recent advances in electrophoresis of mucins...chip electrophoresis. membrane electrophoresis such...

15
137 ©2012 FCCA (Forum: Carbohydrates Coming of Age) Trends in Glycoscience and Glycotechnology Vol.24 No.138 (July 2012) pp.137–151 doi.10.4052/tigg.24.137 Kameyama, Akihiko; and Matsuno, Yu-ki Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2-12, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan FAX: 81-29-861-3123, E-mail: [email protected] (Received on May 2, 2012, accepted on June 7, 2012) Key Words: mucins, proteoglycans, membrane electrophoresis, mass spectrometry, immunostaining Recent Advances in Electrophoresis of Mucins MINIREVIEW ムチンの電気泳動における最近の進歩 Abstract Tumor-associated structural alterations of O-linked glycans in mucins have often been reported. However, mucin characterization has been lagging following adoption of modern techniques such as proteomics because of their large size, polymeric nature, and heterogeneous glycosylation. For mucins to be used as biomarkers, a convenient and high-throughput technology for characterization of mucins including analysis of glycan moieties must first be developed. Supported Molecular Matrix Electrophoresis (SMME) is a membrane electrophoresis in which hydrophilic polymer soaking into a porous membrane such as polyvinylidene difluoride (PVDF) is used as the separation medium. The electrophoretic conditions for cellulose acetate membrane electrophoresis can be applied to SMME without significant modifications. Treatment of the SMME membrane under alkaline β-elimination conditions does not induce degradation products of hexose oligomers that would otherwise interfere with glycan analysis. This technique was applied to the characterization of MUC1 produced by three cancer cell lines (T47D, HPAF-II, and BxPC3). A. Introduction Mucins, a major constituent of mucosa, are large molecular mass glycoproteins ( ~2 MDa) whose O-linked glycan content is >50% by weight. Mucins contribute to the protection and lubrication of the mucosal epithelia, while alterations of mucin species and O-linked glycan structures in the mucins have been implicated in tumor progression, and infection for several decades (15). The majority of tumor- associated glycan antigens, including CA19-9, are believed to be the glycans found on mucins (6, 7). Using proteomic techniques, many studies aim to discover protein biomarkers by comparing the proteomes of a number of clinical specimens. However, mucins are barely characterized in these studies because of an inability to enter a gel of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 要  約 ムチンの O - 結合型糖鎖のがんに関連した構造変化は古く から報告されてきた。ムチンは巨大な分子である上、多量体 の形成、多数の O - 結合型糖鎖、プロテアーゼ耐性などの理由 により、プロテオミクスなどの現代的な技術を用いた高スルー プットな分析ができない。ムチンを対象としたバイオマーカー 探索を進めるためには、簡便な新規分析法が必要である。分 子マトリクス電気泳動 (SMME) は PVDF 膜のような多孔性の 膜に含浸させた親水性ポリマーを分離担体とする膜電気泳動 である。セルロースアセテート膜電気泳動において利用され る泳動条件がほぼそのまま SMME にも利用できる。この方 法ではアルカリによる糖鎖の β 脱離反応を行っても、膜から ヘキソースオリゴマーなど、糖鎖分析を妨害する副産物が生 じない。我々は SMME を用いて 3 種の細胞株 (T47D、HPAF- II、BxPC3) が産生する MUC1 の特性解析を行った。 A. はじめに 粘膜の主要な構成成分であるムチンは多数の O - 結合型 糖鎖に覆われ、その糖鎖含量が重量にして 50% を超える巨大 ( ~ 2 MDa) な糖タンパク質である。ムチンは生体内で粘膜の 保護や潤滑の役割を有するが、発現されるムチンの種類やそ の糖鎖構造はがんや感染等との関連が古くから示唆されてき た (15)。CA19-9 を始めとする各種の腫瘍関連糖鎖抗原の多く もムチン上の糖鎖であると考えられている (6、7)。最近、プロ テオミクスの技術が成熟し多数の臨床試料のプロテオームか ら疾患関連タンパク質マーカーを探索する研究が活発になさ れているが、ムチンは上に述べた構造上の特性のためトリプ シンなどのプロテアーゼに耐性があり、また SDS- ポリアクリ ルアミドゲル電気泳動 (SDS-PAGE) の分離ゲルに入っていく ことができないことから、これらの研究からムチンが見出さ

Upload: others

Post on 12-May-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

137 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

Trends in Glycoscience and GlycotechnologyVol.24 No.138 (July 2012) pp.137–151doi.10.4052/tigg.24.137

Kameyama, Akihiko; and Matsuno, Yu-kiBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST),

Tsukuba Central 2-12, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, JapanFAX: 81-29-861-3123, E-mail: [email protected]

(Received on May 2, 2012, accepted on June 7, 2012)

Key Words: mucins, proteoglycans, membrane electrophoresis, mass spectrometry, immunostaining

Recent Advances in Electrophoresis of Mucins

MINIREVIEW

ムチンの電気泳動における最近の進歩

AbstractTumor-associated structural alterations of O-linked

glycans in mucins have often been reported. However, mucin characterization has been lagging following adoption of modern techniques such as proteomics because of their large size, polymeric nature, and heterogeneous glycosylation. For mucins to be used as biomarkers, a convenient and high-throughput technology for characterization of mucins including analysis of glycan moieties must first be developed. Supported Molecular Matrix Electrophoresis (SMME) is a membrane electrophoresis in which hydrophilic polymer soaking into a porous membrane such as polyvinylidene difluoride (PVDF) is used as the separation medium. The electrophoretic conditions for cellulose acetate membrane electrophoresis can be applied to SMME without significant modifications. Treatment of the SMME membrane under alkaline β-elimination conditions does not induce degradation products of hexose oligomers that would otherwise interfere with glycan analysis. This technique was applied to the characterization of MUC1 produced by three cancer cell lines (T47D, HPAF-II, and BxPC3).

A. IntroductionMucins, a major constituent of mucosa, are large

molecular mass glycoproteins (~2 MDa) whose O-linked glycan content is >50% by weight. Mucins contribute to the protection and lubrication of the mucosal epithelia, while alterations of mucin species and O-linked glycan structures in the mucins have been implicated in tumor progression, and infection for several decades (1–5). The majority of tumor-associated glycan antigens, including CA19-9, are believed to be the glycans found on mucins (6, 7). Using proteomic techniques, many studies aim to discover protein biomarkers by comparing the proteomes of a number of clinical specimens. However, mucins are barely characterized in these studies because of an inability to enter a gel of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

要  約ムチンのO - 結合型糖鎖のがんに関連した構造変化は古く

から報告されてきた。ムチンは巨大な分子である上、多量体

の形成、多数のO - 結合型糖鎖、プロテアーゼ耐性などの理由

により、プロテオミクスなどの現代的な技術を用いた高スルー

プットな分析ができない。ムチンを対象としたバイオマーカー

探索を進めるためには、簡便な新規分析法が必要である。分

子マトリクス電気泳動 (SMME) は PVDF 膜のような多孔性の

膜に含浸させた親水性ポリマーを分離担体とする膜電気泳動

である。セルロースアセテート膜電気泳動において利用され

る泳動条件がほぼそのまま SMME にも利用できる。この方

法ではアルカリによる糖鎖の β 脱離反応を行っても、膜から

ヘキソースオリゴマーなど、糖鎖分析を妨害する副産物が生

じない。我々は SMME を用いて 3 種の細胞株 (T47D、HPAF-

II、BxPC3) が産生する MUC1 の特性解析を行った。

A. はじめに粘膜の主要な構成成分であるムチンは多数の O - 結合型

糖鎖に覆われ、その糖鎖含量が重量にして 50% を超える巨大( ~ 2 MDa) な糖タンパク質である。ムチンは生体内で粘膜の保護や潤滑の役割を有するが、発現されるムチンの種類やその糖鎖構造はがんや感染等との関連が古くから示唆されてきた (1–5)。CA19-9 を始めとする各種の腫瘍関連糖鎖抗原の多くもムチン上の糖鎖であると考えられている (6、7)。最近、プロテオミクスの技術が成熟し多数の臨床試料のプロテオームから疾患関連タンパク質マーカーを探索する研究が活発になされているが、ムチンは上に述べた構造上の特性のためトリプシンなどのプロテアーゼに耐性があり、また SDS- ポリアクリルアミドゲル電気泳動 (SDS-PAGE) の分離ゲルに入っていくことができないことから、これらの研究からムチンが見出さ

Page 2: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

138 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

and their protease resistance, which is because of the above-described structural properties. For the mucins to be useful as biomarkers, a convenient and high-throughput technology for the characterization of mucins that incorporates analysis of glycan moieties is desired. In this review, we introduce recent progress in mucin analysis by using electrophoresis, and focus on our recent achievements.

