-1 If zn + c p -t

of A we have

and so

Page 362: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

12.1. THE STRONG TYPE (2 ,2 ) 347

If f o r some c o # 0 and some s o we have

then g ” ( s ) = 0 f o r a l l s and so A 5 0

(eAs v , A * 2 A C 0 ) = 0 , i . e . onal t o compactness of C x 10, l g 2 1, with respec t t o X , there must e x i s t a > 0 such t h a t f o r each (5 ,s ) 8 c x LO, l g 23

y ( t ) i s i n the hyperplane orthog- A** A S o . This i s a cont rad ic t ion , and the re fo re , using the

C ={5 6 Rn : 151 = 1 3 and the l i n e a r i t y

we have

Now,for each ( s * , s * ) B C x[Oy l g 21 t he re e x i s t s a natural number j , 2 < j 6 n + l and an open ball B* i n Rn+’ centered a t ( ~ * , s * ) such t h a t f o r ecah (s,s) B B* 0 ( C x [O, l g 21 ) = I we have

By compactness we cover s e t s the the projections

1 x [ O,lg2] w i t h a f i n i t e number of such I*. Let us consider their pro jec t ions over [ 0 , l g 21 and a l l consecutive closed in t e rva l s determined by the extreme points of H

The number H depends only on our matrix A and our cons t ruc t i o n , which i s f i x e d once f o r a l l .

If

then, according t o the previous lemma, we have f o r each 5 6 C , i f s . 6 t < sj+l

3

Page 363: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

348 12. DIFFERENTIATION ALONG CURVES

!or X > 1 w i t h 6 > 0 and c > 0 b o t h independent o f 5, i > l , and t > 0 So we have proved , f o r I n ] a 1 ,

w i t h c independent of t > 0 and n , I r i ( > 1 .

To f i n i s h now t h e p r o o f o f t h e lemma we w r i t e , f o r 1 < h < m y

and c independent o f h > 1 . T h i s completes t h e p r o o f o f t h e lemma.

12.2. THE TYPE ( p y p ) , 1 < p 5 OF THE MAXIMAL OPERATOR.

I n t h i s Sec t i on we s h a l l s t a t e some o f t h e r e s u l t s o f S t e i n

and Wainger 119781 concern ing t h e problem d e a l t w i th i n 12.1.

12.2.1. THEOREM. L e A y ( t ) be u homogeneoun C W L U ~ i n Rn . Then, do& f e Lp( Rn) , 1 < p c m ,

Page 364: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3 49 12.2. THE TYPE (P,d, P > 1

L e t y ( t ) , t > 0 , be a C U / ~ V Q w a h y ( 0 ) = 0 . Abbume t h a t y ( t )

dak 0 L t L 1 fie.b in t h e finean nubbpace bpanned by t h e vectutro

{Y(j)(O)I - That , .id j = i

we have , d o t f E Ln(Rn), 1 < n i -,

For a homogeneous cu rve y ( t ) t h e r e s u l t f o r n > 2 i s ob ta in -

ed by i n t e r p o l a t i o n between p = 2 (Theorem 12.1.1) and n = ( t r i v i a l ) .

Fo r 1 < n < 2

P roo f o f Theorem 12.1.1 by

S t e i n and Wainger embed t h e o n e r a t o r Nh, d e f i n e d i n t h e

i n a f a m i l y o f ope ra to rs N: , Rez < 0 , d e f i n e d by

For t h e opera to rs N; , i d e n t i f y i n g t h e i n v e r s e F o u r i e r t r a n s f o r m o f

(p*(<)) ' and u s i n g a v e r s i o n o f t h e Theorem 10.3.1 ( Z o ' s theorem)

corresponding t o t h e g e n e r a l i z e d homogeneity, t h e f o l l o w i n g r e s u l t ho lds .

*

12.2.2. LEMMA. Them exint 0, 0 > 0 buch t h a t , L d

-u <

w i t h a &buXe numben 06 vdeueh, Re z < -3 < 0 , a n e h a , dah any meauhabkk &not ion E: Rn + (0 , - )

whem I c (211 = O ( l z l H l a P

On t h e o t h e r hand,

one can prove t h e f o l l o w i n g .

Page 365: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

350 12. DIFFERENTIATION ALONG CURVES

12.2.3. LEMMA. L e R E : Rn -+ (0,~) be anv meanuhabde ,$unCtivn - w L t h a ~ i n i t e numben 06 v d u e b .

-a < Re z c1 one h a

Then t h m e ex&& c1 > 0 nuch t h a t i d

Using now t h e i n t e r p o l a t i o n theorem f o r an a n a l y t i c f a m i l y o f

ope ra to rs one o b t a i n s t h e s t r o n g t y p e (p,p) f o r z = 0 and consequent ly

t h e s t r o n g t y p e (p,p) , 1 < p L m f o r M.

There a r e many d e t a i l s and t e c h n i c a l i t i e s f o r which we r e f e r t o

t h e work o f S t e i n and Wainger E19781.

The r e s u l t f o r a em curve i s however an easy consequence o f t h e

p o s s i b i l i t y of app rox ima t ing such curves near t = 0 by a homogeneous

cu rve and o f t h e r e s u l t f o r these t y p e o f curves.

12.3. AN APPLICATION. DIFFERENTIATION BY RECTANGLES DETERMINED BY A FIELD OF DIRECTIONS.

I n 8.6. (PROBLEM 3 ) we have encountered t h e f o l l o w i n g t y p e o f

ques t i on . For each x 6 R 2 l e t d ( x ) e [O,n ) . Consider t h e c o l l e c t i o n

t?,(x) o f a l l c l osed r e c t a n g l e s c o n t a i n i n g x one of whose s i d e s has

d i r e c t i o n d ( x ) i . e . forms an ang le of ,ampli tude d ( x ) w i t h t h e h o r i -

z o n t a l a x i s .

We have a l r e a d y seen t h e r e t h a t such p r o p e r t i e s can be v e r y bad, even i f

d i s a cont inuous f i e l d o f d i r e c t i o n s .

can c o n s t r u c t a Nikodym s e t assoc ia ted t o some con t inuous

t h a t Q d does n o t even d i f f e r e n t i a t e a l l t h e c h a r a c t e r i s t i c f u n c t i o n s o f

measurable s e t s , i . e . i s n o t a d e n s i t y b a s i s .

Idhat a r e t h e d i f f e r e n t i a t i o n p r o p e r t i e s of t h e b a s i s 6,?

As we have seen i n Chapter 8, one

T h i s proves d.

I t i s t a n t a l i z i n g t h e f a c t t h a t even f o r t h e a p p a r e n t l y most

s imp le case of a n o n - t r i v i a l f i e l d o f d i r e c t i o n s d, namely t h a t o f t h e

r a d i a l d i r e c t i o n s , one d i d n o t know any answer t o t h e above ques t i on ,

w h e t h e r G d i s o r n o t a d e n s i t y bas i s , u n t i l t h e problem c o u l d be handled

by means o f t h e r e s u l t s o f S t e i n and Wainger. I n s p i t e o f t h e s t r o n g

Page 366: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

12.3. DIFFERENTIATION BY RECTANGLES 351

geometr ic f l a v o u r o f t h e problem t h e o n l y t rea tmen t u n t i l now a v a i l a b l e

goes th rough t h e a n a l y t i c comp l i ca t i ons of t h e r e s u l t s o f 12.1. and 12 .2 .

I n t h i s Sec t i on we s h a l l f i r s t dea l w i t h some conc re te examples

and then we i n d i c a t e d how one can a l s o reduce some o t h e r s i m i l a r problems

t o t h e r e s u l t s o f S t e i n and Wainger. T h i s t y p e o f a p p l i c a t i o n o f such

r e s u l t s i s due t o A.Cbrdoba, C.Fefferman and R.Fefferman (unpub l i shed) .

The f i r s t theorem we p r e s e n t i s a s t r a i g h t f o r w a r d consequence

o f t h e r e s u l t o f S t e i n and Wainger. From i t we s h a l l deduce i n a n a t u r a l

way a theorem .about a p a r t i c u l a r b a s i s ' 8 d of r e c t a n g l e s of t h e t y p e

F i g u r e 12.3.1.

