redes satelitales

28
REDES SATELITALES 1. ANTECEDENTES A partir del lanzamiento del primer satélite ruso SPUTNIK en 1957, los mercados corporativos han visto a la comunicación vía satelital como una gran oportunidad de mejorar sus oportunidades en comunicaciones. El creciente avance de la ciencia y tecnología en las ultimas décadas ha impulsado el desarrollo de nuevas y modernas tecnologías satelitales, dejando atrás la idea de que un satélite se utiliza únicamente para la transmisión de señales de T.V.; hoy en día se realizan con gran éxito transmisiones de voz, datos, videoconferencia e Internet de alta velocidad. Por todo ello es menester profundizar el concepto de las redes satelitales y la importancia de las mismas en las comunicaciones, labor que presentaremos en el presente documento. 2. OBJETIVOS Realizar una investigación referente a las Redes Satelitales. 3. OBJETIVOS ESPECIFICOS Definir red satelital. Funcionamiento de una red satelital Servicios y aplicaciones de la misma. 4. FUNDAMENTO TEORICO REDES SATELITALES ¿QUE ES UN SATELITE? Un satélite puede definirse como un repetidor radioeléctrico ubicado en el espacio, que recibe señales generadas en la tierra, las amplifica y las vuelve a enviar a la tierra, ya sea al mismo punto donde se origino la señal u otro punto distinto. RED SATELITAL Una Red Satelital es el conjunto de antenas, equipos electrónicos y satélites que se interconectan y comunican entre sí para compartir 1

Upload: bones-llokalla

Post on 19-Nov-2014

472 views

Category:

Technology


2 download

DESCRIPTION

Redes Satelitales

TRANSCRIPT

Page 1: Redes satelitales

REDES SATELITALES

1. ANTECEDENTES

A partir del lanzamiento del primer satélite ruso SPUTNIK en 1957, los mercados corporativos han visto a la comunicación vía satelital como una gran oportunidad de mejorar sus oportunidades en comunicaciones. El creciente avance de la ciencia y tecnología en las ultimas décadas ha impulsado el desarrollo de nuevas y modernas tecnologías satelitales, dejando atrás la idea de que un satélite se utiliza únicamente para la transmisión de señales de T.V.; hoy en día se realizan con gran éxito transmisiones de voz, datos, videoconferencia e Internet de alta velocidad.

Por todo ello es menester profundizar el concepto de las redes satelitales y la importancia de las mismas en las comunicaciones, labor que presentaremos en el presente documento.

2. OBJETIVOS

Realizar una investigación referente a las Redes Satelitales.

3. OBJETIVOS ESPECIFICOS

Definir red satelital. Funcionamiento de una red satelital Servicios y aplicaciones de la misma.

4. FUNDAMENTO TEORICO

REDES SATELITALES

¿QUE ES UN SATELITE?

Un satélite puede definirse como un repetidor radioeléctrico ubicado en el espacio, que recibe señales generadas en la tierra, las amplifica y las vuelve a enviar a la tierra, ya sea al mismo punto donde se origino la señal u otro punto distinto.

RED SATELITAL

Una Red Satelital es el conjunto de antenas, equipos electrónicos y satélites que se interconectan y comunican entre sí para compartir información entre sitios distantes y a los cuales no se tiene acceso mediante la vía terrestre.Una red satelital realiza la transmisión de información utilizando radio frecuencias que se amplifican y envían a un determinado satélite el cuál las recibe, procesa, amplifica y retransmite hacia otras antenas terrestres, o bien de varias antenas hacia una antena central.

Un Enlace Satelital es un canal por el cual serán enviadas y recibidas las señales transmitidas de la estación terrestre al satélite y de este a la estación terrestre.

1

Page 2: Redes satelitales

Red Satelital

CARACTERISTICAS DE LAS REDES SATELITALES

Las transmisiones son realizadas a altas velocidades, en el rango de frecuencias de los Giga Hertz.

Son muy costosas, por lo que su uso se ve limitado a grandes empresas y países desarrollados.

Trabajan a largas distancias.

ELEMENTOS DE LAS REDES SATELITALES

Transponders

Es un dispositivo que realiza la función de recepción y transmisión. Las señales recibidas son amplificadas antes de ser retransmitidas a la tierra. Para evitar interferencias del enlace ascendente y descendente se utiliza distintas frecuencias.

