recent advances in thermoplastic puncture-healing polymers · 2013-04-10 · recent advances in...

19
Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C. Working Kristopher E. Wise Janice Y. Smith C t l C T i Crystal C. T opping Sean M. Britton Paul R. Bagby Emilie J Siochi Emilie J. Siochi NASA-Langley Research Center Advanced Materials and Processing Branch Hampton, VA 23681 AIAA Infotech@Aerospace 2010 in Buckhead, GA April 20, 2010 – April 22, 2010 https://ntrs.nasa.gov/search.jsp?R=20110012382 2020-03-14T21:57:01+00:00Z

Upload: others

Post on 13-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Recent Advances in Thermoplastic Puncture-Healing Polymers

Keith L. GordonPhilip B. Bogert

Dennis C. WorkingKristopher E. Wise

Janice Y. SmithC t l C T iCrystal C. Topping

Sean M. BrittonPaul R. BagbyEmilie J SiochiEmilie J. Siochi

NASA-Langley Research CenterAdvanced Materials and Processing Branch

Hampton, VA 23681

AIAA Infotech@Aerospace 2010 in Buckhead, GA

April 20, 2010 – April 22, 2010

https://ntrs.nasa.gov/search.jsp?R=20110012382 2020-03-14T21:57:01+00:00Z

Page 2: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

BackgroundSelf‐Healing Polymeric Materials

Autonomic Self healing of Polymeric CompositesUniversity of Illinois

Advantages• Fast polymerization of DCPD• Inexpensive DCPDp• Recovery of 60-90% of initial fracture loadDisadvantages• High cost of catalystHigh cost of catalyst• Amount of catalyst• Stability of catalyst?• Healing of crack along previous crack?g g p• Capsules may have detrimental effects on composite performance.

S.R. White, N.R. Sottos, J. Moore, P. Geubelle, M. Kessler, E. Brown, S. Suresh, S. Viswanathan, Nature, 409, 2001, pp. 794-797.

Page 3: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

BackgroundSelf‐Healing Polymeric Materials

Thermally Remendable Polymers (UCLA)O

N

O

+ NN

O

O

O

O OC Thermally Remendable Polymers, (UCLA)

Advantages

N

O3

NO

4

Advantages• Easy and fast polymer synthesis • Transparent material• Retro-Diels-Alder reaction allows for remending of sample

Disadvantages• Crack initiation led to fracture of sample---could not stop crack propagation

S l h d t b h ld i i ti t t t t hi h t t f l h f • Samples had to be held in intimate contact at high temperature for several hours for sample to remend• A maximum of 50% of initial fracture load could be recovered

S b t k t l i i l k l ith dditi l ki dj t • Subsequent cracks propagate along original crack plane, with additional cracking adjacent to this crack

X. Chen, et al., Science, 295, 1698 (2002).

Page 4: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

BackgroundSelf‐Healing Polymeric Materials

Brittle glass fiber reinforced plastics containing hollow fibers filled with epoxy hardener and uncured resin in alternate layers, with fluorescent dye

University of Bristol

(a) Hollow glass fibres, (b) Hollow glass fibres embedded in carbon fiber reinforced composite(b) laminate, (c) Damage visual enhancement in composite laminate by the bleeding action(c) of a fluorescent dye from hollow glass fibres(c) of a fluorescent dye from hollow glass fibres

I. Bond and co-workers, Composites A, 32, (2001), 1767-1776.Hucker MJ, Bond I, Bleay S, Haq S., Composites A, 34(11), (2003), 1045-1052

Page 5: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Puncture Healing Materials

22ndnd ICSHM 2009ICSHM 2009

Page 6: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Motivation

• Develop self-healing polymeric materials to enable damage tolerant systems.

-Tailor puncture healing for use Tailor puncture healing for use temperatures and applications.

• Benefit in environments and conditions where • Benefit in environments and conditions where access for manual repair is limited or impossible, or where damage may not be detected.

22ndnd ICSHM 2009ICSHM 2009

Page 7: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Approach

Survey commercially available – Survey commercially available materials capable of puncture self healing.

– Determine puncture healing mechanism.

– Understanding guides design of range of new puncture self healing range of new puncture self-healing materials.

Ballistics testing assembly

22ndnd ICSHM 2009ICSHM 2009

Page 8: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Methods

– Thermal and mechanical analysis of polymers Mid velocity projectile tests on various – Mid-velocity projectile tests on various commercially available polymers at various temperatures

– Measured initial and final bullet velocities ith h hwith chronographs

– Measured site of impact temperatures with thermal imaging cameras

– Dynamic Mechanical Analysis Dynamic Mechanical Analysis Time Temperature Superposition (TTS) master curve.