P(x,a,b) = C(xl + s 1 , x 2 + s 2 + s:) : 0 c s1 6 a , 0 ,< s 2 G b3

L e R UA dedine t h e 6uUuuing maxim& openCLtuh M . Fuh f E Lp( R2) 1 < p < and x e R 2 , L e t

c I f ( Y ) 1

M f ( x ) = sup azl) , b>O IP(x,a,b)l JyeP(x,a,b)

Then M ~2 06 ,type (p,p) , 1 < p 6 m . Themdohe doh each f 8

1 < p 6 m one han dt &ubt each x E R 2

dY

LD ,

Page 367: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

352 12. DIFFERENTIATION ALONG CURVES

Pt laoa , We easily compute IP(x,a,b)( = ab and also, by a change

of variables b a

where we have called

But according to Theorem 12.2.1.

and (trivially from the one-dimensional result for the Hardy-Littlewood

operator)

Therefore

and the theorem i s proved.

Let us now transform the preceding theorem in a trivial way. In R’ let us perform the following transformation

Page 368: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

12.3. DIFFERENTIATION BY RECTANGLES 353

Let us observe what i s the s e t T(P(x ,a ,b) ) . We have

T(P(x ,a ,b) ) = { ( x l t s l y xz + s2 + s1 2 - (X I+ s:)'): 06s16a OrSz<bb3

= ( ( X I + s1 , X 2 t s2 - 2slX11 : O f s 1 6 a 0 6 s z c b

i s a s t r a i g h t segment of fixed length and whose d i r ec t ion i s t h e t o f the vector (1 ,-2X1).

Therefore T(P(x,a,b)) i s a parallelogram with one pa i r of ver - t i c a l s ides and the other p a i r i n the d i rec t ion o f t he vector See Fig. 12.3.2. Observe a l so t h a t the Jacobian of T i s 1.

( l y - 2 X I ) .

Figure 12.3.2.

Hence j u s t by t r ans l a t ing Theorem 12.3.1. we ge t the following one.

Page 369: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3 54 12. DIFFERENTIATION ALONG CURVES

1 I f(Y) I dY T(P(xya9bnl jT(P(x,a ,b)) a>o,b>O ' Nf(X) = sup

Of course this theorem solves also the differentiability problem

for the basis of rectangles 8 the collection of all rectangles containing x one of whose sides has the direction of the vector (1,-2x1) .

such that, for each x e R' , 'A,(x) is

The same procedure can be used in many other cases. Let us now try to solve the differentiability question for the basis 0,. of rectangles in radial directions.

Let us consider now the maximal operators R 1 and Rz defined in & and f = T , (-x2 ,XI the following way . For x eRZ(O1, let x' =

i,e, ? is the unit vector i n the direction of x and is obtained by

rotating 2 around 0 an angle of , I f f e Lp( R 2 ) , x e Rz-tO] we

write

If we prove that RI and RZ satisfy

then we would have, if R 0gr(.Xl

Page 370: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

12.3. DIFFERENTIATION BY RECTANGLES 3 5 5

There fo re i f

and so N would be o f t y p e (p,p) , 1 i p < 0 9 T h i s would g i v e us t h e

Theorem.

However t h e r a d i a l n a t u r e o f R1 l e a d s one t o suspect t h a t

perhaps some k i n d o f v e r y m i l d growth o f f near t h e o r i g i n can produce

a t o o s low decrease o f Rl f (x) f o r b i g 1x1 and t h i s can cause t h e

f a i l u r e o f t h e s t r o n g t y p e (p,p) . I n f a c t , if f i s t h e c h a r a c t e r i s t i c

f u n c t i o n o f t h e u n i t d i s c , R l f ( x ) > .l+lxl and so R 7 . f I$ Lp (R') , f o r 1 < p 6 2 T h e r e f o r e RI i s n o t o f t y p e (p,p) , 1 < p f 2 .

Never the less e v e r y t h i n g works as expected i f we t r y t o keep

away f r o m t h e o r i g i n , as we s h a l l now see.

L e t o u r space be E = {x 6 R2 : 10 < 1x1 < 100)

we a r e go ing t o c o n s i d e r w i l l have suppor t i n E.For f 6 Lp(E) , 1 < p < 0 0 , l e t us cons ide r , f o r each x E E,

The f u n c t i o n s

L e t us de f i ne t h e f o l l o w i n g t r a n s f o r m a t i o n T on t h e s e t E . I f t h e

p o l a r c o o r d i n a t e s o f x B E a r e p ( x ) , 10 < p(x1 i 100, and a ( x )

we s e t

I f f i s a f u n c t i o n i n Lp(E) and we s e t g(X) = f ( x ) t hen g i s i n

Lp(T(E)) and we have

Page 371: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

356 12. DIFFERENTIATION ALONG CURVES

where c1 and cp a re abso lu te constants . Observe now t h a t

There f o r e

Now we have

There fo re

I n o r d e r t o deal w i t h t h e o t h e r o p e r a t o r l e t us d e f i n e on E

t h e f o l l o w i n g t r a n s f o r m a t i o n V. I f x E E i s expressed i n complex

fo rm x = p (x ) e ia(x) , 10 < p ( x ) < 100, t h e p o i n t X = Vx w i l l be

t h e p r i n c i p a l va lue o f i t s l o g a r i t h m , X = l o g p ( x ) t i a ( x ) , i . e .

x G E -+ Vx = X = l g p(x) t i a ( x )

Again, i f f 8 LP(E) and we s e t g(X) = f ( x ) f o r X = Vx t h e n

g E Lp(V(E)) and

where E l , Z 2 > 0 a r e a b s o l u t e cons tan ts .

For f 8 Lp(E) and x E E we s e t

Observe now .that

Page 372: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

12.3. DIFFERENTIATION BY RECTANGLES 357

Therefore

b2

= sup 2% I fiT 1g(X + log (1 t i s ) ) \ ds = S;g(X) O<bl , b z < l

According t o Theorem 12 .2 .1 . we have

From th i s results for R; , R; we easily see t h a t i f for f E L p ( E ) we se t a t each x E E

The restr ic t ion t o E i s of course rather irrelevant. As long as E i s bounded and i t s closure i s away from 0 we get the same resul t with different constants for the type ( p , p ) . Since differentia- tion i s a local property we can s t a t e the following resul t .

12.3.3. - THEOREM. The b u h t3 such t h a t , doh each

x 8 R2 - 10) , @ ,(x) x

h t h e c o U e d o n 06 UU h e d n g L e b containing

one 0 6 whobe hidides h t h e d i h e d o n 06 t h e ve.ctofi X di66e,kenLikte~

LP(-R') . 1 p d "

I t i s s t i l l unknown whether there will be some positive dif- ferent iabi l i ty resul ts for the space L ( l + log' L ) (TIR2) for th i s basis.

Page 373: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 374: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

CHAPTER 13

MULTIPLIERS AND THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

L e t us cons ide r a bounded f u n c t i o n m E Lm(Rn) Fo r any f u n 2

t i o n f i n L2(Rn) we can d e f i n e t h e f o l l o w i n g o n e r a t o r T, means o f

t h e F o u r i e r t r a n s f o r m

" v T m f = (m f )

C1 e a r l y , by t h e Parseval -P1 anchere l theorem

and so T, i s a bounded l i n e a r o p e r a t o r f r o m L2 t o L2 w i t h a norm

bounded by 11 m l I m .

The f u n c t i o n m E La,(Rn) i s s a i d t o be a m u l t i p l i e r on Lp , 1 c p < m, when t h e oPera to r T,,, can be c o n t i n u o u s l y extended t o Lp

and t h i s ex tens ion i s bounded f rom Lp t o Lp.

There a r e some i n t e r e s t i n g r e s u l t s s t a t i n g s u f f i c i e n t c o n d i t i o n s

under which m

p l e , some es t ima tes on t h e s i z e o f t h e d e r i v a t i v e s o f t h e f u n c t i o n

Some o f such r e s u l t s , o r i g i n a t i n g i n Marc ink iew icz , can be seen i n

Zygmund [1959] o r S t e i n [1970] .

i s a m u l t i p l i e r . These c o n d i t i o n s can i n v o l v e , f o r exam-

m.

