references - shodhganga : a reservoir of indian theses...

34
References Abou-Shanab, R.A.I., Van Berkum, P., Angle, J.S., 2007. Heavy metal resistance and genotypic analysis of metal resistance genes in gram positive and gram negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68: 360-367. Achtnich, C., Bak, F. and Conrad, R., 1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soils. Biol. Fertil. Soils, 19: 65–72. Adeny, W.E., 1894. On the reduction of manganese peroxide in sewage. Sci. Proc. Dublin. Soc., 8: 247-251. Afonso, M.D.S., Morando, P.J., Blesa, M.A., Banwart, S. and Stumm, W., 1990. The reductive dissolution of iron oxides by ascorbate: The role of carboxylate anions in accelerating reductive dissolution. Journal of Colloid and Interface Science, 138: 74–82. Agate, A.D., 1996. Recent advance in microbial mining. World J. Microbial. Biotechnol., 12: 487-495. Ahmed, I., Hayat, S., Ahmad, A., Inam, A., Samiullah, 2001. Metal and antibiotic resistance traits in Bradyrhizobium sp. (cajanus) isolated from soil receiving oil refinery wastewater. World J. Microbiol. Biotechnol., 17:379-384. Ajmal, M. and Khan, A.U., 1983. Effects of sugar factory effluent on soil and crop plants. Environ Pollut. 30: 135–141. Akinci, G. and Guven, D.E., 2011. Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination, 268: 221–226. Aller, R.C., Mackin, J.E. and Cox, R.T., 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Cont. Shelf. Res., 6: 263-289. Andrews, N.C. and Bridges, K.R., 1998. Disorders of metabolism and sideroblastic anemia. In: Nathan and Oski's hematology of infancy and childhood. 5 th ed. Philadelphia: WB Saunders Co; p. 423-61.

Upload: domien

Post on 24-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

References

Abou-Shanab, R.A.I., Van Berkum, P., Angle, J.S., 2007. Heavy metal resistance

and genotypic analysis of metal resistance genes in gram positive and gram

negative bacteria present in Ni-rich serpentine soil and in the rhizosphere

of Alyssum murale. Chemosphere, 68: 360-367.

Achtnich, C., Bak, F. and Conrad, R., 1995. Competition for electron donors

among nitrate reducers, ferric iron reducers, sulfate reducers, and

methanogens in anoxic paddy soils. Biol. Fertil. Soils, 19: 65–72.

Adeny, W.E., 1894. On the reduction of manganese peroxide in sewage. Sci. Proc.

Dublin. Soc., 8: 247-251.

Afonso, M.D.S., Morando, P.J., Blesa, M.A., Banwart, S. and Stumm, W., 1990.

The reductive dissolution of iron oxides by ascorbate: The role of

carboxylate anions in accelerating reductive dissolution. Journal of Colloid

and Interface Science, 138: 74–82.

Agate, A.D., 1996. Recent advance in microbial mining. World J. Microbial.

Biotechnol., 12: 487-495.

Ahmed, I., Hayat, S., Ahmad, A., Inam, A., Samiullah, 2001. Metal and antibiotic

resistance traits in Bradyrhizobium sp. (cajanus) isolated from soil receiving

oil refinery wastewater. World J. Microbiol. Biotechnol., 17:379-384.

Ajmal, M. and Khan, A.U., 1983. Effects of sugar factory effluent on soil and crop

plants. Environ Pollut. 30: 135–141.

Akinci, G. and Guven, D.E., 2011. Bioleaching of heavy metals contaminated

sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination,

268: 221–226.

Aller, R.C., Mackin, J.E. and Cox, R.T., 1986. Diagenesis of Fe and S in Amazon

inner shelf muds: apparent dominance of Fe reduction and implications for

the genesis of ironstones. Cont. Shelf. Res., 6: 263-289.

Andrews, N.C. and Bridges, K.R., 1998. Disorders of metabolism and sideroblastic

anemia. In: Nathan and Oski's hematology of infancy and childhood. 5th ed.

Philadelphia: WB Saunders Co; p. 423-61.