B. Gel ElectrophoresisAlthough polyacrylamide gels are impermeable to

mucins, these glycoproteins can migrate into an agarose gel during electrophoresis, where they generally appear as a smear. To focus the band using molecular sieving effects, the use of a polyacrylamide gel is favorable. However, the concentration of polyacryamide must be < 3.5% to allow mucin migration, and this renders the gels “floppy” and difficult to handle. Agarose-polyacrylamide composite gels are prepared by mixing agarose with low-concentration polyacrylamide gels to increase the strength of the gel. After the first report of the electrophoresis using agarose-polyacrylamide composite gel in 1966 by Uriel (8), this method has been effectively used for the separation of biological molecules with very large-molecular weights, such as RNA (Peacock, ref. 9), proteoglycans and glycosaminoglycans (McDevitt, ref. 10). Mucin separation by electrophoresis using agarose-polyacrylamide composite gels was examined in detail by Holden et al. in 1971 (11). They reported that electrophoresis of canine, ovine, and bovine submaxillary mucins gave relatively compact bands when a 0.5% agarose-1.5% polyacrylamide composite gel was used in the presence of SDS after reduction of the disulfide bond of mucins (12).

Detailed characterizations including immunostaining and lectin staining can be performed when the proteins are transferred to a membrane. Furthermore, notable advances in mass spectrometry during the late 1990s facilitated the analysis of glycans released from glycoproteins that were immobilized on blotted membranes. Schulz et al. reported a method for detailed characterization of mucins by using both SDS agarose-polyacrylamide composite gel electrophoresis (SDS-agPAGE) and liquid chromatography-mass spectrometry (LC-MS) (13). They first separated mucins by SDS-agPAGE, and then transferred them onto a polyvinylidene difluoride (PVDF) membrane before releasing the glycans from mucin bands via reductive β-elimination. The released glycans were analyzed by LC-MS using a graphatized carbon column. Thus, a series of procedures, including electrophoretic separation, transfer onto PVDF membrane, staining with antibodies and/or lectins, and mass spectrometric analysis of glycans, were employed to analyze mucins using gel electrophoresis.

Nevertheless, in terms of throughput and convenience, this method has several drawbacks. These include the

れることは少ない。ムチンの疾患バイオマーカーとしての可能性を調べるためには、多数の試料に含まれるムチンを糖鎖部分も含めて簡便に分析できる技術が必要である。本稿では、ムチンを分離する技術の一つとして利用されてきた電気泳動法に関する最近の進歩を、筆者らの研究成果を中心に解説する。

B. ゲル電気泳動法

上述のようにムチンは SDS-PAGE ではゲル内に侵入して

いかないが、アガロースゲル電気泳動ではゲル内を泳動させ

ることができる。しかし、ムチンは泳動方向に長く伸びた筋

状の泳動像を与えることが一般的である。分子ふるい効果を

得るためにはポリアクリルアミドゲルを利用するとよいが、

ムチンがゲル内に侵入できると考えられる、濃度 3.5% 以下の

ポリアクリルアミドゲルは機械的な強度が低く扱いが難しい。

そこでゲルとしての強度を補強する目的で 0.5% のアガロース

を加えてポリアクリルアミドゲルを作成したものがアガロー

ス-ポリアクリルアミド複合ゲルである。1966 年に Uriel に

よってアガロースとポリアクリルアミドの複合ゲルが初めて

報告された (8)。その後、Peacock らはこの方法を核酸の分析

に応用し (9)、McDevitt らはプロテオグリカン、グリコサミノ

グリカンの分離分析への応用を報告した (10)。ムチン分析への

応用は 1971 年に Holden らによって詳細に検討された (11)。彼

らはムチンのジスルフィド結合を還元し SDS 存在下で 1.5% ア

クリルアミド- 0.5% アガロース複合ゲルにより泳動分離する

ことにより比較的コンパクトなスポットがえられることを報

告している (12)。

泳動後は、ゲル内のタンパク質を膜に転写することで免

疫染色やレクチン染色など特性解析の幅が広がる。さらに

1990 年代後半からの質量分析計の著しい進歩により、膜に転

写された糖タンパク質の糖鎖分析も可能となった。Schulz ら

は、SDS- アガロース-ポリアクリルアミド複合ゲル電気泳動

(SDS-agPAGE) で分離したムチンをポリビニリデンジフルオリ

ド (PVDF) 膜に転写し、その後、ムチンのスポットを切り出し

て還元 β 脱離反応により遊離した糖鎖をグラファイトカーボ

ンカラムを用いた高速液体クロマトグラフ質量分析計 (LC-MS)

で分析する方法を報告した (13)。

以上のようにゲル電気泳動を用いるムチンの分析は、

SDS-agPAGE を用いた泳動分離、PVDF 膜への転写、それに

続く免疫染色やレクチン染色、さらには転写した膜から遊離

Page 3: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

139 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

lack of commercially available agarose-polyacrylamide composite gels and the requirement of a transfer step prior to immunostaining and glycan analysis. In addition, some mucins, e.g., porcine gastric mucin (PGM) cannot be separated even by this method (11, 12). This is because the molecular weight of PGM may be too high to migrate into even 1.5% polyacrylamide gel. Furthermore, many mucins fail to resolve into discrete bands even if they are able to migrate into composite gels. These issues have precluded the use of mucins as biomarker for disease and treatment monitoring.

C. Supported Molecular Matrix Electrophoresis (SMME)A number of electrophoresis techniques are available

to researchers in the life sciences. These include gel electrophoresis, capillary electrophoresis, or its derivative, chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane electrophoresis is widely used for serum protein fractionation as an initial diagnostic test in hospitals even today. Serum can be separated into five fractions by this method using a small amount of starting material. Alterations of the fraction profiles suggest specific pathological conditions that can be associated with abnormalities of serum proteins. This technique is rapid and simple, with the method being widely used and adapted into an automated system that can analyze patient serum and interpret the results (14). Cellulose acetate membrane electrophoresis is also used for analysis of mucopolysaccharides, and described in Japanese Pharmacopeia as one of the test procedures for dermatan sulfate and hyaluronic acid. Previous studies on mucin analysis using this method prompted us to pursue possibility of rapid and simple characterization of mucins by utilizing the cellulose acetate membrane electrophoresis (15). Under electrophoretic conditions used for sodium hyaluronate, bovine submaxillary mucin (BSM) and PGM were also successfully separated. When the mucin spots were excised and treated via β-elimination to release glycans, massive amounts of hexose oligomers were derived from cellulose acetate membrane (Fig. 1). These significantly affected the glycan analysis of mucins. Thus, despite facilitating rapid separation of mucins by electrophoresis, membrane with cellulose derivatives are not compatible with glycan analysis following β-elimination. If electrophoresis of mucins could be performed using a chemically stable support such as PVDF membrane, such difficulties would be resolved. With this in mind, SMME was developed to perform glycan analysis that is compatible with membrane electrophoresis (16). C-1. Concept

SMME is a membrane electrophoresis in which hydrophilic polymer soaking into porous membrane is used as separation medium (Fig. 2). Generally, PVDF membrane