Transponder

2

Page 3: Redes satelitales

Estaciones terrenas

Las estaciones terrenas controlan la recepción con el satélite y desde el satélite, regula la interconexión entre terminales, administra los canales de salida, codifica los datos y controla la velocidad de transferencia.

Consta de 3 componentes:

Estación emisora: Esta compuesta por el transmisor y la antena de emisión. Antena: Debe captar la radiación del satélite y concentrarla en un foco donde está

ubicado el alimentador. Una antena de calidad debe ignorar las interferencias y los ruidos en la mayor medida posible.

Estación receptora: Recibe toda la información generada en la estación transmisora y retransmitida por el satélite.

Estos satélites están equipados con antenas receptoras y con antenas transmisoras. Por medio de ajustes en los patrones de radiación de las antenas pueden generarse cubrimientos globales, cubrimiento a solo un país (satélites domésticos), o conmutar entre una gran variedad de direcciones.

La potencia emitida es alta para que la señal del satélite sea buena. Esta señal debe ser captada por la antena receptora. Para cubrir el trayecto ascendente envía la información al satélite con la modulación y portadora adecuada.

Como medio de transmisión físico se utilizan medios no guiados, principalmente el aire. Se utilizan señales de microondas para la transmisión por satélite, estas son unidireccionales, sensibles a la atenuación producida por la lluvia, pueden ser de baja o de alta frecuencia y se ubican en el orden de los 100 MHz hasta los 10 GHz.

Estación Terrena - Vista exterior e interior

3

Page 4: Redes satelitales

CLASIFICACION DE LAS TRANSMISIONES SATELITALES

Las transmisiones de satélite se clasifican como bus o carga útil. La de bus incluye mecanismos de control que apoyan la operación de carga útil. La de carga útil es la información del usuario que será transportada a través del sistema.

En el caso de radiodifusión directa de televisión vía satélite el servicio que se da es de tipo unidireccional por lo que normalmente se requiere una estación transmisora única, que emite los programas hacia el satélite, y varias estaciones terrenas de recepción solamente, que toman las señales provenientes del satélite. Existen otros tipos de servicios que son bidireccionales donde las estaciones terrenas son de transmisión y de recepción.

Uno de los requisitos más importantes del sistema es conseguir que las estaciones sean lo más económicas posibles para que puedan ser accesibles a un gran numero de usuarios, lo que se consigue utilizando antenas de diámetro chico y transmisores de baja potencia. Sin embargo hay que destacar que es la economía de escala (en aquellas aplicaciones que lo permiten) el factor determinante para la reducción de los costos.

MODELOS DE ENLACE DEL SISTEMA SATELITAL

Esencialmente, un sistema satelital consiste de tres secciones básicas: una subida, un transponder satelital y una bajada.

Modelo de subida

El principal componente dentro de la sección de subida, de un sistema satelital, es el transmisor de la estación terrena. Un típico transmisor de la estación terrena consiste de un modulador de IF, un convertidor de microondas de IF a RF, un amplificador de alta potencia (HPA) y algún medio para limitar la banda del espectro de salida (un filtro pasa-banda de salida).

El modulador de IF convierte las señales de banda base de entrada a una frecuencia intermedia modulada e FM, en PSK o en QAM. El convertidor (mezclador y filtro pasa-banda) convierte la IF a una frecuencia de portadora de RF apropiada. El HPA

4

Page 5: Redes satelitales

proporciona una sensibilidad de entrada adecuada y potencia de salida para propagar la señal al transponder del satélite. Los HPA comúnmente usados son klystons y tubos de onda progresiva.

Modelo de subida del satélite.

Transponder

Un típico transponer satelital consta de un dispositivo para limitar la banda de entrada (BPF), un amplificador de bajo ruido de entrada (LNA), un translador de frecuencia, un amplificador de potencia de bajo nivel y un filtro pasa-bandas de salida.

El transponder es un repetidor de RF a RF. Otras configuraciones de transponder son los repetidores de IF, y de banda base, semejantes a los utilizados en los repetidores de microondas.

El BPF de entrada limita el ruido total aplicado a la entrada del LNA (un dispositivo normalmente utilizado como LNA, es un diodo túnel).

La salida del LNA alimenta un translador de frecuencia (un oscilador de desplazamiento y un BPF), que se encarga de convertir la frecuencia de subida de banda alta a una frecuencia de bajada de banda baja.