Page 2: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Arceneaux, J,E.L. and Byers, B.R., 1977. Inhibition of iron uptake and

deoxyribonucleic acid synthesis by desferal in a mutant strain of Bacillus

subtilis. J. of Bactrriology, 129(3): 1639-1641.

Arnold, R.G., DiChristina, T.J. and Hoffmann, M.R. 1988. Reductive dissolution of

iron (III) oxides by Pseudomonas sp. 200. Biotechnol. Bioeng. 32: 1081–

1096.

Arshad, M.A., St. Arnaud, R.J. and Huang, P.M., 1972. Dissolution of trioctahedral

layer silicates by ammonium oxalate, sodium dithionite-citrate-bicarbonate,

and potassium pyrophosphate. Can. J. Soil Sci., 52: 19-26.

Ashraf, R. and Ali T.A. 2007. Effect of heavy metals on soil microbial community

and mung beans seed germination. Pak. J. Bot., 39: 629–636.

ASTDR 2000. Toxicological profile for manganese. Atlanta Georgia:US Department

of Health and Human Services, Agency for Toxic Substances and Disease

Registry, p. 1-466.

Ayyasamy, P.M. and Lee, S., 2009. Redox transformation and biogeochemical

interaction of heavy metals in Korean soil using different treatment

columns in the presence of Shewanella sp. Chemosphere, 77: 501–509.

Ayyasamy, P.M. and Lee, S., 2012. Biotransformation of heavy metals from soil in

synthetic medium enriched with glucose and Shewanella sp. HN-41 at

various pH. Geomicrobiol. J., 29: 843-851.

Ayyasamy, P.M., Banuregha, R. Vivekanandhan, G., Rajakumar, S., Yasodha, R.,

Lee, S. and Lakshmanaperumalsamy, P., 2008. Bioremediation of sago

industry effluent and its impact on seed germination (green gram and

maize). World Journal of Microbiology and Biotechnology, 24: 2677-2684.

Ayyasamy, P.M., Chun, S. and Lee, S., 2009. Desorption and dissolution of heavy

metals from contaminated soil using Shewanella sp. HN-41 amended with

various carbon sources and synthetic soil organic matters. J. Hazard.

Mater., 161: 1095-1102.

Babechuk M.G., Weisener, C.G., Fryer Paktunc, B.J. and Maunders, C., 2009.

Microbial reduction of ferrous arsenate: Biogeochemical implications for

arsenic mobilization. Appl. Geochem., 24: 2332–2341.

Page 3: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Bae, S. and Lee, W., 2013. Biotransformation of lepidocrocite in the presence of

quinines and flavins. Geochimica et Cosmochimica Acta,, 114: 144–155.

Balashova, V.V. and Zavarzin, G.A., 1980. Anaerobic reduction of ferric iron by

hydrogen bacteria. Microbiology, 48: 635-639.

Barbosa, M.J., Rocha, J.M.S., Tramper, J. and Wijffels, R.H., 2001. Acetate as a

carbon source for hydrogen production by photosynthetic bacteria. J.

Biotechnol. 85: 25–33.

Baudouin-Cornu, P., Lagniel, G., Chedin, S. and Labarre, J., 2009. Development of

a new method for absolute protein quantification on 2-D gels. Proteomics,

9: 4606–4615.

Bazylinski, D.A. and Frankel, R.B., 2000. Biologically controlled mineralization of

magnetic iron minerals by Magnetotactic bacteria. In: Environmental

Microbe-Mineral Interactions. Lovley DR (ed) ASM Press, Washington, DC,

p 109-144.

Beard, J.L., Dawson, H. and Pinero, D.J., 1996. Iron metabolism: a comprehensive

review. Nutr Rev., 54:295-317.

Begum, M., Harikrishna, R., Khan, I. and Veena, K., 2009. Analysis of heavy

metals concentration in soil and lichens from various localities of Hosur

road, Bangalore, India. E-Journal of Chemistry, 6(1): 13-22.

Benz, M., Schink, B. and Brune, A., 1998. Humic acid reduction by

Propionibacte,-iuinfreudeiireichii and other fermenting bacteria. Appl. and

Environ. Microbiol. 64: 4507-45 12.