させた糖鎖の質量分析、という一連の作業によって行う方法

が広く使われるようになっている。しかし、アクリルアミド-

アガロース複合ゲルは市販されておらず自作が必要であること、

ブタ胃ムチンなどこの方法でもゲルに入らない巨大なムチン

があること (11、12)、泳動できてもムチンの多くはスメアなバ

ンドになること、免疫染色や糖鎖解析ではゲルから膜への転

写が必要になることなど、決して簡便な分析法とはいえない

面があり、ムチンに着目したバイオマーカー探索におけるこ

の手法の利用は躊躇せざるをえないのが実情である。

C. 分子マトリクス電気泳動 (SMME)昨今、ライフサイエンスの分野で電気泳動といえば、ゲ

ル電気泳動もしくはキャピラリー電気泳動およびその発展型のチップ電気泳動を思い浮かべることだろう。濾紙電気泳動などの膜電気泳動は古めかしい技術という印象がある。しかし、臨床検査の分野では、セルロースアセテート膜電気泳動が、日常初期診療の基本的検査である血液のタンパク質分画法として現在でも広く利用されている。膜に少量塗布して電気泳動するだけで、血清タンパク質は 5 つの分画に分かれる。分画パターンの変動によって病態が把握される。この方法は簡便・迅速な方法であることから広く普及し、今では分析から結果判定までを全自動で行うシステムがある (14)。この簡便な電気泳動法であるセルロースアセテート膜電気泳動は、ムコ多糖の分析にも利用されており、デルマタン硫酸やヒアルロン酸ナトリウムの試験法の一つとして日本薬局方にも記載されている。ムチンの分析にもセルロースアセテート膜電気泳動が利用された例があり (15)、ムチンの簡便分析法としての可能性が期待された。ヒアルロン酸ナトリウムの分析に用いる条件でムチンを実際に泳動してみると、ウシ顎下腺ムチン (BSM) やブタ胃ムチン (PGM) が分離できた。分離されたムチンの特性解析として糖鎖分析が重要であるが、泳動されたスポットを切り取り β 脱離法によってムチンから糖鎖を遊離させたところ、ムチン糖鎖とともにセルロースアセテート膜から遊離したと思われるヘキソースのオリゴマーが大量に生成した ( 図 1)。したがって分離だけが目的ならセルロースアセテート膜でも良いが、分離の後、糖鎖を分析するためにはセルロース系の膜を用いることはできない。PVDF 膜のような化学的に安定な膜を用いて電気泳動できれば、このような問題は解決する。そこで筆者らが開発した方法が分子マトリクス電気泳動法 (Supported Molecular Matrix Electrophoresis: SMME) である (16)。 C-1. 原理

SMME は多孔性ポリマー膜に含浸させた親水性ポリマー

を分離担体とする膜電気泳動である ( 図 2)。筆者らは通常、多

Page 4: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

140 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

is used as a porous membrane, and polyvinyl alcohol (PVA) as a hydrophilic polymer. Although other porous hydrophobic membranes, including nylon membrane and polytetrafluoroethylene (PTFE) membrane, could potentially be used. PVDF is the most suitable for electrophoretic separation of mucins, considering its mechanical strength and compatibility with the immunostaining methods mentioned later. We use porous membranes with a pore size of 0.45 μm, while it is reported that 1% agarose gel had a pore size of 150 nm (17). Since the membrane pore size in SMME is several folds larger than that of 1% agarose gel, it likely favors the electrophoresis of very large biological molecules, including mucins. In addition to PVA, many other hydrophilic polymers including polyvinylpyrrolidone (PVP) or polyethyleneglycol (PEG) can be used for SMME. An appropriate combination of porous membrane and hydrophilic polymer can be chosen to suit the characteristics of the analyte. The electrophoretic conditions for cellulose acetate membrane electrophoresis can be applied to SMME without significant alterations. For example, 60 mM barbital buffer (pH 8.6) can be used for serum protein fractionation with SMME, similar to the conditions of cellulose acetate membrane electrophoresis. SMME using pyridine-formic acid buffer (pH 4.0) can selectively separate mucins and proteoglycans from non-mucin-like proteins (16, 18). In this condition, negative charges on sialic acids and sulfonic acids attached on mucins are a major driving force in the electrophoresis. In membrane electrophoresis, water loss due to vaporization by Joule heating introduces water flow from the buffer tank, which also assists the migration of mucins. C-2. Staining of Glycoproteins

The staining procedures for the blotted PVDF membrane after gel electrophoresis can be applied to SMME

孔性ポリマー膜として PVDF 膜、親水性ポリマーとしてポリ

ビニルアルコール (PVA) を用いている。多孔性ポリマー膜は、

ナイロン膜やポリテトラフルオロエチレン (PTFE) 膜など他の

疎水性膜を利用することもできるが機械的強度や後に述べる

免疫染色との相性を考慮するとムチンの分離分析には現在の

ところ PVDF 膜が最も適していると思われる。また、多孔性

ポリマーのポアサイズは 0.45 μm のものを使用している。1%

アガロースゲルのポアサイズは 150 nm 程度であると報告され

ているが (17)、この膜はそれに比べて数倍大きく、ムチンなど

の巨大分子の電気泳動に適していると思われる。親水性ポリ

マーについては、ポリビニルピロリドン (PVP)、ポリエチレン

グリコール (PEG) など PVA 以外の親水性ポリマーを利用する

こともできる。分離対象の性質に合わせて適した多孔性ポリ

マー膜と親水性ポリマーの組み合わせを選択すればよい。泳

動条件は、セルロースアセテート膜電気泳動で使われている

条件がそのまま使える。すなわち、血清を泳動する場合はバ

ルビタール緩衝液 (pH 8.6) が利用できる。また、ピリジン-ギ

酸緩衝液 (pH 4.0) を用いると他のタンパク質を泳動させること

なく、選択的にムチンやプロテオグリカンを泳動することが

できる (16、18)。この条件では、ムチンに存在するシアル酸や

硫酸基の負電荷が主な泳動の原動力となる。また、膜電気泳

動の場合はジュール熱により膜表面から水分が蒸発するため、

それを補うために発生する緩衝液漕からの水流も泳動の原動

力となる。

C-2. 分離スポットの染色法

染色については、電気泳動ゲルから PVDF 膜に転写され

Figure 1. A. Kameyama

Fig.1. Glycans obtained from PGM on a cellulose acetate membrane. Comparison of MS spectra is shown. (a) Two spectra are significantly different. The signals in the lower spectrum could not found in the upper spectrum except a few strong signals. (b) Hexose oligomers from cellulose acetate membrane were abundantly found in glycans from on-membrane β-elimination of PGM.

Page 5: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

141 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

membranes without any significant modifications. For example, available staining methods for SMME include Coomassie brilliant blue or Direct blue 71 (19) for serum proteins, Alcian blue for proteoglycans and mucins containing acidic glycans, and periodic acid-Schiff (PAS) stain for glycoproteins (we use Pro-Q Emerald as the Schiff reagent). In addition, immunostaining is also possible, since PVDF membranes are routinely used for Western blotting. Unlike Western blotting, immunostaining of the SMME-separated proteins does not require a transfer step, indicating that it is high-throughput method and is not subject to loss of the proteins that have low-transfer efficiency. In case of proteins that readily adsorb to PVDF membranes, such as serum proteins, the SMME membrane can be stained with antibodies by using procedures similar to those used for Western blotting. In contrast, molecules with high glycan content, such as mucins, are often liberated from the membrane during washing procedures after incubation with antibody solution. Such loss is particularly noticeable when the washing buffer contains detergents such as Tween-20. To resolve this problem, we have developed a pretreatment procedure for SMME membranes after electrophoresis, and have also optimized hydrophilic polymer soaking to PVDF membranes for the immunostaining of mucins (20). C-2-i . Immunostaining of Mucins on the SMME Membrane

Organic solvents including acetone are often used as fixatives for immunostaining of tissues or cells (21). Heat

たタンパク質の染色条件がほぼそのまま踏襲できる。すなわち、血清タンパク質の場合、クマシ―ブリリアントブルー (CBB)やダイレクトブルー 71(DB-71)(19)、プロテオグリカンや酸性ムチンの場合はアルシアンブルー、糖タンパク質を選択的に染色する場合は過ヨウ素酸酸化-シッフ塩基法 (PAS 染色 : 筆者らは Pro-Q Emerald を使用 ) が利用できる。また PVDF 膜はウェスタンブロットに利用される膜であり免疫染色も可能である。SMME では上述の SDS-agPAGE を用いたムチン分析のようにゲルから膜へ転写するプロセスがないので、転写効率の低いタンパク質のロスを心配することもなくスループットも高いというメリットがある。血清タンパク質など PVDF膜に吸着しやすいタンパク質の場合は、SMME による泳動後の膜をウェスタンブロットにおける転写後の膜と同様に処理することで抗体による染色が可能である。これに対し、ムチンなど糖鎖部分の割合が大きい分子は抗体溶液浸漬後の洗浄操作中に膜から遊離してしまうことがある。この現象は、洗浄液に Tween-20 などの界面活性剤が含まれる場合に特に顕著である。そこで筆者らは、この問題を解決するため泳動後の膜の前処理法を開発し、さらに PVDF 膜に含浸させるポリマーの種類についても検討した (20)。

C-2-i. SMME で分離したムチンの免疫染色法

組織切片や細胞の免疫染色では、固定化処理としてアセ

Figure 2. A. Kameyama

Fig.2. A novel strategy for characterization of glycoproteins by using supported molecular matrix electrophoresis (SMME). (a) Conceptual overview of SMME, (b) Schematic diagram for characterization of glycoproteins by using SMME. (From ref. 16. Reproduced with permission from American Chemical Society, copyright 2009)

Page 6: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

142 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

treatment has also been used for fixation of proteins onto membranes and TLC plates (22, 23). Each of these treatments is moderately effective for the fixation of SMME-separated mucins. However, upon further examination, we found the best results were obtained by performing a sequential acetone and heat treatment. Specifically, this procedure involves immersing the electrophoresed membrane in acetone for 30 min, followed by heating to 150 °C for 5 min. In addition, we also optimized the composition of hydrophilic polymers for immunostaining of mucins on the SMME membrane. No signal was observed following immunostaining even after acetone and heat treatment when PVA was used as the hydrophilic polymer in SMME (Fig.3a, left). In case of use of PEG or PVP as hydrophilic polymer, however, mucins were successfully visualized following immunostaining of the SMME membrane after fixation (Fig.3a, middle and right). In this condition, mucins were clearly visualized using antibodies even after extensive washing with buffer containing Tween-20.