El amplificador de potencia de bajo nivel, que es comúnmente un tubo de ondas progresivas (TWT), amplifica la señal de RF para su posterior transmisión por medio de la bajada a los receptores de la estación terrena.

También pueden utilizarse amplificadores de estado sólido (SSP), los cuales en la actualidad, permiten obtener un mejor nivel de linealidad que los TWT.

La potencia que pueden generar los SSP, tiene un máximo de alrededor de los 50 Watts, mientras que los TWT pueden alcanzar potencias del orden de los 200 Watts.

5

Page 6: Redes satelitales

Transponder del satélite.

Modelo de bajada

Un receptor de estación terrena incluye un BPF de entrada, un LNA y un convertidor de RF a IF. El BPF limita la potencia del ruido de entrada al LNA. El LNA es un dispositivo altamente sensible, con poco ruido, tal como un amplificador de diodo túnel o un amplificador parametrico. El convertidor de RF a IF es una combinación de filtro mezcador/pasa-bandas que convierte la señal de RF a una frecuencia de IF.

Modelo de bajada del satélite

Los enlaces satelitales cuentan con distintas tecnologías de acceso y transmisión entre la estación terrena y el satélite y viceversa.

Tecnologías de acceso

La tecnología de acceso es el procedimiento por el cual la señal de la estación terrestre es colocada sobre la portadora para enviarse al satélite.Las tecnologías más utilizadas para este proceso son:

TDM / TDMA (Time Division Multiplex/Multiple Access). SCPC. (Singel Channel Per Carrier). DAMA. (Demand Assined Multiple Access). MCPC. (Multiple Channels Per Carrier). BROADCAST.

6

Page 7: Redes satelitales

Tecnología De Transmisión

De la misma forma en que una red terrestre utiliza diversos métodos de transmisión, las redes satelitales utilizan estos principios básicos para establecer la transmisión entre los diferentes puntos.Las tecnologías más utilizadas para este proceso son:

X.25. FRAME RELAY. ATM.

Topología

Básicamente, la comunicación satelital utiliza los mismos métodos utilizados en las redes terrestres.La gran ventaja de una red satelital es el hecho de poder comunicar a una estación central con varias estaciones remotas en el mismo tiempo (BROADCAST), situación imposible para una red terrestre.Ante esta posibilidad se establecen las siguientes topologías:

Malla. Estrella. Punto a Punto. Punto a Multipunto. Multipunto a Multipunto.

Por ejemplo en el par de gráficos se observa dos distintas topologías.

Malla Estrella

5. FUNDAMENTO PRÁCTICO

7

Page 8: Redes satelitales

5.1. SERVICIOS DE UNA RED SATELITAL

Una red satelital puede ofrecer los mismos servicios de comunicación que una red de tipo terrestre, con la ventaja de poder comunicar puntos distantes de forma simultanea y en zonas donde la comunicación terrestre es poco accesible.

Entre los principales servicios pueden mencionarse los siguientes:

SERVICIOS DE DATOS

Servicio que brinda solución a los requerimientos de comunicaciones de alta capacidad entre dos puntos cualesquiera. Asimismo, se dispone de varios canales de datos, voz, fax y videoconferencia.

Este servicio permite combinar canales de datos a distintas velocidades y protocolos para conexiones host to host, así como canales de voz que facilitan las comunicaciones telefónicas entre dos puntos y canales para transmisión de imágenes utilizados en videoconferencia.

SERVICIOS DE COMUNICACIONES INTERNACIONALES

Servicio que permite establecer enlaces de altas y varias capacidades entre cualquier punto con el resto del mundo. Dichas aplicaciones incluyen el transporte de datos, voz, fax e imágenes, multiplexados sobre el mismo canal.

VSAT

Servicio de comunicación satelital cuya principal propiedad es la utilización eficiente del ancho de banda, pues se transmite sólo cuando hay información entre los diferentes usuarios. Asimismo, permite establecer enlaces punto-punto y punto-multipunto entre estaciones de una misma red para desarrollar aplicaciones de consulta y transacciones.

A través de las VSAT también pueden transmitirse comunicaciones de datos, voz y fax que permiten la interconexión directa en ambientes de redes de área local y área amplia.

SERVICIO DE TELEDATOS

Servicio creado para dar interconectividad en el área metropolitana, ya que se utiliza principalmente en los accesos de última milla para los servicios satelitales, es decir, la conexión desde la oficina del cliente hasta el telepuerto.

