redox tittrations_2013

40
REDOX TITTRATIONS  Aliya Nur Hasanah  Analytical Chemistry La boratory 2013

Upload: muhammad-ismail

Post on 05-Jan-2016

241 views

Category:

Documents


4 download

DESCRIPTION

Titrasi Reduksi Oksidasi Kimia Analitik Dasar

TRANSCRIPT

Page 1: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 1/40

REDOX TITTRATIONS

 Aliya Nur Hasanah

 Analytical Chemistry Laboratory

2013

Page 2: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 2/40

TITRATION WHICH IS BASED ON OXIDATION AND REDUCTION REACTION BETWEEN

 ANALYTE AND TITRANT

Page 3: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 3/40

Redox Reactions :

Fundamental Term• Oxidation process : loss of electron

• Reduction process : gain of electron

• Reducing agent is oxidized

• Oxidizing agent is reduced

Page 4: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 4/40

NERSNT EQUATION

• It is customary to describe redox reaction inelectrochemical terms because transfer electron mayalso be carried out in an electrochemical cellNernst Equation

• To relate electrochemical potentials to activities(concentration) of species in the system, we candraw on the thermodynamics relationship involvingfree energy change and activities, namely :

∆G = ∆G0

 + RT ln Q• ∆G = -nFE•  - nFE = -nFE0 + RT ln Q

E = E0  - RT/nF ln QE = E0  - 0,05916/n log Q

Page 5: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 5/40

E0 = electrochemical potential for the reaction

 when all species are in their standard state Its describe the tendency of the ion to

reductizes

Page 6: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 6/40

REDOX TITRATION CURVEs

• To evaluate a redox titration we must know theshape of its titration curve

• For redox titration, it is convenient to monitorelectrochemical potential coz we are dealing with electron

• Nernst equation relates the electrochemicalpotential to the concentrations of reactants and

products participating in a redox reaction

Page 7: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 7/40

• Consider, for example a titration in which theanalyte in a reduced state, A red is titrated with atitrant in an oxidized state Tox.

• The titration reaction is :

 A red + T ox  T red + A ox

the electrochemical potential for the reaction isthe difference between the reduction potentialsfor the reduction and oxidation half reaction;thus

Erxn = ETox/Tred – E Aox/ Ared

Page 8: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 8/40

• Before the equivalence point the titration

mixture consists of appreciable quantities of both the oxidized and reduced forms of theanalyte, but very little unreacted titrant.

The potential, therefore, is best calculated usingthe nernst equation for the analyte’s halfreaction

E Aox/Ared = E0 Aox/Ared – RT/nF ln [A red]/[A ox]

Page 9: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 9/40

•  After each addition of titrant, the reaction between the analyte and titrant reaches astate of equilibrium. The reaction’s electrochemical potential, Erxn, therefore

is zero, andE Tox/Tred = E  Aox/Ared

Page 10: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 10/40

 

•  After the equivalence point, the potential iseasiest quast to calculate using the Nernstequation for the titrant’s  half reaction, sincesignificant quantities of its oxidized and

reduced forms are presentETox/Tred = E0Tox/Tred – RT/nF ln [Tred]/[Tox]

Page 11: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 11/40

Example

Calculate the titration curve for the titration of 50 mL of 0,1 M Fe2+

  with 0,1 M Ce4+ in a matrix of 1M HClO4. (after 5 mL, 50 mL and 60mL titrant added).

Eo Fe3+/Fe2+ = +0,767 Volt. Eo Ce 4+/Ce 3+ = 1,70 Volt

the reaction isFe 2+ + Ce 4+  Fe 3+ + Ce 3+ 

assume analyte and titrant react completely

Page 12: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 12/40

Answer

We calculate volume we need to reach the equivalent point. From

the stoichiometry we know that :

So volume Ce4+ needed were :

Page 13: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 13/40

Before equivalent point :

Easier for us to measure the potential from analyte half potential reaction

Page 14: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 14/40

Substituting these concentration into potential half’s reaction, gives us : 

Page 15: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 15/40

Equivalent Point :

Mol of [Fe2+

] and [Ce4+] equal but so small, so we can’t calculate the potentialfrom reactant or titrant half’s reaction only. We have to combine the two

Nernst Equation.