On the other hand, PEG and PVP diminished the separation performance of electrophoresis because of spot tailing, compared with PVA. Thus, the challenge was to find an optimal composition of hydrophilic polymers for immunostaining, while at the same time, maintaining the performance of the electrophoretic separation. We therefore examined a “mixed polymer” containing PEG and PVA at various ratios. As the proportion of PVA in the PVA/PEG mixture increased, spot tailing was greatly improved. The mixed polymer (PEG:PVA = 3:2) showed almost the same electrophoresis pattern as that observed

トンなどの有機溶媒が用いられる (21)。また、膜や TLC など

へのタンパク質の固定化法として加熱処理も報告されている

(22、23)。これらの方法は、それぞれ単独で利用した場合、い

ずれもある程度はムチンの固定化に有効だった。種々の条件

検討の結果、筆者らはアセトン処理と加熱処理を組み合わせ

た固定化法において最も良い結果を得た。具体的には、泳動

後の膜をアセトンに 30 分間浸漬後、150℃で 5 分間加熱する

方法である。さらに、SMME に用いる親水性ポリマーをムチ

ンの固定化のために最適化した。親水性ポリマーとして PVA

を用いた場合には、上述の固定化処理を施してもムチンの検

出は改善できなかったが、PEG や PVP を用いた場合には固定

化処理により抗体での染色が可能となった ( 図 3a)。この条件

での固定化後は、Tween-20 を含む緩衝液で繰り返し洗浄して

もムチンを明瞭に染めることができる。

一方で、PEG や PVP を用いた SMME では分離能が低下

する ( スポットのテーリングが生じる )。そのため分離能を維

持したまま同時に免疫染色が可能となる条件が求められた。

筆者らは、混合マトリクスすなわち PEG と PVA を適切な比

率で混合することによる解決を検討した。PVA の比率が高ま

るにつれスポットのテーリングは小さくなり、PEG:PVA = 3:2

Figure 3. A. Kameyama

Fig.3. Optimization of balance between resolving power and fixation efficiency. (a) Effect of matrix molecules on immunostaining with or without fixation. Mucin fractions from human bile were analyzed using PVA (i–iii), PEG (iv and v), and PVP (vi and vii) as a matrix molecule. The mucin was then detected with anti-CA19-9 antibody. Lane (i) is an electrophoretically blotted membrane. Exposure to film was performed for 20 s. The structure of the polymer used is shown below each panel. (b) Optimization of matrix for separation of PGM. PGM was separated using only PEG (i), mixed matrix (PEG:PVA = 4:1) (ii), mixed matrix (PEG:PVA = 3:2) (iii), and only PVA (iv). PGM was visualized by Alcian blue staining. (c) Immunostaining of mucins by using mixed matrix. Mucin fractions from human bile were analyzed using PVA (i) and mixed matrix (PEG:PVA = 3:2 (ii), PEG:PVA = 4:1 (iii)), and then detected with anti-CA19-9 antibody. Exposure to film was performed for 20 s. (From ref. 20. Reproduced with permission from Wiley-VCH GmbH & Co., copyright 2011)

Page 7: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

143 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

with PVA alone (Fig.3b). Although immunostaining of mucins was successfully achieved with this PEG:PVA ratio, the mucin on the membrane was best visualized using a mixed polymer with a PEG/PVA ratio of 4:1 (Fig.3c). In conclusion, immunostaining of SMME-separated mucins can be successfully performed using the fixation procedure and a mixed molecular matrix of PEG and PVA. The precise composition of the mixed polymer should be optimized for each particular analyte to achieve a favorable balance between electrophoretic performance and fixation efficiency. We use a PEG/PVA ratio of 4:1 as the initial setting of the SMME matrix for immunostaining. C-3. Characterization of SMME-Separated Mucin

As mentioned above, we developed the SMME in pursuit of a compatible method involving membrane electrophoresis with glycan analysis of mucins. Since the PVDF membrane is chemically stable, alkaline β-elimination treatment of the SMME membrane does not produce degradation products that interfere with glycan analysis. In this section, we describe examples of glycan analysis of the SMME-separated mucins (16).

We applied SMME to the analysis of a commercially available partially purified PGM. The SMME separated the PGM into 4 distinct spots (Fig. 4a). Although spot 4 was poorly stained with Alcian Blue, Pro-Q Emerald staining revealed that spot 4 is a major glycoprotein of the crude PGM (Fig. 4b). By digestion of the crude PGM with chondroitinase ABC prior to SMME, the faster migrating spots (1 and 2) almost disappeared (Fig. 4c). Furthermore, spot 2 completely disappeared after digestion of the PGM with hyaluronidase from Streptomyces hyalurolyticus (Fig. 4d). These results indicate that the crude PGM contains two mucins (spot 3 and 4), as well as chondroitin sulfate-containing proteoglycan (spot 1) and hyaluronic acid (spot 2). C-3-i. Glycan Analysis of Spots on the SMME Membrane

The Alcian blue-stained spots 3 and 4 of the crude PGM were excised, and the membrane pieces were subjected

で PVA のみを用いた場合とほぼ同等の泳動結果が得られ

た ( 図 3b)。一方、免疫染色では、PEG:PVA = 3:2 でもムチ

ンを染色することができたが、PEG:PVA = 4:1 でより濃い染

色像が得られた ( 図 3c)。実際のムチン分析ではこれらの結果

を踏まえ、分析対象や分析目的に合わせた混合マトリクスの

組成が必要となると思われる。筆者らは初めに試してみる条

件として、PEG:PVA = 4:1 の混合マトリクスを免疫染色用の

SMME 膜に使用している。

C-3. 分離スポットの特性解析

SMME は、電気泳動で分離したムチンスポットの糖鎖分

析を可能とする新たな膜電気泳動法である。化学的に安定な

膜を用いているので、膜ごとアルカリ水溶液による β 脱離の

化学条件にさらしても糖鎖分析を妨害するような分解物は生

じない。この項では、分離したスポットの糖鎖分析の実例を

紹介する (16)。

ブタ胃ムチン (PGM) を SMME で泳動すると 4 個のスポッ

ト (1–4) に分離される ( 図 4a)。アルシアンブルーではスポット

4 は染色されないが、Pro-Q Emerald で糖タンパク質を染色す

るとスポット 4 が濃く染まり ( 図 4b)、これがブタ胃ムチンの

本体であろうことが推測される。コンドロイチナーゼ ABC で

試料を処理すると、スポット 1 と 2 がほぼ消失し ( 図 4c)、ヒ

アルロン酸特異的なヒアルロニダーゼで処理するとスポット 2

が消失する ( 図 4d)。したがって、スポット 1 はコンドロイチ

ン硫酸型プロテオグリカン、スポット 2 はヒアルロン酸、スポッ

ト 3 と 4 がムチンであろうと推定された。

C-3-i. 各スポットの糖鎖分析

スポット 3 および 4 をそれぞれ膜から切り出し、膜ごと

Figure 4. A. Kameyama

Fig. 4. SMME analysis of crude PGM. The crude PGM was electrophoresed by SMME and stained with Alcian Blue (a) and Pro-Q Emerald (b). After chondroitinase ABC digestion (c) and hyaluronidase digestion (d), the PGM sample was electrophoresed by SMME and stained with Alcian Blue. (From ref. 16. Reproduced with permission from American Chemical Society, copyright 2009)