A t ype o f m u l t i p l i e r problem which a r i s e s i n a n a t u r a l way

when one dea ls w i th d i f f e r e n t manners o f sumino up t h e terms o f a mul-

t i p l e F o u r i e r s e r i e s i s t h e f o l l o w i ' n g . Assume t h a t m i s t h e charac-

t e r i s t i c f u n c t i o n xp o f a measurable s e t P. Can one s t a t e some

c o n d i t i o n s on t h e geometry o f P t h a t ensure t h a t xp i s an Lp-

m u l t i p l i e r f o r some p # 2 ?

Page 375: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

360 13. M U L T I P L I E R S AND MAXIMAL OPERATOR

When P is a half-plane in R2 or a polygon with finitely many sides, then one can affirm that xp is an LP-multiplier for 1 < p <m.

These results are a direct consequence of the boundedness of the one-di- mensional Hilbert transformin Lp(R1) , 1 < p < m,

In fact from the definition of the truncated Hilbert transform,

for f a L*(R)

we obtain

A

Therefore lim hc(E;) = c sign 5 and so E+O

$fE) = c sign 5 ? ( E l , where sign 5 =

-I i f E < O

I f X+ is the characteristic function o f [Op) we have

'jyn " and if T, is the multiplier operator cor- X+(d 2

responding to x+ we get

Therefore

T + f = $ ( H f t f)

and so T, is of type (p,p) 1 < p 4 m as H.

Noh if P c R2 is the closed first quadrant

Page 376: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

13.0. INTRODUCTION 36 1

P = { ( x , y ) : x > 0 , y > 01 and Tp i s t h e m u l t i p l i e r o p e r a t o r as-

s o c i a t e d t o xp we have , f o r f 8 L2(R2) ,

Hence

'iy n(T:f)(x,q)dq = T:(T: f ) ( x , y )

where T i f ( x ,q ) i s ob ta ined f i x i n g f i r s t rl , c o n s i d e r i n g t h e f u n c t i o n

6 -f f (< ,n) , a p p l y i n g t o i t t h e o p e r a t o r T, and t a k i n g t h e v a l u e a t x. P And s i m i l a r l y T:. It i s now easy t o see t h a t xp i s an L - m u l t i p l i e r

f o r l < p < m .

S i m i l a r l y , i f P i s any h a l f p l a n e , we see t h a t xp i s an

L P - m u l t i p l i e r , t h e s t r o n g t y p e cons tan t (p,p) be ing t h e same f o r a l l

h a l f p l a n e s . A lso, i f P i s any convex polygon w i t h f i n i t e l y many s i d e s .

But even i n t h e case t h a t P i s t h e u n i t c i r c l e i n R 2 t h i s

q u e s t i o n was open f o r l o n g t i m e u n t i l C.Fefferman [1971] s e t t l e d i t

p r o v i n g t h a t i f D i s t h e u n i t c i r c l e i n R 2 , m u l t i p l i e r i f p # 2. The s o l u t i o n o f t h i s problem i s c l o s e l y con-

nected w i t h t h e theorems we have developed i n Chapter 8.

r e s u l t s ob ta ined t h e r e w i l l p e r m i t us t o go a s t e p f u r t h e r t o t r e a t

n i t e l y many s ides .

a subsequence o f t h e s ides o f P converge " s l o w l y " t o a f i x e d d i r e 2

t i o n , t hen we can l i k e w i s e a f f i r m t h a t

f o r any p # 2.

xD i s n o t an Lp-

Some o f t h e

w i t h t h e same techn ique t h e case i n which P i s a po lygon w i t h i n f i - I f we impose t h e c o n d i t i o n t h a t t h e d i r e c t i o n s o f

xp i s n o t an L P - m u l t i p l i e r

T h i s t y p e o f thecrem has o f course t h e f l a v o u r o f some o f

t h e r e s u l t s on d i f f e r e n t i a t i o n we have d iscussed i n Chapter 8.

f a c t t h e y o r i g i n a t e f rom t h e same r o o t , namely t h e p o s s i b i l i t y o f

c o n s t r u c t i n g an adequate Perron t r e e such t h a t t h e s i d e s o f i t s smal l

t r i a n g l e s have t h e d i r e c t i o n s i n ques t i on .

I n

And again, t h e same t y p e

Page 377: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

362 13. MULTIPLIERS AND MAXIMAL OPERATOR

of problems that are still open about the possibility of differentiating

with respect to the rectangles with directions in a given set of direc- tions can be formulated in this context. We shall later mention some of them.

These connections lead one to suspect that the multiplier oper-

ators of this type and the generalizations of the Hardy-Littlewood maximal operator that are the key to understand the differentiability problems are

also deeply interrelated. light in a recent paper by CBrdoba and R.Fefferman [1977] .

That this is in fact so has been brought to

In this Chapter we first present in 13.1. the negative result of C.Fefferman [1971] about the unit disk. In 13.2. we shall examine some more negative results that can be obtained with the same techniques

about the case of a polygon with infinitely many sides, Finally in 13.3.

we present some of the results of CBrdoba and R.Fefferman on the relation

of multiplier and maximal operators. The results of 13.3 are more general

and contain, at least partially , those of 13.1. arnd 13.2. However they are more sophisticated and the whole Chapter will be more easily and pleasantly read if we present it the way we do.

13.1. THE CHARACTERISTIC FUNCTION OF THE UNIT DISK. A THEOREM OF C. FEFFERMAN.

The theorem we are going to prove is the following.

13.1.1. THEOREM. The ckwracAW;tic 6unCtiCIn v b t h e u n i t didk

D in R2 .in naA an l p - m W p f i ~ doh any p i 2.

l ? t o o ~ , Let T he the multiplier associated to XD , i.e. for

f I3 L 2 W )

Tf = ( xD f y

I f f, g 4 L~(R~) we have

Page 378: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

13.1. A THEOREM OF C. FEFFERMAN 363

and so i f T i s an L P - m u l t i p l i e r , p # 2, and p ' = JL , we have P - 1

i . e . T i s a l s o an L P ' - m u l t i p l i e r , o b v i o u s l y w i t h t h e same norm. (These

c o n s i d e r a t i o n s are, o f course, a p p l i c a b l e t o any o p e r a t o r T, assoc ia ted

t o t h e m u l t i p l i e r m ) .

The re fo re , i n o r d e r t o prove t h e Theorem we can assume p > 2.

The p r o o f of t h e Theorem i s a combinat ion o f t h e t h r e e f o l l o w i n g

obse rva t i ons ;

(a ) (Th is o b s e r v a t i o n had been made by Y.Meyer p r e v i o u s l y t o

t h e p r o o f o f C.Fefferman). I f we d i l a t a t e any d i s k by a homothecy w i t h

cen te r a t any o f i t s boundary p o i n t s and w i t h r a t i o o f homothecy b i g enough

we o b t a i n a b i g d i s k which i s app rox ima te l y an a f f i n e h a l f p l a n e whose bor-

de r can have any d i r e c t i o n .

d i s k i s an L P - m u l t i p l i e r , 2 < p < my

remark, one can p rove t h a t i f L a r e t h e hyperp lanes

L . = { x e R 2 : (x ,v . ) 2 01, where v j = 1,2,...,k a r e u n i t v e c t o r s

and T . f . = ( X

o f f u n c t i o n s i n L (R ) one has

I f t h e c h a r a c t e r i s t i c f u n c t i o n o f t h e u n i t

w i t h norm c u s i n g t h i s t r i v i a l P'

j

J $1 j y 8.1' then, f o r any f i n i t e sequence fj, j = l , , , . , k

J J Lj I, J 2

... ( b J I f R j i s any r e c t a n g l e i n d i r e c t i o n v and R i s t h e

j j s e t i n d i c a t e d i n F i g u r e 13.1.1. then, i f f = x , one has

j R j 1

j . IT^ f j ( x ) l lQOD if x e 6

T h i s easy f a c t i s reduced t o a s imp le one-dimensional computa-

t i o n .