 Adding together this two Nernst equation, give us :

Page 16: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 16/40

 At the equivalent point , the titration reaction stoichiometry requires that

So the ratio of concentration become one and the log become zero, the

potential then:

Page 17: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 17/40

 After adding 60 mL titrant : (the condition are after equivalent point),

we can calculate the potential from potential of titrant half’s reaction

Page 18: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 18/40

Substituting these concentration gives us :

Page 19: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 19/40

Page 20: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 20/40

Evaluating the end point

Page 21: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 21/40

Finding the end point with visual indicator 

Redox indicator : substances that do not participate inthe redox titration, but whose oxidized and reducedforms differ in color

 When added to a solution containing analyte, theindicator imparts a color that depends on the solution’s electrochemical potential

Since the indicator changes color in response to the

elctrochemical potential, and not to the presence orabsence of a specific species, these compounds are calledgeneral redox indicator

Specific redox indicator : react with the presence of aspecific species 

Page 22: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 22/40

Types of indicators used to signal end point :

MnO4- when MnO4- is used as an oxidizing titrant, the solutionremains colorless until the first drop of excess MnO4- isadded. The first tinge purple signals the end point

Starch (Specific Indicator)

forms a dark blue complex with I2  and can be used tosignals the presence of excess I2  (color change : colorlessto blue), or the completion of a reaction in which I2  isconsumed (color change : blue to colorless)

Thiocyanate (specific indicator)forms a soluble red-colored complex Fe(SCN)2+, with Fe3+

Page 23: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 23/40

Page 24: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 24/40

Page 25: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 25/40

REDOX TITRATION METHODS

• Titration Involving Iodine : Iodometry and Iodimetry

• Titration With Oxidizing Agent : Permanganometry,Cerimetry, potassium dichromate

Page 26: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 26/40

Iodimetry

Titration with I2 solution

Titration performed in neutral or mildy alkaline (pH 8) to

a weakly acid solution

Reason avoiding the pH too acid : starch as indicatortends to hydrolyze in strong acid, reducing power of

some reducing agent decreases in acid solution, iodide

produced in the reaction tends to be oxidized by dissolvedoxygen in acid solution

Indicator : Starch

Page 27: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 27/40

Iodometry

 Add excess of Iodide (I-) to a solution of an oxidizing agent, I2 

produced in an equivalent amount to the oxidizing agent

I2  present can be titrated with reducing agent such as sodium

thiosulfate

I2  + 2S2O32-  →  2I-  + S4O6

2-

End point titration detected with starch (by disappearance of the blue

starch-I2 color)

Most titration performed in acid solution

Example : assay of potassium dichromate

Page 28: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 28/40

 

Page 29: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 29/40

View down the starch helix,

showing iodine, inside the helix

Structure of the repeating unit of thesugar amylose.

Schematic structure of the starch-

iodine complex. The amylose chain

forms a helix around I6 unit. 

Page 30: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 30/40

Permanganometry

• Use potassium permanganate as oxidizing titrant

•  Acts as self indicator for end point detection

Page 31: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 31/40

 

Page 32: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 32/40

Oxidation with Ce4+

Ce4+ + e = Ce3+ 1.7V in 1 N HClO4

yellow colorless  1.61V in 1N HNO3 

1.47V in 1N HCl

1.44V in 1M H2SO4 

Indicator : ferroin, diphenylamine

Preparation and standardization:

 Ammonium hexanitratocerate, (NH4)2Ce(NO3)6, (primary standard grade)

Ce(HSO4)4, (NH4)4Ce(SO4)4·2H2O

Standardized with Sodium oxalate.