Page 8: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

144 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

to a reductive β-elimination reaction to release glycans. The released glycans were permethylated, and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS). The usual procedures for glycan releasing and permethylation can be successfully applied to this glycan analysis (24, 25). The two spots gave markedly different MS spectra, as shown in Fig. 5. The difference is much clearer when the observed signal intensities in the MS spectra are presented as a histogram (Fig.5b). Neutral glycans were predominantly observed in the major mucin (spot 4), while various sulfated glycans were found in the minor acidic mucin (spot 3). The estimated monosaccharide compositions for each signal are summarized in Table I. The combined glycan profile of spots 3 and 4 was consistent with previously reported data (26, 27), which suggests that these earlier results may be because of mixture of mucins in the crude PGM. Analysis using SMME revealed

還元 β 脱離処理に供してO - 結合型糖鎖を遊離させた。糖鎖は

完全メチル化後、マトリクス支援レーザー脱離イオン化飛行

時間型質量分析計 (MALDI-TOF MS) にて分析した。糖鎖遊離

処理も完全メチル化も常法の操作で (24、25)、糖鎖は問題なく

分析できた。図 5 に示すように両スポットは著しく異なる MS

スペクトルを与えた。この違いは、MS スペクトルの各シグナ

ル強度を糖鎖毎にヒストグラム表示するとより明瞭になる ( 図

5b)。ブタ胃ムチンの本体と思われるスポット 4 は酸性残基を

持たない中性糖鎖が大部分を占めるが、マイナー成分である

スポット 3 からは硫酸基を含む糖鎖が多く検出された。各糖

鎖の単糖組成を表 I に示した。スポット 3 と 4 のデータを合

わせたものは既報の PGM 糖鎖のデータとよく一致しており

(26、27)、既報のデータは PGM 混合物から得られたものと推定

Figure 5. A. Kameyama

Fig. 5. MALDI-TOF MS analysis of O-glycans in mucin-glycoforms separated by SMME. (a) Mass spectra of permethylated glycans derived from spots 3 and 4 in Fig.4a. Capital letters, “N” and “S” indicate neutral glycans and sulfated glycans, respectively. (b) Histograms of relative intensities of the glycan signals observed. The intensities of neutral glycans and sulfated glycans are indicated by black bar and gray bars, respectively (the histograms represents only signal intensities, not quantities). The signal numbers correspond to those described in Table I. (From ref. 16. Reproduced with permission from American Chemical Society, copyright 2009)

Page 9: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

145 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

that the crude PGM contains a minor component with many sulfated glycans. The glycans in this minor mucin fraction are predominantly fucosylated, with sulfation occurring only on the fucosylated oligosaccharides (Table I).

Stained spot 1 in Fig.4a was also excised, and the membrane pieces were subjected to a reductive β-elimination reaction to release glycans. Since spot 1 was determined to

された。今回 SMME を用いることによって硫酸基を多く含む

微量ムチンの混在が明らかとなった。また、このマイナー成

分は主にフコシル化糖鎖からなり、硫酸基はフコシル化糖鎖

にのみ結合していた ( 表 I)。

スポット 1 も同様に膜から切り出し、膜ごと還元 β 脱離処

aThe neutral glycans and the glycans containing a sulfate group were observed as [M + Na]+ and [M – H + 2Na]+, respectively. bMonosaccharide compositions were determined by database searching using GlycoMod (http://www.expasy.ch/tools/glycomod/). *These signals were not with the links to GlycoSuiteDB in the GlycoMod search. This suggested that the monosaccharide compositions have not been reported.Fuc; fucose, Hex; hexose, HexNAc: N-acetylhexosamine.

Table I. O-Linked glycans in PSM glycoforms observed in MALDI-TOF MS.(ref. 16)No. Observed m/z a Calculated m/z Compositionb

1 708.36 708.38 (Fuc)(Hex)(HexNAc)2 779.40 779.41 (Hex)(HexNAc)2

3 953.46 953.50 (Fuc)(Hex)(HexNAc)2

4 983.52 983.52 (Hex)2(HexNAc)2

5 1024.54 1024.54 (Hex)(HexNAc)3

6 1157.58 1157.60 (Fuc)(Hex)2(HexNAc)2

7 1198.58 1198.63 (Fuc)(Hex)(HexNAc)3

8 1228.61 1228.64 (Hex)2(HexNAc)3

9 1269.64 1269.67 (Hex)(HexNAc)4*10 1331.64 1331.69 (Fuc)2(Hex)2(HexNAc)2

11 1402.73 1402.73 (Fuc)(Hex)2(HexNAc)3

12 1473.78 1473.77 (Hex)2(HexNAc)4

13 1576.75 1576.81 (Fuc)2(Hex)2(HexNAc)3

14 1606.78 1606.83 (Fuc)(Hex)3(HexNAc)3

15 1647.88 1647.86 (Fuc)(Hex)2(HexNAc)4

16 1677.93 1677.87 (Hex)3(HexNAc)4

17 1718.90 1718.89 (Hex)2(HexNAc)5

18 1780.99 1780.92 (Fuc)2(Hex)3(HexNAc)3

19 1821.97 1821.95 (Fuc)2(Hex)2(HexNAc)4

20 1851.97 1851.96 (Fuc)(Hex)3(HexNAc)4

21 1892.97 1892.98 (Fuc)(Hex)2(HexNAc)5*22 1923.07 1922.99 (Hex)3(HexNAc)5

23 2026.08 2026.04 (Fuc)2(Hex)3(HexNAc)4

24 2097.12 2097.08 (Fuc)(Hex)3(HexNAc)5

25 2230.18 2230.15 (Fuc)2(Hex)4(HexNAc)4

26 2271.15 2271.17 (Fuc)2(Hex)3(HexNAc)5

27 2301.09 2301.18 (Fuc)(Hex)4(HexNAc)5*28 2342.27 2342.21 (Fuc)(Hex)3(HexNAc)6

29 2404.22 2404.23 (Fuc)3(Hex)4(HexNAc)4

30 2475.28 2475.27 (Fuc)2(Hex)4(HexNAc)5

31 2516.30 2516.30 (Fuc)2(Hex)3(HexNAc)6*32 2546.30 2546.31 (Fuc)(Hex)4(HexNAc)6*33 1041.41 1041.43 (Fuc)(Hex)(HexNAc)2(SO3H)34 1245.75 1245.54 (Fuc)(Hex)2(HexNAc)2(SO3H)35 1286.77 1286.56 (Fuc)(Hex)(HexNAc)3(SO3H)36 1419.91 1419.62 (Fuc)2(Hex)2(HexNAc)2(SO3H)37 1490.93 1490.66 (Fuc)(Hex)2(HexNAc)3(SO3H)38 1665.08 1664.75 (Fuc)2(Hex)2(HexNAc)3(SO3H)39 1869.18 1868.85 (Fuc)2(Hex)3(HexNAc)3(SO3H)*40 1940.21 1939.89 (Fuc)(Hex)3(HexNAc)4(SO3H)*41 2114.34 2113.98 (Fuc)2(Hex)3(HexNAc)4(SO3H)*42 2492.56 2492.17 (Fuc)3(Hex)4(HexNAc)4(SO3H)*

Table I. O -Linked glycans in PSM glycoforms observed in MALDI-TOF MS.(ref. 16)

Page 10: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

146 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

Figure 6. A. Kameyama

Fig. 6. LIF-CE analysis of AMAC-labeled unsaturated disaccharides derived from proteoglycan in the crude PGM sample. Electropherograms of unsaturated disaccharides derived from spot 1 in Fig.4a. (a), commercially available standard of Δdi-6S (b), and Δdi-4S (c) are shown. The disaccharide structures of the peaks were identified as shown. AMAC: 2-aminoacridone. (From ref. 16. Reproduced with permission from American Chemical Society, copyright 2009)

be a chondroitin sulfate-containing proteoglycan, the released glycans were digested with chondroitinase ABC to produce unsaturated disaccharides. The obtained disaccharides were labeled with 2-aminoacridone (AMAC), and analyzed by laser-induced fluorescent capillary electrophoresis (LIF-CE). As shown in Fig.6, the result suggested that glycan of spot 1 consists of two disaccharide units, namely, Δdi-6S (1) and Δdi-4S (2). C-4. Characterization of Mucins Produced by Cell Lines

MUC1 mucin has received attention as a potential target for immunotherapy for various cancers, including those of the breast, pancreas and ovary (28). Here, we introduce an example of an application of SMME to the characterization of MUC1 mucins produced by three cancer cell lines; breast cancer (T47D) and pancreatic cancer (HPAF-II and BxPC3) (20).