– High speed video

Ballistics testing assembly

22ndnd ICSHM 2009ICSHM 2009

Page 9: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Puncture Self-Healing Concept Background

• Puncture healing in these materials is dependent on how the combination of the polymer’s viscoelastic properties responds to the energy input from the puncture event

hi h lt i i f t t i th i i it f which results in an increase of temperature in the vicinity of the impact

• Self-healing behavior occurs upon projectile puncture • Self-healing behavior occurs upon projectile puncture whereby energy is transferred to the material during impact both elastically and inelastically thus establishing two requirements for puncture healing to occur:

(1) The need for the puncture event to produce a local melt state in the polymer material and

(2) The molten material has to have sufficient melt elasticity to snap back and close the hole

Thermal image of self healing panel immediately after projectile penetration

elasticity to snap back and close the hole

• Fall, R., Ward, T.C., Puncture Reversal of Ethylene Ionomers-Mechanistic Studies, Thesis, VA. Tech, 2001.

22ndnd ICSHM 2009ICSHM 2009

• Kalista, S.J., Ward, T.C., Self-healing of Thermoplastic PEMAA copolymers Following Projectile Puncture, Thesis, VA Tech, 2003.

Collaboration with Emilie Siochi with NASA-Langley Research Center

Page 10: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Thermal and Mechanical Property Characterization Results

Polymer Tg (°C)

Tm(°C)

Elongation (%)

Tensile Strength (MPa)

Tensile Modulus

(MPa)Surlyn -100 54,95 309 27.2 308.5

Affinity EG 8200 -68 46,66 947 9.3 5.9PB-g-PMA-co-PAN 85 - 7.5 37.3 2472.5PB g PMA co PAN 85

Lexan 150 - 2.0 59.0 2900PBT 70 210 250 50.0 2000

PBT-co-PAGT 66 180 500 6.9 188

22ndnd ICSHM 2009ICSHM 2009

Page 11: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Ballistic Testing Results

Polymer TestTemp

Site of Impact Temp

Tg(°C)

Tm(°C)

Hole Diameter

Self healingTemp

(°C)p p(Tf) (oC)

( C) ( C) Diameter(mm)

healing(Y or N)

Surlyn 25 127 -100 54,95 -- Y

Affinity EG 8200 25 77 -68 46,66 -- Y

PB-g-PMA-co-PAN 2550

133127

85 - .5 --

NY

Lexan 25100

-- 150 - --4.0

NN

PBT 25100

-- 70 210 --3.0

NN

PBT-co-PAGT 28100

-- 66 180 --1.0

NN

22ndnd ICSHM 2009ICSHM 2009

Page 12: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Ballistic Testing Results

(PB g PMA co PAN)

FrontFront

(PB-g-PMA-co-PAN)

T (2 ºC) T ( 0ºC)Test temperature: (25ºC) Test temperature: (50ºC)

BackBack

22ndnd ICSHM 2009ICSHM 2009

Page 13: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Time Temperature Superposition Results

Master Curve - PB-g-PMA-co-PAN

1.000E10

68o C 89oC

1.000E9

25oC 44oC 68o C 89oC

1.000E8

E' (P

a

1.000E7

a)

1.000E-28 1.000E-24 1.000E-20 1.000E-16 1.000E-12 1.000E-9 1.000E-6 1.000E-3 1.000 100.0 10000 1.000E7 1.000E10 1.000E15frequency (Hz)

1.000E6

22ndnd ICSHM 2009ICSHM 2009

frequency (Hz)

Page 14: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Time Temperature Superposition Results

Master Curve - Surlyn1.000E10

70oC50oC29 C

1.000E9

70oC 90oC50oC29oC

1.000E8

E' (P

1.000E7

Pa)

22ndnd ICSHM 2009ICSHM 2009

1.000E-10 1.000E-8 1.000E-6 1.000E-4 0.01000 1.000 100.0 1000 1.000E5 1.000E7 1.000E9 1.000E11 1.000E13 1.000E15frequency (Hz)

1.000E6

Page 15: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Puncture Self-Healing Mechanism

22ndnd ICSHM 2009ICSHM 2009

Bullet penetration schematic diagram of puncture healing mechanism

Page 16: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

High Speed Video

22ndnd ICSHM 2009ICSHM 2009

Surlyn

Page 17: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

High Speed Video

22ndnd ICSHM 2009ICSHM 2009

PB-g-PMA-co-PAN

Page 18: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Conclusions and Future Work

• Several commercially available polymers possessing unique puncture self-healing functionality at low to mid range temperatures have been identified.

• Puncture self-healing improved with increasing temperature for the commercially available polymer, temperature for the commercially available polymer, PB-g-PMA-co-PAN.

• Puncture self-healing was more effective when site of impact temperatures were above glass transition of impact temperatures were above glass transition temperatures and melting temperatures of respective polymers.

• High speed video confirmed puncture healing mechanism in Surlyn and PB-g-PMA-co-PAN.

• Incorporate computational methods in the design of p p gnew compositions.

22ndnd ICSHM 2009ICSHM 2009

Page 19: Recent Advances in Thermoplastic Puncture-Healing Polymers · 2013-04-10 · Recent Advances in Thermoplastic Puncture-Healing Polymers Keith L. Gordon Philip B. Bogert Dennis C

Cross Cutting Applications

Fuel Tanks

Space StructuresSpace Structurespp

22ndnd ICSHM 2009ICSHM 2009