BROADCAST

Servicio de difusión de datos, diseñado para clientes que requieren difundir información, esto es, boletines de tarjetas de crédito, difusión de noticias, información financiera, entre otros.

OTROS SERVICIOS SATELITALES

8

Page 9: Redes satelitales

El desarrollo de nuevas tecnologías y mayor potencia en los satélites ha incrementado la posibilidad de servicios ofrecidos vía satélite y la tendencia es ubicar a esta tecnología como una plataforma de banda ancha capaz de brindar una gran variedad de servicios en línea y multimedios.Estas aplicaciones, alcanzan hoy en día servicios tales como:

Envío de mensajes electrónicos. Participación en videoconferencias múltiples. Transmisión de archivos. Recepción de páginas del WWW a altas velocidades. Telefonía satelital inalámbrica. Redes de datos y multiservicios. Redes móviles de comunicación Redes privadas nacionales e internacionales.

¿Quiénes requieren el servicio de redes satelitales?

Empresas que requieran de una red privada de comunicaciones principalmente para aplicaciones transaccionales. Empresas que tengan más de 3 puntos de presencia regional, nacional y/o multinacional.

Empresas que tengan puntos de venta múltiples. Empresas que tengan sucursales o puntos de presencia en sitios de difícil acceso

y/o en donde la fibra óptica no llega. Empresas que no cuenten con una infraestructura actual de telecomunicaciones. Empresas cuyos puntos de venta y/o de presencia sean susceptibles a cambios

frecuentes. Empresas que tengan tiempos críticos y reducidos para interconectar nuevas

sucursales y/o puntos de venta. Empresas cuya infraestructura tecnológica requiera de continuo crecimiento al

menor costo de inversión en equipamiento.

5.2. APLICACIONES DE LAS REDES SATELITALES

MUNICACIÓN GLOBAL

La tecnología satelital ha desarrollado sistemas en donde las computadoras personales se les pueden adaptar pequeñas antenas, las cuales-vía satelite-pueden recibir y transmitir todo el banco de información de datos de su compañía, sin importar el lugar en que se encuentren.

Esta aplicación requiere de una pequeña antena satelital y un microporocesador instalados en una tarjeta inteligente dentro de una computadora portátil. La oficina central requiere de una antena receptora y un software especial que procese la información. De esta manera, las empresas que requieren comunicar a todas sus filiales, las cuales se encuentran distribuidas geográficamente, pueden hacerlo por medio de la creación de enlaces satelitales que les permiten el desarrollo de un sinfiín de actividades de intercambio de información.

APLICACIONES CASETAS DE PEAJE

9

Page 10: Redes satelitales

En las casetas de peaje es colocada una antena satelital, la cuál permite que a la hora que el cobrador digita en su máquina la cantidad de la cuota, ésta automáticamente se envía por medio de una VSAT a la oficina central del controlador. Así se tiene el control del estado financiero de cada carretera y sus correspondientes casetas.

APLICACIONES FINANCIERAS

Gracias al desarrollo de sistemas satelitales tales como las VSAT, hoy en día es posible la instalación de cajeros automáticos, en cualquier lugar, si necesidad de que exista una línea telefónica. Un cajero puede instalarse en zonas rurales, gasolineras y carreteras.

APLICACIONES PUNTOS DE VENTA

Los grandes supermercados y tiendas comerciales pueden también verse beneficiados gracias a la comunicación satelital, ofreciendo a sus clientes un mejor servicio y manteniendo al día sus inventarios. Gracias a la comunicación satelital cada tienda puede estar comunicada con sus oficinas centrales para la modificación de precios o promociones de ocasión, monitorear y controlar sus inventarios, autorizar pagos con tarjetas de crédito, realizar transacciones de tarjetas de débito, etc.

RESERVACIONES

Reservaciones en líneas aéreas, agencias de viajes, hoteles, renta de automóviles. Control y registro de puntos acumulados en los programas de viajero frecuente, cliente VIP, tarjetas de crédito. Registro, seguimiento y control de mensajería, carga, envíos, etc.

APLICACIONES SCADA

Las grandes industrias, principalmente del ramo petrolero y de energía, cuentan con instalaciones en zonas de difícil acceso en muchos casos, y requieren el control de sistemas sofisticados para el monitoreo de sus instalaciones, El sistema SCADA utiliza antenas VSAT para la recolección de datos remotos, monitoreo y control de válvulas, switches y sistemas en localidades remotas, control sobre tuberías en gasoductos, utilización de electricidad, monitoreo y control de flujos, etc.