Cell pellets were dissolved into a buffer containing 2 M urea, and an aliquot of the solution was subjected to proteolysis by addition of trypsin. After trypsinization, mucins were enriched by filtration through a centrifugal filter device (cut-off, 100 kDa) to remove digested peptides, and then reduced and alkylated as described previously. A portion of

理に供して糖鎖を遊離させた。上述のようにスポット 1 はコ

ンドロイチン硫酸型プロテオグリカンと推定されたので、遊

離させた糖鎖をコンドロイチナーゼ ABC により不飽和二糖へ

と消化した。得られた不飽和二糖を 2-aminoacridone (AMAC)

にて標識し、レーザー誘起蛍光検出型キャピラリー電気泳動

により分析した。図 6 に示すように、スポット 1 の糖鎖は、

Δdi-6S と Δdi-4S の二糖ユニットからなることが判った。

C-4. 株化細胞のムチン分析MUC1 は乳がん、卵巣がん、膵がんを含む様々ながんの

免疫療法における標的分子として注目されている (28)。ここで

は、株化細胞 ( 乳がん由来:T47D、膵がん由来:HPAF-II お

よび BxPC3) により産生される MUC1 に関して SMME を用い

て分析した例を紹介する (20)。

各細胞のペレットを 2M ウレアを含む緩衝液に溶解しト

リプシン消化した後、限外濾過膜 (cut-off : 100 kDa) を用いて

ムチン画分を濃縮した。さらにジチオスレイトール (DTT) お

よびヨード酢酸による還元アルキル化処理を行い、SMME 分

Page 11: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

147 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

the solution (1 μl) was applied onto the SMME membrane and electrophoresed. For this experiment, the composition of PEG/PVA was optimized at a ratio of 1:1. The membrane stained with Alcian blue is shown in Fig.7a. The lane at far left is the PGM reference material. Faster migrating spots (T1, H1 and B1) were assumed to be proteoglycans by comparison with the migrating position of proteoglycans in the PGM sample (Fig. 4a, spot 1). Immunostaining with the monoclonal antibody MY.1E12, which preferentially recognizes both sialyl-T glycan antigen and a peptide portion of MUC1, revealed that T2, H2, and B3 are sialyl-MUC1 (Fig.7b). The MUC1 from HPAF-II (H2) showed faster migration than those (T2 and B3) from the other two cell lines. It has been reported that HPAF-II cells produce MUC4 as the major mucin as well as MUC1 (29). It is possible that spot H3 is MUC4 mucin, although this has not been confirmed. BxPC3 cells express high levels of mRNA encoding MUC2, MUC4 and MUC6 as well as MUC1 (30). Further studies such as immunostaining using antibodies against these mucins are required to identify the unclassified spots (including B2) on the lane for BxPC3.

The five spots (T2, H2, H3, B2 and B3) that were assumed to be mucins by analogy with the migrating position of PGM mucin were subjected to glycan analysis using mass spectrometry. Each spot stained with Alcian blue was excised from the membrane, and subjected to reductive β-elimination. Released O-linked glycans were permethylated and analyzed by MALDI-TOF mass spectrometry. MS spectra are shown in Fig.8, and the monosaccharide composition for each glycan signal is summarized in Table II. The spot T2 corresponding to MUC1 mucin from the breast cancer cell line T47D showed a relatively simple glycan profile, which contains (NeuAc)(Hex)(HexNAc) as a major glycan component. The result is in agreement with previous reports that MUC1 from T47D has the sialyl-T antigen NeuAcα2-3Galβ1-3GalNAc as the major glycan (31–33). The other four spots showed a complicated glycan profile consisting of a variety of glycans. To simplify comparison of the glycan profile of each spot,

析に供した。親水性ポリマーの組成比は PEG/PVA = 1:1 を

用いた。電気泳動後の膜をアルシアンブルーで染色した結果

を図 7a に示す。左端のレーンは対照として泳動した PGM で

ある。PGM の泳動像との比較から、移動度の速いいスポット

(T1、H1、B1) は、プロテオグリカンと推定された。シアリル T

含有 MUC1 を認識する抗体である MY.1E12 で膜を染色する

と、それぞれ T2、H2、B3 が染まった ( 図 7b)。HPAF-II の

MUC1 は他の 2 株の MUC1(T2 と B3) よりも電気泳動におけ

る移動度が速かった。HPAF-II には MUC1 の他に MUC4 が主

たるムチンとして存在することが報告されており (29)、スポッ

ト H3 は MUC4 である可能性があるが未確認である。BxPC3

は MUC1 の他に MUC2、MUC4、MUC6 をコードする mRNA

を高発現しているという報告がある (30)。これらが SMME 膜

で分離したどのスポットであるかを確認することは容易では

なく、別のムチン抗体での染色など更なる検討が必要である。

電気泳動移動度からムチンと推定された 5 個のスポット

(T2、H2、H3、B2、B3) について質量分析計を用いた糖鎖解析を

行った。アルシアンブルーで染色された各スポットを切り出

し、糖鎖をアルジトール誘導体として遊離させた後、完全メ

チル化して MALDI-TOF MS で測定した。得られた MS スペ

クトルを図 8 に示す。また、各糖鎖のシグナルから計算され

る単糖組成を表Ⅱにまとめた。乳がん細胞株 (T47D) 由来の

MUC1( スポット T2) は (NeuAc)(Hex)(HexNAc) という組成の

糖鎖を主成分とする比較的単純な糖鎖プロファイルを示した。

この結果は、T47D 由来の MUC1 の主たる糖鎖がシアリル T

抗原 (NeuAcα2-3Galβ1-3GalNAc) であるという過去の報告と一

致する (31–33)。他の 4 つのスポットは様々な糖鎖を含む複雑

な糖鎖プロファイルを示した。各スポットの糖鎖比較を容易

にするために、MS スペクトルに現れた各糖鎖 (1–18) の相対シ

Figure 7. A. Kameyama

Fig.7. SMME analysis of mucins from cancer cell lines. Mucins were visualized by Alcian blue staining (a) and immunostaining with MY.1E12 (b). Visualized spots are labeled by Arabic numerals with or without a capital letter, in which T, H, and B indicate cell line T47D, HPAF-II, and BxPC3, respectively. (From ref. 20. Reproduced with permission from Wiley-VCH GmbH & Co., copyright 2011)

Page 12: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

148 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

Table II. O-Linked glycans of mucin spots from cancer cell lines observed in MALDI-TOF MS.

aThe glycans were observed as [M + Na]+. bMonosaccharide compositions were determined by database searching using GlycoMod (http://www.expasy.ch/tools/glycomod/). cNeuAc, N-acetylneuraminic acid; Fuc, fucose; Hex, hexose; HexNAc, N-acetylhexosamine.(From ref. 20. Reproduced with permission from Wiley-VCH GmbH & Co., copyright 2011)

relative intensities of glycan signals (1–18) in the MS spectra were represented as histograms (Fig. 9). In the figure, neutral glycans and sialylated glycans are indicated by black and gray bars, respectively. Signal 4, (NeuAc)(Hex)(HexNAc), is the most intense signal in the three spots (T2, H2, and B3)

グナル強度をヒストグラム表示した ( 図 9)。図中、シアロ糖鎖

はグレー、中性糖鎖は黒の棒で示している。MY.1E12 で染色

された 3 個のスポットではシグナル 4 すなわち (NeuAc)(Hex)

(HexNAc) が最も強い強度で測定されているが、他のスポット

Figure 8. A. Kameyama

Fig.8. MALDI-TOF MS spectra of O-linked glycans in SMME-separated mucins from cancer cell lines. Mass spectra were obtained from the permethylated glycans. The symbols indicated on the right hand side of each spectrum correspond to the spots shown in Fig.7a. Major glycan signals are indicated by Arabic numerals. These numbers correspond to those described in Table Ⅱ and Fig. 9. Small letter “i” indicates the signals from [M – 14 + Na]+, which correspond to incompletely permethylated glycans. (From ref. 20. Reproduced with permission from Wiley-VCH GmbH & Co., copyright 2011)