Page 379: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

364 13. MULTIPLIERS AND MAXIMAL OPERATOR

Figure 13.1.1.

(c ) For any small number q > 0 the re exists a measurable s e t k E c R 2

j o i n t , with the following proper t ies : and a f i n i t e co l lec t ion of rectangles {Rj}j,l , pairwise dis-

- where R denotes again t h e shaded portion o f f igu re 13.1.1.

j

This is j u s t t he Lemma 8.2.1. t h a t we have eas i ly obtained from the construction of the Perron t r e e .

With this observations ( b l and’ (c ) We e a s i l y compute, s e t t i n g f j = x ,

Rj

On the other hand, i f p > 2 , using now the

R j I

observation ( a )

Page 380: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

13.1. A THEOREM OF C. FEFFERMAN 36 5

c ( u s i n g H o l d e r ' s i n e q u a l i t y w i t h exponents f and i t s con juga te ) 6

There fo re

and t h i s i s a c o n t r a d i c t i o n if ?-I i s sma l l .

L e t us f i n a l l y p r e s e n t t h e proof o f t h e o b s e r v a t i o n (a) i n

t h e f o l l o w i n g two lemmas.

13.1.2. LEMMA. L e A S be any f i n e m openatoh bounded @om

I I ( c" j = l

Phoaa. L e t

x = ( i L i Z Y . . . , i k ) E 1 c

p < -, w&h nomi c, . Then we have, don any

k

j = 1

lk-l = 1 . We have, f o r w E Q ,

be t h e u n i t sphere

2)1'211

o f Rk and

Since S i s bounded f rom LP(Q) t o LP(Q) we can w r i t e ,

f o r each i a 1 ,

Page 381: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

366 13. MULTIPLIERS AND MAXIMAL OPERATOR

If we write

the previous inequality is

Observe now that if a

with c independent o f

s any vector in Rk - to1 then

ct . Therefore, if we (*) over C and change the order o f integration

P c 1 ISF(w)l dw 6 c cp I F ( w )

R k p n

This can be written

ntegrate the inequality we obtain

dw P k

and this is the statement of the lemma.

- 13.1.3. LEMMA. Adbume t h a t t h e mlLetipfieh o p u ~ ~ ~ A o h T a6

Aociated t o ,the u n i t didh D Aatib6Lie6 1 1 Tf 1 1

1eA Lj 6e t h e haR6-plane

rS Cp/I f \Ip , 604 dome P p 3 2 . L e A IVj3 j=l 6e a @nite Aequence 06 u n i t veotohs i n R2.

Page 382: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

13.1. A THEOREM OF C . FEFFERMAN 36 7

L . = x s R 2 : ( x , v . ) B 0 1 J J h

and dedine. T .fi( XL f ) ' J j

k Then, 6uh any bequence. Efj}j-l i~ Lp(R2) we have

r Phoud. Let D j be the c i r c l e of center r v and radius r > 0. j For big r , the s e t D r looks very much l i k e L j . Define T': by means o f T i = ( X

as r + m . In f a c t , i f f e (&o,we have sense. This permits us t o s h i f t the problem t o the operators T r I t wi l l s u f f i c e t o prove

j J T j

^f f V . I t i s t o be expected tha t T': will approach D; J

T i + T . f i n every des i r ab le J

j *

independently of r . na tes , t h a t

Now i t i s easy t o e s t a b l i s h , by a change of coordi

Therefore, i f (**) holds w i t h r = 1 i t holds f o r any r > 0 .

Now observe t h a t

Therefore we have

Page 383: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

368 13. MULTIPLIERS A N D MAXIMAL OPERATOR

I f we now apply Lemma 13.1.2. one.

we conclude w i t h the proof of t he present

13.2. POLYGONS WITH INFINITELY MANY SIDES.

We have seen t h a t i f D i s the u n i t disk then xD i s not an LP-multiplier f o r any p # 2 . On the o ther hand i f J i s ha l fp lane , then xJ i s an LP-multiplier. Therefore, i f P i s a polygon t h a t can be expressed as J1 1'1 J Z 0 ... 1'1 J k where J a r e halfplanes and i f T p i s the mul t ip l i e r operator corresponding t o P and T I ,TZ ,.. . 'Tk

j

those corresponding t o J1 ,J2 ,.. . , J k , we have

'J1 'Jz . . I

A

f = ( T l T 2 . . . T k f )" x J k

Therefore T p = T I T 2 ... T k and X p i s a l so an LP-rnultiplier, l < p < m .

Assume now tha t P

(if ; + 0

i s a polygon with i n f i n i t e l y many s ides i n the sense t h a t

( i i ) For any two J . , J , the border of J i s not pa ra l l e l J k j t o the border Of J k

( i i i ) For each J j a P 1) a J j i s a segment of pos i t i ve length

I t i s easy t o cons t ruc t s e t s P of th i s type, even comac t convex s e t s of this type.

T- > $ j > 0 , $ , G 0 2 J i n those d i rec t ions a s indicated in Figure 13 .2 .1 .

For example, given any sequence of angles { $ . I ,

one can cons t ruc t a polygon P w i t h s ides J

Page 384: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

13.2. POLYGONS WITH MANY SIDES

f $1

369

Figure 13.2.1.

The question is now whether xp for such a set, which in some sense is something between a disk and an ordinary polygon with finitely many sides will be an LP-multiplier for some p, 1 < p < m.

Positive results for some types o f sets P of this form will be obtained in the following Section 13.3,

If one l o o k s at the proof of Theorem 13.1.1. with the inten - tion o f obtaining a negative result for sets

inmediately observes that the observation (a1 is valid without any P of this class one

substantial modification.

In fact, if xp 2 c p < , and if T~ is of the side aJj 0 aP o f

LP-multiplier with the same

orthogonal to aTj I1 a P d

P ' s an LP-multiplier with norm c the translation that carries the midpoint

P to the origin, the also X-r.P is an

constant. If we call v the unit vector rected towards the interior of T . P and

J j

J

Page 385: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3 70 13. MULTIPLIERS AND MAXIMAL OPERATOR

L . = C x B R2 : (x,v j ) > 0 1 then, s e t t i n g J

we have, f o r any sequence i f j } o f f u n c t i o n s i n Lp(R2) , e x a c t l y as

i n Lemma 13.1.3,

I f we can c o n s t r u c t f o r t h e f a m i l y o f v e c t o r s ( v . 1 a c o l l e c J t i o n o f r e c t a n g l e s s a t i s f y i n g t h e p r o p e r t i e s of t h e o b s e r v a t i o n

t h e n we o b t a i n a c o n t r a d i c t i o n as t h e r e . ( c ) ,

T h e r e f o r e , i n o r d e r t o o b t a i n a n e g a t i v e r e s u l t f o r P, i . e .

i s n o t an L P - m u l t i p l i e r f o r any p # 2 , i t w i l l be s u f f i c i e n t t h a t xp t o prove t h a t g i ven t h e s e t o f d i r e c t i o n s f v j l , o r , what amounts t o

t h e same, t h e s e t o f d i r e c t i o n s o f t h e s i d e s o f P , f o r any TI > 0

one can c o n s t r u c t a measurable s e t E and a f i n i t e c o l l e c t i o n o f d i s -

j o i n t r e c t a n g l e s fRh)h=l , each Rh w i t h one s i d e i n d i r e c t i o n vh

so t h a t

k

2 1 -

100

as i n t h e obse rva t i on ( c ) .

One e a s i l y sees, j u s t l o o k i n g a t t h e way we have o b t a i n e d

Lemma 8.2.1.

a Perron t r e e i n t h e sense o f 8.1. w i th i t s sma l l t r i a n g l e s i n t h e

d i r e c t i o n s of some o f t hose o f 1 v . j J i s one o f t h e m o t i v a t i o n s f o r t r y i n g t o g e t d i f f e r e n t t ypes o f Pe r ron

t r e e s .

from t h e Per ron t r e e i n 8.1., t h a t i f we can c o n s t r u c t

t hen we g e t what we need. T h i s

We can s t a t e , as a sample, a theorem o f t h i s n e g a t i v e type,

deduced f rom t h e s p e c i f i c Perron t r e e we have c o n s t r u c t e d i n 8.1.1.