LOTERIAS

La aplicación satelital en este campo permite el registro de billetes de lotería y el control de venta y autenticidad de los billetes.

APLICACIONES SERVICIOS DE TELEFONIA

Para redes corporativas privadas o para servicio público en áreas fuera de servicio o poco accesibles.

APRENDIZAJE REMOTO

10

Page 11: Redes satelitales

Clases a distancia, proporcionar instrucciones de calidad en sitios remotos, proveer capacitación en demanda a oficinas remotas, etc.

NOTICIAS E INFORMACION

Bajar o bien hacer broadcast de información a múltiples localidades esparcidas en un territorio.

APLICACIONES CON ANCHO DE BANDA INTENSIVO Video. Internet. Intranet. Multimedia. Transferencia de Software. Transferencia de archivos. Actualización de base de datos.

5.3. VENTAJAS DE UNA RED SATELITAL

Control efectivo del cliente sobre sus telecomunicaciones. Reducción de costos. Rápida respuesta. Incremento de flexibilidad. Mayor desempeño. Disponibilidad virtualmente del 100% Fácil control de la red. Ubiquidad. Acceso a sitios carentes de comunicación terrestre. Servicio mundial. Múltiples aplicaciones sobre la misma plataforma. Menor tiempo de espera que con la disponibilidad de enlaces

terrestres. Movilidad. Soporte de múltiples protocolos. Broadcast. Servicios de valor agregado.

.

6. EQUIPOS

11

Page 12: Redes satelitales

A continuación daremos un vistazo a los equipos necesarios, utilizados en un enlace de red satelital.

ANTENAS

Antena

Antena Rx Tx de 4.5m

RECEPCION-

C

TRANSMISION-

C

RECEPCION-

KuTRANSMISION-Ku

Frecuencia (GHz) 3.4-4.2 5.85-6.725 10.95-12.75 13.75-14.5

Ganancia Típica (dBi) 43.39 47.43 52.94 54.25

VSWR 1.25:1

Anchura de Haz:-3dB 1.08° 0.715° 0.37° 0.318°

-15dB 2.16° 1.43° 0.741° 0.637°

Temperatura de Ruido de la Antena (°K) 2 Puertos de alimentación

10° Elevación 36 45

20° Elevación 29 40

40° Elevación 24 36

Capacidad de manejo de energía 5KW/Puerto 1KW/Puerto

Interfaz de alimentación CPR-229G CPR-137G WR-75

Perdida de inserción de alimentación 0.25dB 0.2dB 0.3dB 0.25dB

Tx-Rx ≥85dB

Coeficiente Axial (dB) 1.5dB 1.0dB

Aislamiento de polarización cruzada (en el

eje)35dB

Lóbulos laterales CCIR.580-4

12

Page 13: Redes satelitales

Mecánico

Óptica de la Antena Anillo de enfoque de la antena

Recorrido Azimut Manual 360°, Motorizado ±85°

Recorrido de Elevación 0° a 90°

Superficie de precisión 0.5mm(R.M.S)

Ambiental

Presión del viento

72 kmph operacional (Mantiene precisión)

97 kmph operacional (Disminuye precisión)

200 kmph Supervivencia (Fija hacia el cielo)

Temperatura ambiente -45° a 60°

Humedad relativa 0% a 100%

Sísmica (Supervivencia) 0.3G horizontal 0.15G vertical

AMPLIFICADORES HPA TWT

13

Page 14: Redes satelitales

Band KU KU, C, X KU

TWT Power 180W 400W / 750W125W / 150W / 180W

TFOP Typical Flange Output Power

150W 350W / 650W120W / 150W / 165W

Tamaño132.5H x 348L x 183W

350W: 244H x 520L x 260W650W: 303H x 546L x 324W

203H x 436L x 213W mm

Montaje Antena Antena AntenaTemperatura Operacion

-40 to +55 °C -40 to +55 °C -40 to +45 °C

Peso 9 Kgs.

ENCAPSULADOR IP

14

Page 15: Redes satelitales

Está construido sobre una velocidad alta, incorporado la plataforma que ha sido adaptado para la alta velocidad de las aplicaciones de datos. Está equipado con dos puertos gigabit ethernet de entradas y dos salidas, es capaz de total de rendimiento de la red hasta 155 mbps agregado y de procesamiento de paquetes de 140, paquetes 000 por segundo.