No. Calcd. m/z Compositionb)c)

T2 H2 H3 B2 B31 534.10 – – – – 534.29 (Hex)(HexNAc)2 708.09 – – – – 708.38 (Fuc)(Hex)(HexNAc)3 779.12 779.33 779.35 779.47 779.46 779.42 (Hex)(HexNAc)2

4 895.14 895.38 895.37 895.55 895.49 895.46 (NeuAc)(Hex)(HexNAc)5 – 983.40 983.41 – – 983.52 (Hex)2(HexNAc)2

6 – 1024.50 1024.45 1024.61 – 1024.54 (Hex)(HexNAc)3

7 – 1140.40 – – – 1140.59 (NeuAc)(Hex)(HexNAc)2

8 – – 1157.46 1157.66 – 1157.60 (Fuc)(Hex)2(HexNAc)2

9 – – 1228.51 1228.64 – 1228.64 (Hex)2(HexNAc)3

10 1256.15 1256.48 1256.56 1256.70 1256.62 1256.64 (NeuAc)2(Hex)(HexNAc)11 – – 1331.51 1331.84 – 1331.69 (Fuc)2(Hex)2(HexNAc)2

12 1344.16 1344.52 1344.53 – 1344.71 1344.69 (NeuAc)(Hex)2(HexNAc)2

13 1402.21 1402.51 1402.57 1402.79 1402.81 1402.73 (Fuc)(Hex)2(HexNAc)3

14 1473.18 1473.57 1473.61 1473.80 1473.83 1473.77 (Hex)2(HexNAc)4

15 – 1647.62 1647.65 1647.92 – 1647.86 (Fuc)(Hex)2(HexNAc)4

16 – 1705.65 1705.65 – 1705.90 1705.86 (NeuAc)2(Hex)2(HexNAc)2

17 – 1793.50 – – – 1793.91 (NeuAc)(Hex)3(HexNAc)3

18 – 2242.64 – – – 2243.14 (NeuAc)(Hex)4(HexNAc)4

Obsd. m /z a)

Page 13: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

149 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

Figure 9. A. Kameyama

Fig.9. Comparison of glycan profiles in SMME-separated mucins from cancer cell lines. Glycan profiles are represented as histograms, which summarize the relative intensities of the glycan signals obtained from MALDI-TOF MS. Sialoglycans and neutral glycans are presented separately, and are indicated by red and black bars, respectively. The signal numbers correspond to those described in Table II. (From ref. 20. Reproduced with permission from Wiley-VCH GmbH & Co., copyright 2011)

stained with MY.1E12, but is less abundant in the other spots (H3 and B2). Signal 4 may be sialyl-T antigen, which is an important component of the epitope recognized by MY.1E12 (34). Among the MUC1 spots, H2 and B3 resemble each other in the glycan profiles, each of which consists of a variety of sialoglycans containing higher-molecular weight glycans. In addition, two spots (H3 and B2) that were not stained with MY.1E12 consist of a variety of neutral glycans, including a major constituent, signal 3: (Hex)(HexNAc)2, and their glycan profiles are similar.

Mobility of mucins on membrane electrophoresis mainly depends on the charge state of the molecule. Thus, variation in the acidic glycan content is a critically important parameter that influences migration. For example, in this study, we show that the MUC1 mucins from the cell lines have a different mobility on SMME, despite their glycan profiles were similar. MALDI-TOF MS cannot detect multi-sulfated glycans, which can also affect mobility of mucins. Although we cannot exclude the possibility that MUC1 with higher mobility contains such glycans, it is unlikely since no monosulfated glycans were detected from these mucins. Thus, the migration position of mucins in SMME offers a novel parameter for categorizing these molecules, although, to date, we have not identified the modifications underlying the change in mobility.

D. Future ProspectsSMME, a novel electrophoresis technique that uses

PVDF membranes, provides an alternative approach for the analysis of mucins. However, this method is still in the early stage of development, and some theoretical aspects remain to be experimentally proven. With regard to practical aspects, basic procedures, including detection and quantification of spots and preparation of SMME membrane will be improved.

(H3 と B2) では強度が高くない。シアリル T 抗原は MY.1E12

のエピトープの一部として重要であることが報告されており

(34)、シグナル 4 がシアリル T 抗原であると考えると上の結

果は合理的に理解できる。また、MUC1 のスポットの内、H2

と B3 は互いに類似した糖鎖プロファイルを示し、分子量の

高い多種類のシアロ糖鎖を含んでいることが示された。一方、

MY.1E12 で染色されなかった 2 個のスポット (H3 と B2) もシ

グナル 3 : (Hex)(HexNAc)2 を主とする多種類の中性糖鎖を含

み、互いに類似する糖鎖プロファイルを示した。

膜電気泳動における移動度は主に分子の電荷に依存する

ため、ムチンに含まれる酸性糖鎖の量の多少が移動度に影響

すると推定される。ここに紹介したムチンの例では、同じ

MUC1 であっても、かつ糖鎖プロファイルが類似していても

移動度が異なる結果となった。MALDI-TOF MS は多硫酸化

された糖鎖を検出できない。したがって、多硫酸化された糖

鎖の含量によって移動度に違いが生じた可能性も否定はでき

ないが、一硫酸化糖鎖は今回の実験で検出されておらず、そ

の可能性は低いと考えられる。したがって、SMME における

ムチンの移動度は、これらの分子をカテゴライズする新たな

パラメーターとして利用できるかもしれない。

D. 展  望

PVDF 膜を用いる電気泳動法 SMME は、ムチンの分析法に新たな選択肢を与えた。しかし誕生して間もない方法であり、理論的な側面はまだこれからの課題である。実用の面では、SMME 膜の作成法、スポットの染色法・検出法や定量法など基礎的な部分にも改良の余地がある。例えば、PVDF 膜のポ

Page 14: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

150 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

References1. Corfield, A. P., Myerscough, N., Longman, R., Sylvester, P., Arul, S., and Pignatelli, M. (2000) Gut 47, 589–594.2. Voynow, J. A. (2002) Paediatr. Respir. Rev. 3, 98–103.3. Hollingsworth, M. A., and Swanson, B. J. (2004) Nat. Rev. Cancer 4, 45–60.4. Andrianifahanana, M., Moniaux, N., and Batra, S. K. (2006) Biochim. Biophys. Acta 1765, 189–222.5. Brockhausen, I. (2006) EMBO Rep. 7, 599–604.6. Akagi, J., Takai, E., Tamori, Y., Nakagawa, K., and Ogawa, M. (2001) Int. J. Oncol. 18, 1085–1091.7. Feizi, T., Gooi, H. C., Childs, R. A., Picard, J. K., Uemura, K., Loomes, L. M., Thorpe, S. J., and Hounsell, E. F. (1984) Biochem. Soc.

Trans. 12, 591–596.8. Uriel, J. (1966) Bull. Soc. Chim. Biol. 48, 969–982.9. Dingman, C. W., and Peacock, A. C. (1968) Biochemistry 7, 659–668.10. McDevitt, C. A., and Muir, H. (1971) Anal. Biochem. 44, 612–622.11. Holden, K. G., Yim, N. C. F., Griggs, L. J., and Weisbach, J. A. (1971) Biochemistry 10, 3105–3109.12. Holden, K. G., Griggs, L. J., Yim, N. C. F., and Weisbach, J. A. (1971) Biochemistry 10, 3110–3113.13. Schulz, B. L., Packer, N. H., and Karlsson, N. G. (2002) Anal. Chem. 74, 6088–6097.14. Sakurabayashi, I., Daimon, M., Hashimoto, Y., Ohta, H., Kawai, T., Wada, M., and Senoh, H. (1991) Seibutsu-buturi-kagaku 35, 307–311.

(Japanese)15. Bhushana, R. K. S., Van Roost, E., Masson, P. L., Heremans, J. F., and Andre, F. (1973) Biochim. Biophys. Acta 317, 286–302.

For example, optimization of PVDF membrane pore size and properties of the hydrophilic polymer, including concentration, average molecular weight, and chemical structure, may improve the separation performance of SMME. Currently, Alcian blue staining is used for visualization of mucins, but this dye does not stain mucins with low acidic glycan content. Therefore, we formulated two SMME membranes: one for Alcian blue staining, and another for PAS staining in order to detect mucins containing no acidic glycans. Unfortunately, Alcian blue-stained spots must be used for glycan analysis of mucin, since PAS staining triggers glycan decomposition. Resolution of such detection inconveniences will be resolved in future efforts. Mucins have both micro-heterogeneity such as glycan diversity, and macro structural diversity, including multimer formation, complex formation with other molecules (35–37), and splicing variants (38, 39), containing a different number of tandem repeats. These characteristics can lead to difficulties in the work of analytical chemists. Thus, the application of SMME as a mucin analysis method needs to be developed in conjunction with improved mucin pretreatment and analytical tools.