Page 33: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 33/40

Page 34: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 34/40

Applications of cerimetry

(1) Menadione (2-methylnaphthoquinon: vitamin K3)

O

O

CH3

OH

OH

CH3

2 Ce(SO4)2 

HCl, Zn

Reduction

(2) Iron

2FeSO4  + 2 (NH4)4Ce(SO4)4 = Fe2(SO4)3  + Ce2(SO4)3 + 4 (NH4)2SO4 

Page 35: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 35/40

Oxidation with potassium dichromate

Cr 2O72 – + 14H+ + 6e = 2Cr 3+ + 7H2O Eo = 1.36 V

K2Cr 2O7  is a primary standard.

Indicator : diphenylamine sulphonic acid

End point colour : violet

Page 36: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 36/40

Ex. Redox titration  ( hydroquinone vs  dichromate standard

solution ) 

HO OH   O O + 2H+  + 2e Eo= 0.700

Cr 2O72 –  + 14H+  + 6e   2 Cr 3+ + 7 H2O

Eo= 1.33

3

3 HO OH + Cr 2O72 –  + 8H+   3 O O + 2 Cr 3+ + 7 H2O

E

o

= E

o

cathode – E

o

anode  = 1.33 –  0.700 =0.63 V

K = 10 nEo/0.05916  = 10 6(0.63) / 0.05916  = 10 64 

redox indicator : diphenylamine

colorless to violet

Very large : quantitative : complete reaction

Page 37: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 37/40

Determining water  with the Karl Fisher  Reagent

The Karl Fisher reaction :

I2

  + SO2

 + 2H2

O   2HI + H2

SO4

 

For the determination of small amount of water, Karl Fischer(1935) proposed

a reagent prepared as an anhydrous methanolic solution containing iodine,

sulfur dioxide and anhydrous pyridine in the mole ratio 1:1:3 The reaction

with water involves the following reactions :

C5H5N•I2 + C5H5N•SO2 + C5H5N + H2O

 2 C5H5N•HI + C5H5N•SO3 C5H5N

+•SO3 –

  + CH3OH  C5H5N(H)SO4CH3

Pyridinium sulfite can also consume water.

C5H5N+•SO3

 –  + H2O   C5H5NH+SO4H

 – 

It is always advisable to use fresh reagent because of the presence ofvarious side reactions involving iodine. The reagent is stored in a desiccant-

protected container.

The end point can be detected either by visual( at the end point, the color

changes from dark brown to yellow) or electrometric, or photometric

(absorbance at 700nm) titration methods. The detection of water by the

coulometric technique with Karl Fischer reagent is popular.

Page 38: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 38/40

Pyridine free Karl Fisher reagent

In recent years, pyridine, and its objectionable odor, have been replaced in the

Karl Fisher reagent by other amines, particularly imidazole.

(1) Solvolysis 2ROH + SO2   RSO3 –  + ROH2

(2) Buffering B + RSO3 –  + ROH2

+   BH+SO3R –  + ROH

(3) Redox B•I2  + BH+SO3R – + B + H2O  BH+SO4R

 –  + 2 BH+I – 

Page 39: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 39/40

You wish to standardize the solution of KMnO4 0,010 M against standard

Na2C2O4 (Mr = 134). If you want to use between 30 and 45 mL of the reagent

for the standardiization, what range of weights of the primary standard

should you take?

HOME WORK

Page 40: REDOX TITTRATIONS_2013

7/16/2019 REDOX TITTRATIONS_2013

http://slidepdf.com/reader/full/redox-tittrations2013 40/40

HOME WORK

Derive a curve for the titration of 50 mL of 0,025 M U 4+ with 0,1 M Ce 4+ after

adding 5 mL , 25mL, and 30 mL of Ce 4+ . Assume that the solution Is 1.0 M in

H2SO4 throughout the titration ( [H+] for such a solution will be about 1.0 M)

The analytical reaction is :U 4+ + 2H2O + 2 Ce 4+  UO22+ + 2 Ce 3+ + 4H+

From the handbook :

Ce 4+  + e Ce 3+ Eo = +1.44 V

UO 2 2+ + 4H+ + 2e U 4+ + 2H2O Eo = +0,334 V