Page 386: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

13.3. A THEOREM OF A. C~RDOBA AND R. FEFFERMAN 371

13.2.1. THEOREM. LeX u6 c o a i d m t h e bequence 06 chkecaXua

0 4 t h e t y p e cuuznide/ted i n tkin neot ion w d h one bide i n & not an LP-mUpUm 6uh any p f 2 .

1 J J

d e L m i n e d by 4 . = ( ~ ~ d i a n ~ ) (See Fig. 1 3 . 2 . 1 . ) . 1eA UA con~;Dtuc t any paCygon P each ClihecaXon . Then X p

13.3. THE MAXIMAL OPERATOR RESPECT TO A COLLECTION OF RECTANGLES. A THEOREM OF A. CORDOBA AND R. FEFFERMAN.

As we have seen in the preceding Section, from one single

fact, namely the possibility of constructing a Perron tree such that one side of its small triangles is in a fixed set of directions {v.},

J we have been able to deduce, on one hand, the bad properties of the

differentiation basis @ of all rectangles in directions {vj} and,

on the other hand, the bad continuity properties in Lp , I) # 2, of the multiplier operator T p associated to any polygon P with infinitely many sides i n directions Ivj} ,

The question that now arises in a natural way is whether we can say something positive, i.e., is it true that if 8 has good dif ferentiation properties then Tp is a good multiplier operator and

viceversa? The following result, due to C6rdoba and k.Fefferman [1977]

gives an affirmative answer to this question for a particular P.

Let us give ourselves a sequence of angles te,) , n J

0 < 8 . < 2 , o j + 0 , and let P be the convex set indicated in

Figure 13.3.1. J

Page 387: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

372 13. MULTIPLIERS AND MAXIMAL OPERATOR

A o

- 0 2 2 2

P

2 3

Figure 13.3.1.

A 3

The p o i n t A, i s an a r h i t r a r y point of x = 1. The other ve r t i ce s o f P a r e the points A j , j = 1,2, ... Each A j i s the point of x = ZJ such t h a t Aj,l A forms w i t h Ox an angle of amplitude e We have indicated the midpoint E j of Ajvl A j and the inner u n i t normal v t o P a t E

j * 3 . j

O n t he other hand l e t @ be t h e d i f f e r e n t i a t i o n bas is of a l l rectangles with one s i d e in one of t h e d i rec t ions { v j l .

We can s t a t e the following r e s u l t .

13.3.1. rHEOREM. LeA P be t h e deA ju - t dedined and @ t h e d . i d { ~ e n t i a t i o n ba4i.A denchibed above.

Page 388: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

13.3. A THEOREM OF A. C~RDOBA AND R. FEFFERMAN

f E L(R2),

Then:

(a)

(6)

7 6 K O a6 hfhung type ((!)',(f)')

16 Xp O an Lp-m&2pfieti doh home p > 2 and i d we have,

nome P > 2,

then xP o an LP-mlLetiptieti

doh each mmuhabbe E C R 2

1 ICx e R2 : KXE(x) > 11 L C I E ~ then K O 0 6 weah @pc? (($1' y(5) ' )

Observe that the additional condition in (b) as we know,

holds when 6 i s known to be a density basis.

For the proof of (a) we shall use two important theorems.0ne

.is the following result of A.Co?doba and C.Fefferman [1976] .

13.3.2. TffEOREM. LeL H denote t h e H a b c k t a?~~n.hdohm and

M t h e ohdinahy fflvrdy-LLttkkwvod m a x h d o p ~ ~ n d t o h i n R'. LeL

f 6 Lp(R1) ,

1+E

g 6 Lp(R') , 1 < p < m , and doh any E > O huch t h a t

p > 1 , LeL

Then

whme cE 0 independent 06 f and g . Observe that the fact that M is of type (p,Pl, P > 1, im-

plies that also ME is Of type (p,P)..

373

The other result we shall use i s the following theorem of

Stein [1970, Paley and Littlewood that can be seen, for instance in

Page 389: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

374 13. MULTIPLIERS AND MAXIMAL OPERATOR

p. 1041

13.3.3. THEOREM. L& ( V h j = 1 ,2 ,3 ,... E . = C(x,y) 6 R 2 :- x < 2J ) , and LeA: Sj be t h e rni&XpL&h apen_atah cornenpunding t o

J h

E j , i . e . ( S j g)* = x . g . EJ

Then, doh each g E Lp(R2) , 1 < p < m , we. have

Wi th these two r e s u l t s t h e p r o o f o f Theorem 13.3.1. i s easy.

Phaad v d t h e Theohem 13.3.1. For p a r t ( a ) we proceed as f o l -

lows. L e t F j be t h e a f f i n e h a l f p l a n e determined by Aj-l A j t h a t

c o n t a i n s P. L e t H j be t h e m u l t i p l i e r o p e r a t o r co r respond ing t o Fj,

i . e . ( H ~ g I A = x G. FJ

Observe t h a t i f T i s t h e m u l t i p l i e r assoc ia ted t o P , we P

have, f o r each j = 1 , 2 , . . .

i .e. S j Tp = H j S j .

By Theorem 13.3.3. we have

m m

II T p f I l F c II( c I S j Tp f 1 2 ) 1 / 2 1 1 ; = c I I ( E l H j s j f l 2 I 1 / 2 I I p

$1

j=1 j = 1 (5) I I n o r d e r t o e s t i m a t e t h e l a s t t e rm we examine, f o r @ 6 L (R2) , w i t h

I l @ I l 6 1 , $ 3 0

m m

1 R 2 j=1 j= l R ( 1 ( H j S j f l ' ) @ = 1 I I H j S j f 1 2 4

Now f o r each j we compute A = l l H j S j f I 2 @ b y l i n e s i n t h e

d i r e c t i o n o f v j , i . e . i f i s t h e u n i t v e c t o r ob ta ined by r o t a -

t i n g v an ang le o f

j

71 j j

Page 390: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

Using now the

jseR

13.3. A THEOREM OF A. C6RD05A AND R. FEFFERMAN

r

I H . S . f ( s v t?.)12 @ ( s v j y t V . ) d s d t JseR j' J J

heorem 13.3.2. we have f o r almost each t e R

H . s . f ( sv . , tv . )12 @ ( s v j , t i . ) d s 6 J J J J J

375

) S j f (sv tG. ) I2 ME@ (sv t i j ) ds j 7 J j 7

where we have taken ME with respec t t o s . Therefore

where M:$ means the operator defined above b u t now on the l i n e i n direc- t ion v passing through (x,y) . Now i t i s easy t o see t h a t t he f a c t t h a t K i s of type

j ((f)',($)') implies t h a t t he operator M Z

MZ g(x,y) = SUP M: ( X , Y ) j

Therefore we ge t

and so T i s o f type ( p , p ) .

T h i s conclude the proof of par t ( a ) . We now prove ua r t (b) .

Proceeding exactly as we d i d i n Lemma 13.1.3, from the f a c t i s and LP-multiplier f o r p > 2 we a r r i v e t o the inequality, t h a t Xp

Page 391: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

376 13. M U L T I P L I E R S AND MAXIMAL OPERATOR

for f . a Lp(R2) , j = 1,2,3, ... J

where T is as there, the multiplier operator associated to

L . = Cx a R 2 : (x,vj) 2 0 1 . j J

By means of this inequality we are going to obtain a covering lemma for the rectangles of @ from which the type

operator K is an inmediate consequence. ((:)I y(f)') of the

h Assume we are given a finite collection C R k l k = l of rectangles of the basis 8 . Let us assume they are ordered so that

- - Let us choose R1 = R 1 . The RZ will be the first Rk with

k > 1 satisfying

- - If Rk,l = R j , then Rk will be that Rh with h > j such that

3 k - 1 ,., lRh - 1' Ril ' F lRhl

- and so on, Thus we obtain {Rk3E=1 so that

Y -

On the other hand, i f R is not i n j s -

I R j - IJ R k \ k = l

that is ,

3 "if

Page 392: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

13.3. A THEOREM OF A. CI~RDOBA AND R. FEFFERMAN 377

and t h e r e f o r e

Hence we have, acco rd ing t o t h e c o n d i t i o n we have assumed on K i n (b )

Assume t h a t R k i s i n t h e d i r e c t i o n o f v . and l e t J ( k )

- - - - - Ri = R k , R i , R i , R k be t h e r e c t a n g l e s i n d i c a t e d i n F i g . 13.3.2.