AcknowledgementsWe wish to thank Professors S. Yonezawa (Kagoshima

University Graduate School of Medical and Dental Sciences), T. Saito and M. Gotoh (Fukushima Medical University), and T. Irimura (University of Tokyo) for kindly providing the cell line pellets (T47D, HPAF-II, BxPC3), the human bile, and the monoclonal antibody MY.1E12, respectively. We also thank Professor H. Narimatsu (AIST) for great teaching and cooperation. This work was performed as a part of the R&D project of the Industrial Science and Technology Frontier Program supported by the New Energy and Industrial Technology Development Organization (NEDO).

アサイズや親水性ポリマーの種類、濃度、分子量などを検討することにより分離特性を改良できる可能性があると思われる。ムチンのスポット検出は現時点ではアルシアンブルーで行っているが、この方法の場合、酸性糖鎖の含量が少ないムチンは染色されない。したがって膜を 2 枚用意し、一枚はアルシアンブルー、もう一枚は PAS 染色によって糖タンパク質を染色するという方法を採用している。しかし、PAS 染色では糖鎖が分解されてしまうため、糖鎖の分析にはアルシアンブルー染色した膜を用いなければならない。このような検出法の不便さの解消も今後の課題である。一方で、ムチンという分子は糖鎖の多様性のようなミクロな多様性のほかに、多量体の形成、他の分子との複合体形成 (35–37)、タンデム繰り返し構造のスプライシング多様性の存在など (38、39)、マクロな構造的多様性があり、分析化学者を悩ませる。このような視点では、SMME での分析のための前処理の工夫や、SMMEで分離した後のスポットをどう分析するか、つまり SMME 分析の前後の技術進歩と絡み合わせながら、ムチン分析法としての SMME を発展させていきたいと考えている。

謝  辞本研究の遂行にあたり鹿児島大学大学院医歯学研究科の

米澤傑教授には培養細胞 (T47D、HPAF-II、BxPC3)、福島県立医科大学の後藤満一教授、斉藤拓郎教授には膵液および胆汁試料、東京大学薬学部入村達郎教授にはモノクローナル抗体(MY.1E12) に関して、それぞれご協力をいただきました。また、産業技術総合研究所糖鎖医工学研究センターの成松久先生に多大なご指導をいただきました。ここに深く感謝いたします。本研究は新エネルギー・産業技術総合開発機構 (NEDO) プロジェクト「糖鎖機能活用技術開発」の一部として実施したものです。

Page 15: Recent Advances in Electrophoresis of Mucins...chip electrophoresis. Membrane electrophoresis such as paper electrophoresis is now largely obsolete. However, cellulose acetate membrane

151 ©2012 FCCA (Forum: Carbohydrates Coming of Age)

16. Matsuno, Y-K., Saito, T., Gotoh, M., Narimatsu, H., and Kameyama, A. (2009) Anal. Chem. 81, 3816–3823.17. Serwer, P. (1980) Biochemistry 19, 3001–3004.18. Stanley, R. A., Lee, S. P., and Roberton, A. M. (1983) Biochim. Biophys. Acta 760, 262–269.19. Hong, H. Y., Yoo, G. S., and Choi, J. K. (2000) Electrophoresis 21, 841–854.20. Matsuno, Y-K., Dong, W., Yokoyama, S., Yonezawa, S., Saito, T., Gotoh, M., Narimatsu, H., and Kameyama, A. (2011) Electrophoresis

32, 1829–1836.21. Jamur, M. C., and Oliver, C. (2010) Methods Mol. Biol. 588, 55–61.22. Li, K. W., Geraerts, W. P., van Elk, R., and Joosse, J. (1988) Anal. Biochem. 174, 97–100.23. Merril, C. R., and Pratt, M. E. (1986) Anal. Biochem. 156, 96–110.24. Ciucanu I, and Costello CE. (2003) J. Am. Chem. Soc. 125, 16213–16219.25. Zhang, J., Lindsay, L. L., Hedrick, J. L., and Lebrilla, C. B. (2004) Anal. Chem. 76, 5990–6001.26. Yamada, K., Hyodo, S., Matsuno, Y. K., Kinoshita, M., Maruyama, S. Z., Osaka, Y. S., Casal, E., Lee, Y. C., and Kakehi, K. (2007) Anal.

Biochem. 371, 52–61.27. Thomsson, K. A., Karlsson, H., and Hansson, G. C. (2000) Anal. Chem. 72, 4543–4549.28. Taylor-Papadimitriou, J., Burchell, J., Miles, D. W., and Dalziel, M. (1999) Biochim. Biophys. Acta 1455, 301–313.29. Khorrami, A. M., Choudhury, A., Andrianifahanana, M., Varshney, G. C., Bhattacharyya, S. N., Hollingsworth, M. A., Kaufman, B., and

Batra, S. K. (2002) J. Biochem. 131, 21–29.30. Andrianifahanana, M., Moniaux, N., Schmied, B. M., Ringel, J., Friess, H., Hollingsworth, M. A., Büchler, M. W., Aubert, J. P., and Batra, S.

K. (2001) Clin. Cancer Res. 7, 4033–4040.31. Lloyd, K. O., Burchell, J., Kudryashov, V., Yin, B. W., and Taylor-Papadimitriou, J. (1996) J. Biol. Chem. 271, 33325–33334.32. Müller, S., and Hanisch, F. G. (2002) J. Biol. Chem. 277, 26103–26112.33. Storr, S. J., Royle, L., Chapman, C. J., Hamid, U. M., Robertson, J. F., Murray, A., Dwek, R. A., and Rudd, P. M. (2008) Glycobiology 18,

456–462.34. Takeuchi, H., Kato, K., Denda-Nagai, K., Hanisch, F. G., Clausen, H., and Irimura, T. (2002) J. Immunol. Methods 270, 199–209.35. Byrd, J. C., and Bresalier, R. S. (2004) Cancer Metastasis Rev. 23, 77–99. 36. Ambort, D., van der Post, S., Johansson, M. E., Mackenzie, J., Thomsson, E., Krengel, U., and Hansson, G. C. (2011) Biochem. J. 436,

61–70.37. Johansson, M. E. V., Thomsson, K. A., and Hansson, G. C. (2009) J. Proteome Res. 8, 3549–3557.38. Obermair, A., Schmid, B. C., Packer, L. M., Leodolter, S., Birner, P., Ward, B. G., Crandon, A. J., McGuckin, M. A., and Zeillinger, R. (2002)

Int. J. Cancer 100, 166–171.39. Williams, S. J., Munster, D. J., Quin, R. J., Gotley, D. C., and MacGuckin, M. A. (1999) Biochem. Biophys. Res. Commun. 261, 83–89.

Akihiko Kameyama is a leader of Advanced Glycoscience Research Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. His early work began with the organic syntheses of gangliosides, and he received a Ph.D. in applied bioorganic chemistry from the Gifu University, Gifu, Japan, in 1994, supervised by Professors Akira Hasegawa and Makoto Kiso. After industrial experience in the research and development of carbohydrate-based pharmaceuticals, he worked to develop a screening system for complex mixtures of compounds of unknown concentrations by using ESI-mass spectrometry at Professor Ole Hindsgaul’s Lab at the University of Alberta, Canada. Since November 2001, he has studied new methodologies for glycoscience, focusing on high-throughput analysis of glycan

structures on glycoproteins at AIST. In his spare time, he enjoys mineral collecting and spending time with his family.

Yu-ki Matsuno received his Ph.D. degree in 2007 from the Graduate School of Pharmaceutical Sciences, Kinki University, under the supervision of Professor Kazuaki Kakehi. He worked at the Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), as a postdoctoral fellow (2007–2010) under the direction of Drs. Akihiko Kameyama and Hisashi Narimatsu. Since April 2011, he has worked as a researcher in Dr. Akihiko Kameyama’s research group at the same institute (2011–2012: RCMG, 2012–present: Bioproduction Research Institute). His current study is the development of methodologies for use in the field of “analytical glycoscience.”

Profile of the Authors