LNA-LNB

Highly reliable Compact size and light weight King post / pole mount outdoor unit,IP65 rated Selection of DC voltage & 22kHz tone & 10MHz reference to the LNB Monitor and Control on the LNB through proprietary software Comes with L-Band multiplexer for BUC Internal attenuator and amplifiers for gain and insertion loss adjustment High accuracy internal OCXO reference Comes with Receive L-Band monitor port

BLOCK UP CONVERTER (BUC)

15

Page 16: Redes satelitales

Compact and light weight Feed mountable Available in both standard and extended Ku-Band Forward power detection facility Intuitive monitoring & control through RS232/485 & Ethernet(SNMP & HTTP) Auto ranging 38 to 60V DC Power Supply Automatic fault identification & alarm generation Wide operating temperature range -40 to +60 deg C IP65 rated housing (Weather proof Construction) RoHS compliant

CONVERTER

Compact unit, complete in a single 1 RU package Full monitoring and control through LCD and keypad front panel or serial remote User selectable spectrum inversion Redundant ready Available for wide satellite bands Flexible design for various users’ configurations RS232, RS485 and SNMP interface for remote M&C

TRANCEIVERS KU-BAND

16

Page 17: Redes satelitales

Available for all Ku-Band frequencies Broadband data transmission Easy installation & configuration Built-in monitor and control Higher power options available Built-in image rejection filter Very stable OCXO reference oscillator Output power monitoring Electronically tuneable synthesizer for Transmit and Receive 1.0 MHz frequency step size Redundancy ready Surge Protection 70 or 140 MHz IF interface

POWER SUPLY UNIT

Compact power supplies for all Agilis’ BUCs Multiplex DC with IF, Reference and FSK M&C signals Available in both indoor and outdoor solution Wide AC input range (115VAC to 230VAC) Complies with EMI/EMC standard Wide operating temperature range -40oC to +60oC for outdoor PSU Extremely reliable High power efficiency Low ripple output voltage

17

Page 18: Redes satelitales

Waterproof with IP65 standard for outdoor PSU LED indicator for PSU status Option to monitor the optic signal status (ON/OFF)

LNA/LNB OUTDOOR

Available for all C-Band & Ku-Band frequencies Excellent gain flatness and gain stability Low current consumption High / Small Signal gain Wide gain control range Low noise figure

REDUNDANCY

Provides power supply and reference signal to redundant LNB units. Power supply in 1:1 redundant mode is available. Supports C and Ku-Band LNB units. Built-in 1:1 extremely stable 10MHz OCXO (Optional) 10 MHz reference available in 1:1 redundant mode Redundant 180-230 VAC power supply input. (Optional 90 -130 VAC) Fault indication by LED display King post / pole mount outdoor unit with IP65 rated.

18

Page 19: Redes satelitales

RS 232/ RS 485 serial and SNMP for remote Monitoring & Control Form C contact closure outputs. Field programmable firmware.

SOLID STATE POWER AMPLIFIER (SSPA)

High RF output power Low spurious level Various output power rating RF output monitor port RF input monitor port Built-in Redundancy (optional external Redundancy unit)

MODEM SATELITE SERIE

BPSK, QPSK, OQPSK, 8PSK, 16QAM. Programmable receive acquisition/tracking range Typical DSP acquisition time of 315 mseconds at 9.6 kbps QPSK, 71 mseconds at

64 kbps QPSK.

19

Page 20: Redes satelitales

Viterbi and Reed-Solomon FEC standard, TPC optional. BER vs. Eb/No performance within 0.3 dB of theoretical. 10 – 7 BER at 6.0 dB Eb/No (2.8 dB with TPC, 3.5 dB with Reed-Solomon codec).