F i g u r e 13.3.2.

.., -. 5- - 1 " L e t us now s e t Ek = R k - t I RJ . S ince I E k l p l R k l

j < k we have t h a t a t l e a s t f o r h a l f o f t h e l i n e s 1 between A and B i n

d i r e c t i o n Y ~ ( ~ ) we have

( I 1 1 , means one-dimensional measure)

computat ion ( t h e same as i n (b) o f Theorem 13.1.1) we have t h a t f o r a t l e a s t h a l f o f t h e l i n e s 1 between A and B

and so , an easy one-dimensional

Page 393: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

378 13. MULTIPL IERS AND MAXIMAL OPERATOR

- L e t us c a l l F k t h i s s e t o f p o i n t s o f Rk where t h e above h o l d s ,

i s t h e m u l t i p l i e r o p e r a t o r co r respond ing t o If ' j ( k )

= { x € R 2 : ( x , V ~ ( ~ ) ) > 0 1 we have, s i m i l a r l y , 'j ( k f

1 I ' j ( k ) 'Fk (')I ' -

a t each p o i n t o f R i . Therefore, f rom t h e i n e q u a l i t y (*) we g e t

If we now submi t t h e s e t s 6; t o t h e same k i n d o f process we have used

on t h e s e t s ik we a r r i v e t o t h e s e t s ik and so

There fo re

So we have ob ta ined f rom

t h a t ERklk=l a f i n i t e sequence {?i,lt=, such

Bu t t h i s i s known t o i m p l y ( c f . Chapter 6 ) t h a t K i s o f weak t y p e

((!)I, ($1') and p a r t (b) o f t h e theorem i s proved.

Page 394: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

REFERENCES

Banach,S. [1924] , Sur un th&or??me de M.Vitali, Fund. Math. 5 (1924)

1313-136.

Bennet,C. and Sharpley,R. [1979] , Weak-type inequalities for tip and BMO,

AMS Proc. of Symposia in Pure Math. 35 (1979) I , 201-229.

Besicovitch,A.S. [1919] , Sur deux questions d'intGgrabilit6 des fonc-

tions, J.Soc. Phys. - Math. (Perm') 2 (1919-1920), 105-123.

Besicovitch,A.S. [1923] , Sur la nature des fonctions a car6 sornmable measurabl es , Fund. Math. 4 (1923), 172-195.

Besicovitch,A.S. [1926] , On a general metric property of summable func tions, J.London Math. SOC. 1 (1926) , 120-128.

Besicovitch,A.S. [1928] , On Kakeya's problem and similar one, Math.Z. 27 (1928) , 312-320.

Besicovitch,A.S. [1928'] , On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Ann. 98 (1928),

422-464.

Besicovitch,A.S. [1935] , On differentiation of Lebesgue double inte- grals, Fund. Math. 5 (1935) , 209-216.

Besicovitch,A.S. [1938] , On the fundamental geometrical properties of linearly measurable plane sets of points ( I I ) , Math.Ann.115 (1938) , 296-329.

Besicovitch,A.S. [1939] , On the fundamental geometrical properties o f linearly measurable plane sets of points (111), Math. Ann. 116

(1939), 349-357.

379

Page 395: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3 80 REFERENCES

llesicovitch,A.S. [1964] , On fundamental geometric properties o f plane 1 i ne-sets , 3. London Math, SOC , 39 (1964) 441-448.

Bo0,P.A. [1978] , Convergence almost everywhere of singular integrals o f

dilation type,. Univ. of Umel, 1978.

Bo0,P.A. [1978] , Necessary conditions for the convergence almost every where o f convolutions with approximation identities o f dilation type, Univ. o f Ume; , 1978.

Burkill ,J.C. (19511 , On the differentiability of multiDle integrals, J.London Math. SOC. 26 (1951), 244-249.

Busemann,H.and Feller,W. [1934] ,Zur Differentiation des Lebesgueschen

Integrale, Fund. Math. 22 (1934). 226-256.

Calder6nYA.P., Weiss,M. and Zygmund,A. [1967] , On the existence of singular integrals, Proc. Symp. Pure Math. 10 (1967) ,56-73.

Calder6n,A.P. and Zygmund,A. [1952] , On the existence o f certain sin- gular integrals, Acta Math. 88 (1952) , 85-139.

Calder6n,A.P. and Zygmund,A. [1956] ,On singular integrals, Amer.J. Math. 18 (1956), 289-309.

Calder6n,A.P. and Zygmund,A. [1973] , Addendum to the paper "On singular integrals", Studia Math. 46C1973) , 297-299.

Carathgodory,C. [1927] , Vorlesungen iiber reelle Funktionen* (Leipzig, 1927).

Carleson,L. [1966] , On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966) , 135-157.

Carrill0,M.T. [1979] , Operadores maximales de convoluci6n (Tesis doctoral , Univ. Complutense de Madrid, 1979).

Casas,A. [1978] , Aplicaciones de la teoria de la medida lineal (Tesis doctoral, Univ. Complutense de Madrid, 1978 ) ,

CBrdoba,A. [1976] ,On the Vitali covering properties o f a differentia- tion basis, Studia Math. 57 (1976), 91-95.

Page 396: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

REFERENCES 381

Cbrdoba,A. 119771 , The Kakeya maximal f u n c t i o n and t h e s p h e r i c a l sum - mat ion m u l t i p l i e r s , Amer.J. o f Math. 99 (1977) , 1-22.

Cdrdoba,A. [1978] , s x t x $ ( x , t ) , M i t t a g - L e f f l e r I n s t i t u t , Repor t no.9

(1978).

C6rdoba,A. and Fefferman,R. [1975] , A geometr ic p r o o f o f t h e s t r o n g

maximal theorem, Ann. o f Math. 102(1975), 95-100.

CBrdoba,A. and Fefferman,C. [1976] , A weighted norm i n e q u a l i t y f o r s in -

g u l a r i n t e g r a l s , S t u d i a Math. 57 (1976), 97-101.

Cbrdoba,A. and Fefferman,R. 11977 a] , On d i f f e r e n t i a t i o n o f i n t e g r a l s ,

Proc. N a t l . Acad. USA 74 (1977),2211-2213.

Cbrdoba,A. and Fefferman,R. [1977 b] , On t h e equ iva lence between t h e

boundedness o f c e r t a i n c lasses o f maximal and m u l t i p l i e r

o p e r a t o r s i n F o u r i e r a n a l y s i s , Proc. Nat . Acad. S c i . USA,

74 (1977), 423-425.

Cotlar,M. [1959] Condiciones de c o n t i n u i d a d de operadores p o t e n c i a l e s y

de H i l b e r t (un iv . de Buenos A i r e s , 1959).

Cunningham,F. [1971] , The Kakeya problem f o r s imp ly connected and f o r

s tar -shaped se ts , Amer.Math. Mon th l y 78 (1971) , 114-129.

Cunningham,F. [1974] , Three Kakeya problems, Amer. Math. Mon th l y 8 1

(1974) , 582-592.

Davies,R.O. [1953] , A c c e s s i b i l i t y o f p l a n e s e t s and d i f f e r e n t i a t i o n

o f f unc t i ons o f two v a r i a b l e s (Ph.D. D i s s e r t a t i o n , Cambridge

Un iv . , 1953).

Davies,R.O. [1965] , A r e g u l a r l i n e - s e t c o v e r i n g f i n i t e measure,

J.London Math. SOC. 40 (1965), 503-508.

D i t z ian ,Z . [1977] , A n o t e on a problem by H.S.Shapiro, A n a l y s i s Math.

3 (1977) , 45-49.