DDS transmit and receive frequency setting in 1 Hz increments Programmable Interface type Low power, light weight 1 U case Built-in IBS Multiplexer with overhead channel, AUPC and Remote Modem Control Built-In BER Test Set DDS setting of transmit and receive data rates from 1.2 kbps to 20 Mbps in 1 bps

increments Viterbi FEC codec programmable to rate 1/2, 3/4, 5/6, 7/8 disabled. 40 dB AGC range with +15 dBm composite input power Fully programmable from either front panel or remote command without jumpers Built-in 1:1 Redundancy Designed to use internal or external G.703 and Ethernet interfaces. 140 MHz IF available on request. 8 User stored and recallable configurations. Automatic Recovery of stored

configurations

DRIVEAWAY INTEGRATED SYSTEM

Carbon fibre reflector Full auto acquisition with DVB satellite locator Integrated GPS and flux gate compass Meets Intelsat/Eutelsat recommended specifications Side lobe performance better than 29-25 log F

20

Page 21: Redes satelitales

A standard +12VDC power supply or 90 to 260VAC supply

MOBILE EARTH STATION (MES)

Transportable 3.9m Ku-Band Tri-fold Antenna Integrated LNA, HPA, Converter in Redundancy Configuration Modular HVAC Shelter with Rooftop Access Intelligent Network Management System 1-hr Uninterruptible Power Supply for Critical Electronics On-board Power Generation, 24-hrs Diesel Fuel Tank & Power Distribution Lightning Protection & Grounding Kit Removable Platform for Full Earth Station Payload Off-Road Qualified Heavy Duty Trailer Stabilizers & Level Provisions Lifting Gears, Tools, Ladders & Accessories

AGILIS MANPACK TERMINAL (AMT)

High performance flat panel antenna. Extremely compact and Rugged Optimal size, weight and power

21

Page 22: Redes satelitales

Built-in Tx & Rx Rejection Filter Intelligent power management System (iPMS) Built-in GPS & 4.5inch LCD touch screen with simple GUI Built-in Compass Supports external wide range AC & DC supply Compact packaging for easy transport MIL-STD-810F Compliance & weather-proof IP65 Optional manual battery charging in the field

7. CONCLUSIONES

La tecnología de redes satelitales, representada por satélites poderosos y complejos y el perfeccionamiento de las estaciones terrenas están revolucionando el mundo. Así por ejemplo, la necesidad de interconectar terminales remotos con bases de datos centralizadas, de una manera veloz y eficiente, han conducido a una nueva tecnología conocida como ‘Very Small Apertura Terminal (VSAT)”

En el enlace ascendente, es posible colocar en las estaciones terrenas transmisores con mucha potencia, y antenas de gran tamaño para tener una mayor ganancia, todo esto, aunque es posible resulta en un incremento de los costos.

La situación se complica mucho más en el enlace descendente, ya que la potencia del transmisor está limitada por la energía que pueda generar el satélite, la cual no es mucha, también, el tamaño de la antena está limitado por la zona de servicio que deba cubrirse y además por el costo que implicaría transportarla. Esto hace que las señales recibidas de los satélites, en la tierra, sean extremadamente débiles, es por ello que se le debe dar fundamental importancia a la ganancia de la antena, la eficiencia del transmisor, la figura de ruido del receptor y el tipo de modulación y técnica de acceso.

22

Page 23: Redes satelitales

El transponder del satélite consiste básicamente de un amplificador de bajo ruido, un convertidor de frecuencia y por ultimo un amplificador de potencia. El inconveniente con el transponder surge cuando se utiliza la técnica de Acceso Múltiple por División de Frecuencia (FDMA), donde es usual que existan numerosas portadoras por transponder, lo cual si bien mejora la conectividad y el acceso múltiple, por otro lado tiene el inconveniente de que genera ruido de intermodulación en el amplificador del transponder, lo que obliga a que este trabaje en condiciones de bajo rendimiento de potencia.

Con el Acceso Múltiple por División de Tiempo (TDMA), en cada instante solo está presente una portadora, por lo que no existen problemas de intermodulacion y se puede hacer trabajar al amplificador del transponder en saturación, obteniéndose un máximo de rendimiento. El inconveniente de esta técnica de acceso es que requiere una temporización estricta y una gran capacidad de almacenamiento y procesamiento de la señal.

8. BIBLIOGRAFIA

Documento IEEE "Características de una Radio LAN" 1992 LACE Inc.Chandos A. Rypinski.

http://instalacionsatelital.wordpress.com/internet-satelital/ http://www.oocities.org/es/kenlis78/telecomunicaciones/PAG1.htm http://materias.fi.uba.ar/6679/apuntes/Redes_Satelitales_v2.pdf http://www.geocities.ws/maria_abalo/rt/Foro-redes/Redes_ii.html http://es.calameo.com/read/001879677b72c28619783 http://departamento.pucp.edu.pe/ingenieria/images/documentos/

Tipos_de_redes_satelitales.pdf http://www.agilissatcom.com/index.php

23