E l Helou,J. [1978] , Recouvrement du t o r e Tq p a r des o u v e r t s a l e a t o i r e s

[ p r e p r i n t ) .

Page 397: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

382 REFERENCES

Fabes,E.B. [1966] , Singular integrals and partial differential equations of parabolic type, Studia Math. 28 (1966), 81-131 .

Fabes,E.B. and RiviPre,N.M. [1966] , Singular integrals with mixed homogeneity, S.tudia Math. 27 (1966) , 19-38.

Fabes,E.B. and Riviere, N.M. [1967] , Symbolic calculus of kernels with mixed homogene.ity, AMS Proc. Symp. Pure Math. 10 (19671,

106-127.

Federer,H. [1969] , Geometric measure theory (Berlin, 1969

Fefferman,C. [1971] , The multiplier problem for the ball, 94 (1971), 330-336.

Ann.of Math.

Fefferman,C. [1973] , Pointwise convergence of Fourier series, Ann.Math. 98 (1973) 551-571.

Fefferman,C. I19741 , Recent progess in classical Fourier Analysis (Proc, of the International Congress of Mathematicians, Vancouver,

1974).

Garsia,A.M. [1970] , Topics in almost everywhere convergence (Markham, Chicago, 1970 ).

Gilbert,J.E. [1979] , Nikixin-Stein theory and factorization with ap- plications, Amer.Math. SOC, Proc. of Symposia in Pure Math. 35 (1979) vol . 2 , 233-267.

de Guzmbn,M. [1968]

geneity

, Singular integral operators with generalized homo- (Thesis, Univ. of Chicago, 1968 ) .

de GuzmBn,M. 11970 a] , Singular integrals with generalized homogeneity, Rev. Acad. Ci. Madrid 64 (1970), 77-137.

de Guzmh, M. [1970 b] , A covering lemma with applications to difer-

entiability o f measures and singular integral

Studia Math. 34 (1970) , 299-317. operators,

Page 398: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

REFERENCES 383

de Guzmdn,M. [1972] , On the derivation and covering properties of a differentiation basis, Studia Math. 44 (1972) ,359-364.

de GuzmBn,M. [1974] , An inequality for the Hardy-Littlewood maximal ope rator with respect to a product of differentiation bases,

Studia Math. 49 (1972). 185-194.

de Guzmdn,M. [1975] , Differentiation of integrals in Rn (Springer,

Lecture Notes in Mathematics vol. 481, Berlin, 1975).

de GuzmBn,M. and Welland,G.V. [1971] , On the differentiation of integrals Rev. Un. Mat. Argentina 25 (1971), 253-276.

Hardy,G.H. and Rogosinski ,W. [1944] , Fourier series. (Cambridge U.Press, New York, 1944).

Hayes,C.A. 119521 , Differentiation of some classes of set functions, Proc. Cambridge Philos. SOC. 48 (1952), 374-382.

Hayes,C.A. [1958] , A Sufficient condition for the differentiation of certain classes of set functions, Proc. Cambridge Philos.

SOC. 54 (19581, 346-353.

Hayes,C.A. [I9661 , A condition of halo type for the differentiation of classes of integrals, Canad.J. Math. 18 (1966), 1015-1023.

Hayes,C.A. [I9761 , Derivation of the integrals of Lq-functions,

Pacific J. Math. 64 (1976), 173-180.

Hayes,C.A. and Pauc,C.Y. [1955] ,Full individual and class differentiation theorems in their relations to halo and Vitali properties , Canad.J. Math. 7 (1955), 221-174.

Jessen,B., Marcinkiewicz,J. and Zygmund,A. [1935] , Note on the dif- ferentiability of multiple integrals, Fund. Math. 25 (1935)

217- 134.

Jones,B.J.Jr. [I9641 , A class of singular integrals, Amer.J. of Math.

86 (1964), 441-462.

Kahane,J.P. [1969] ,Trois notes sur les esembles parfaits lineaires,

Enseignement Math. 15 (1969) , 185-192.

Page 399: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

384 REFERENCES

Kakeya,S. [1917] , Some problems on maxima and minima regarding ovals, Tbhoku Sci. Reports 6 (1917), 71-88.

Loomis,L. [1946] , A note on Hilbert's transform, Bull .Amer.Math.Soc. 52 (1946) 1082-1086.

Marstrand,J.M. [1977] , A counter-example in the theory of strong dif-

ferentiation, Bull. London Math. SOC. 9 (1977), 209-211.

Maurey,B. [1974] , Th6orSmes de factorisation pour les opi3rateurs a valeur dans les espaces Lp, Ast6risque 11 (1974), 1

Meler0,B.L. [1978] , A negative result in differentiation theory

1 i n6ai res 163.

preprint).

Moon,K.H. [1974] , On restricted weak type (l,l), Proc. Amer. Math. SOC. 42 (1974) , 148-152.

Moriy6n,R. [1975 a] , Equivalence between the regularity property and the differentiation o f L1 for a homothecy invaraint basis, Appendix

I11 in:M. de GuzmSn, Differentiation of Integrals in Rny (Springer, Berlin, 1975 ) .

Moriydn,R. [1975 b] , On the derivation properties o f a class of bases. Appendix IV in : M.Guzm%n, Differentiation of integrals in Rn (Springer , Berlin, 1975).

Moriybn,R. [1978] , E l halo en la teoria de diferenciacidn de integrales (Tesis doctoral, Univ. Complutense de Madrid, 1978 ) .

Nagel ,A . and Wainger,S. [1976 ] , Hilbert transforms associated with plane curves, Trans. Amer. Math.Soc. 223 (19761, 235-252.

Nagel ,A. Rivibre,N.M. and Wainger,S. [1974] , On Hilbert transforms along curves, Bull. Amer.Math.Soc. 80 (1974), 106-108

Nage1,A. Rivi~Sre ,N.M. and Wainger,S. [1976 a] , On Hilbert transforms along curves, 11, Amer.J. Math, 98 (1976), 395-403.

Nagel ,A. ,RiviSre,N.M. and Wainger,S. [1976 b] , A maximal function as- sociated to the curve (t,t') , Proc. Rat. Acad. Sci. USA 73 (1976) , 1416-1417.

Page 400: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

REFERENCES 385

Nikishin,E.M. [1970] , Resonance theorems and superlinear operators, Russ. Math. Surveys 25 (1970) , 125-187.

Nikodym,O. [1927] , Sur la measure des ensembles plans dont tous les points sont rectilineairement accesibles, Fund. Math. 10 (1927) 116-168.

Papoulis,A. [1950 1, On the strong differentiation of the indefinite integral , Trans. Amer, Math. SOC. 69 (1950),130-141.

Peral , I . [1974] , Nuevos m6todos en diferenciacih (Tesis doctoral , Univ. de Madrid. 1974).

Perron,O. [I9281 , Ueber einen Satz von Besicovitch, Math. Z. 28 (1928), 383-386.

de Posse1 ,R. [1936] , Sur la de'i-ivation abstraite des fonctionsd'ensemble, J.Math. Pures Appl. 15 (19361, 391-409.

Rademacher,H. [1962] . A new construction o f the Perron tree, in Studies in Mathematical Analysis (edited by Gilbarg, Solomon and

others). (Stanford, 1962).

Rivi$re,N.M. [1973] , Singular integrals and multiplier operators, Arkiv f. Matematik 2 (1971) , 243-278.

Rubio de Francia,J.L. [1979] , Convergencia casi por todo y operadores

maximales, (Universidad de Zaragoza, 1979).

Rubio Segovia,B. [1971] , Propiedades de derivaci6n y el operador maximal de Hardy-Littlewood (Tesis doctoral , Univ. de Madrid, 1971).

Rudin,W. [1969] , Function theory in polydiscs (Benjamin, New York, 1969).

Sadosky,C. [1979] , Interpolation o f operators and singular integrals (M. Dekker, New York, 1979 ) .

Saks,S, 119341 , Remarks on the differentiability of the Lebesgue indef- inite integral, Fund. Math, 22 (19341, 257-261.

Saks,S. [1935] , On the strong derivatives of functions of an interval, Fund. Math. 25 (19351, 235-252.

Page 401: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

3 86 REFERENCES

Saks,S. [1937] , T h e b r i e de 1 ' I n t e ' g r a l e (Warszawa, 1937 ).

Sawyer,S. 119661 , Maximal i n e q u a l i t i e s o f weak t ype , Ann. o f Math. (2 ) 84 (1966) , 157-174.

Schoenberg, I . J , [1962] , On t h e B e s i c o v i tch-Perron s o l u t i o n o f t h e Kakeya

problem, i n S tud ies i n Mathemat ica l A n a l y s i s ( e d i t e d by G i l b a r g ,

Solomon and o t h e r s ) (Stanford, 1962. ) .

Shapir0,H.S. [1977] , Convergence a lmos t everywhere o f c o n v o l u t i o n i n t e g r a l s

w i t h a d i l a t i o n parameter (Sp r inge r L e c t u r e Notes i n Math. v o l .

571, B e r l i n , 1977) , 250-266.

Stein,E.M. [1961] , On l i m i t s o f sequences o f o p e r a t o r s , Ann. o f Math.

( 2 ) 74 (1961) , 140-170.

Ste in , E.M. [1970] , S i n g u l a r i n t e g r a l s and d i f f e r e n t i a b i l i t y p r o p e r t i e s

o f f u n c t i o n s (P r ince ton , 1970) .

S t e i n ,E.M. and Wainger,S. [1978] , Problems i n Harmonic A n a l y s i s r e l a t e d

t o cu rva tu re , B u l l . Amer. Math. SOC. 84 (1978) , 1239-1295.

Stein,E.M. and Weiss,G, [1959] , An e x t e n s i o n o f a theorem o f Marc ink ie -

w icz and some o f i t s a p p l i c a t i o n s , J.Math. Mech. 8 (1959) , 263-284.

Stein,E.M. and Weiss,G. [I9711 , I n t r o d u c t i o n t o F o u r i e r A n a l y s i s on

Euc l i dean spaces (P r ince ton , 1971) .

Stein,E.M. and Weiss,N.J. [19691 , On t h e convergence o f Poisson i n t e -

g r a l s , Trans. Amer. Math. SOC. 140 (1969) , 34-54,

Stromberg,J. [1976] , Maximal f u n c t i o n s f o r r e c t a n g l e s w i t h g i v e n d i r e c -

t i o n s (Thes is ,M i t t ag -Le f f l e r I n s t i t u t e , Djursholm, Sweden).

Whitney,H. [1934] , A n a l y t i c ex tens ions o f d i f f e r e n t i a b l e f u n c t i o n s d e f i n e d

on c losed s e t s , Trans. Amer. Math. SOC. 36 (1934) , 63-89.

Yano,S. [1951] , An e x t r a p o l a t i o n theorem, J.Math.Soc. Japan 3 (1951) , 296-305.

Yosida,K. [1965] , F u n c t i o n a l A n a l y s i s (Spr inger , B e r l i n , 1965) .

Page 402: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

REFERENCES 387

Zo,F. [1976] , A note on the approximation of the identity, Studia Math, 55 (1976), 111-122.

Zygmund,A. [1934] , On the differentiability o f multiple integrals,

Fund. Math, 23 (1934) , 143-149.

Zygmund,A. [1959] , Trigonometric Series (Cambridge U.Press, 1959).

Page 403: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 404: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

A LIST OF SUGGESTED PROBLEMS

On t h e B e s i c o v i t c h cove r ing theorem.

on t h e dimension i n 3.2.1.? 3.2.A. How does t h e cons tan t depend

On t h e method of r o t a t i o n .

t ype i nequal i ty?

From t h e maximal o p e r a t o r t o cove r ing p r o p e r t i e s . 6.3. What a r e t h e exac t

l i m i t s o f Theorem 6.3.1. i n t h e sense o f p.117?

5.3. Can one make i t work f o r o b t a i n i n g a weak

The h a l o problem. 6.6. f i n d o u t a min imal c o n d i t i o n on f E Lloc(Rn) i n o r d e r t o ensure t h a t t h e

b a s i s o f d i f f e r e n t i a t e s I f .

On a theorem of B e s i c o v i t c h . 7.4. How f a r can one extend Theorem 7.4.1. by

t a k i n g as 8 a more genera l b a s i s ?

A problem o f Zygmund. 7.8. Can Theorem 7.8.1. be g e n e r a l i z e d t o more

dimensions?

Knowing t h e h a l o f u n c t i o n o f a d i f f e r e n t a t i o n bas i s ,

On t h e d i f f e r e n t i a t i o n p r o p e r t i e s o f some bases o f r e c t a n g l e s .

Problems 1,2 ,3 , on pages 226-227.

On t h e Nikodym s e t and d e n s i t y bases.

assoc ia ted t o a L i p s c h i t z f i e l d o f d i r e c t i o n s i n R a d e n s i t y bas i s?

On approx imat ions o f t h e i d e n t i t y . 10.2. Is t h e maximal o p e r a t o r a s s o c i a t e d

t o a k e r n e l k z 0, k E L(Rn), k non - inc reas ing a long rays , o f weak t y p e ( l , l ) ?

On d i f f e r e n t i a t i o n a long curves.

o f t h e usual cove r ing methods o f d i f f e r e n t i a t i o n ) o f theorems such as

12.1.1.

8.6. See

8.6. Is a b a s i s o f r e c t a n g l e s 2

12. To f i n d a geometr ic p r o o f ( i n terms

On m u l t i p l i e r s a s s o c i a t e d t o polygons w i t h i n f i n i t e l y many s ides .

f i n d t h e l i m i t s o f t h e theorems i n 13.2. and 13.3. 13. To

389

Page 405: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

This Page Intentionally Left Blank

Page 406: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

INDEX

Besicovitch covering lemma, 39

Besicovitch covering property, strong, 107 weak, 109

Besicovitch set, 210, 277 Busemann-Feller (B-F) differentiation

basis, 104

CalderBn-Zygmund decomposition, 46

CalderBn-Zygmund operators, 313

Condensation of first order, 259

Condensation of second order, 259

Convex sets, covering lemma, 48

Convolution operators, 73

CBrdoba and Hayes theorem, 114

Van der Corput lemma, 344

Cotlarls lemma, 92

Density basis, 118

Density property, 118

Derivative, upper, lower, 105

Differentiation, 105

Differentiation along curves, 337

Differentiation basis , 104

Extrapolation, 60

C. Fefferman ' s mu1 ti pl ier

General i zed homogeneity , integrals, 327

theorem, 362

Halo function, 149

Halo problem, 149

Hardy-Littlewood operator,

Hausdorff measure, 242

Hilbert transform, 305

41, 103, 104

Identity approximations , 281 Interpolation, 54

Irregular point, set, 250

Kahane set, 212

Kakeya problem, 209

Kolmogorov condition, 50

Linear density, 245

Linearization, 66

Linearly measurable sets, 241

Majorization, 70

Marcinkiewicz theorem on

Marstrand theorem, 177

Maximal operator, 5

Multipliers, 359

i nterpol at i on, 55

Nikishin's theorem, 29

Nikodym set, 215 singular

Page 407: Real Variable Methods in Fourier Analysis (North-Holland Mathematics Studies 46)

392 INDEX

Perron t r e e , 201

P o l a r l i n e s , 268

P r o j e c t i o n p r o p e r t i e s , 258

Rademacher f u n c t i o n s , 23

Rad ia l k e r n e l s , 282

R a d i a t i o n p o i n t , 259

Regular p o i n t , se t , 250

R iesz -Thor in theorem, 54

R o t a t i o n method, 96

Saks r a r i t y theorem, 165

Sawyer ' s theorem , 19

S t e i n ' s theorem, 23

S t e i n and G. Weiss theorem, 55

Stein-Wainger theorem, 337

Sub l i nea r ope ra to r , 7

Summation, 68

Tangency p r o p e r t i e s , 252

Tangent, 252

Type of an opera to r , 13

V i t a l i c o v e r i n g lemma, 108

V i t a l i cover , 137

Whi tney 's lemma, 44

Y-set, 256

Zo ' s theorem, 292

Z-set, 256