Bezverbnaya, I, Buzoleva, L.N, Khristoforova, 2005. Metal resistant heterotrophic

bacteria in coastal waters of Primorye Russian. J. Mar. Biol., 31:73–77.

Bhagat, R. and Srivastava, S., 1991. Sequestration of zinc by Pseudomonas

stutzeri. Paper presented at International Golden Jubilee Symposium of

Indian Society of Genetics and Plant Breeding. Delhi (India).

Bhushan, B, Halasz, A.S. and Hawari, 2006. Effcet of iron (III), humic acids and

anthraquinone 2, 3, - disulfonate on biodegradation of cyclic nitramines by

Clostridium sp. EDB2. J. Appl. Microbiol., 100: 555 – 563.

Page 4: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Bird, l.J., Coleman, M.L. and Newman, D.K., 2013. Iron and copper act

synergistically to delay anaerobic growth of bacteria. Appl Environ

Microbiol., 79(12): 3619-27.

Bishop, M.E., Dong, H., Kukkadapu, R.K. and Edelmann, R.E. 2011. Microbial

reduction of Fe(III) in multiple clay minerals by Shewanella,putrefaciens

and recativity of bioreduced clay minerals toward Tc(VII) immobilization.

Geochimica et Cosmochimica Acta, 75: 5229-5246.

Blesa, M.A. and Maroto, A.J.G., 1968. Dissolution of Metal Oxides. Chem. Phys.,

83(11–12): 757–764.

Bloomfield, C., 1950. Some observations of gleying. J. Soil Sci., 1: 205-211.

Bodek, I., Lyman, W.J., Reehl, W.F. and Rosenblatt, D.H., 1988. Environmental

Inorganic Chemistry: Properties, Processes, and Estimation Methods. SETAC

Special Publication. Series, B., Walton, T. and Conway, R.A., editors.

Pergamon Press. New York.

Bonneville, S., 2004. Kinetics of microbial Fe(III) oxyhydroxide reduction: The role

of mineral properties. Geologica Ultraiectina, 254: 128.

Bonneville, S., Behrends, T., Cappellen, P.V., Hyacinthe, C., Roling, W.F.M., 2006.

Reduction of colloidal Fe(III) oxyhydroxides by Shewanella putrefaciens: A

kinetic model. Geochim. Cosmochim. Acta, 70: 5842-5854.

Boone, D.R., Liu, Y., Zhao, Z.J., Balkwill, D.L., Drake, G.R. Stevens, T.O. and

Aldrich, H.C., 1995. Bacillus infernus Sp. Nov., An Fe(III) and Mn(IV)

rducing anaerobe from the deep terrestrial subsurface. Int. J. Syst.

Bacteriol., 45, 441-448.

Brady, N. C. and Weil, R. R., 1999. Soil organic matter. In. The nature and

properties of soils. Prentice Hall, Upper Saddle River, New Jersey., 446-

490.

Bratina, B.J., Stevenson, B.S. Green, W.J., 1998. Manganese reduction by

microbes from oxic regions of the Lake Vanda (Antarctica) water column.

Appl. Environ. Microbiol., 64(10): 3791-3797.

Bratina, B.J., Stevenson, B.S. Green, W.J., 1998. Manganese reduction by

microbes from oxic regions of the Lake Vanda (Antarctica) water column.

Applied and Environmental Microbiology., 64 (10): 3791-3797.

Page 5: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Bromfield, S.M., 1954. Reduction of ferric compounds by soil bacteria. J. Gen.

Microbiol., 11: 1-6.

Bruins, M.R., Kapil, S. and Oehme, F.W., 2000. Microbial resistance to metals in

the environment. Ecotoxicol. Environ. Saf., 45: 198-207.

Bsat, N. and Helmann, J.D., 1997. Interaction of Bacillus subtilis fur (Ferric

Uptake Repressor) with the dhb Operator in vitro and in vivo. Journal of

Bacteriology, 181(14): 4299–4307.

Burdige, D.J., 1983. The biogeochemistry of manganese redox reaction: rates and

mechanisms. Ph.D., dissertation, University of California, San Diego.

Byers, H.K., Stackebrandt, E., Hayward, C., Blackall, L.L., 1998. Molecular

investigation of a microbial mat associated with the great artesian basin.

FEMS Microbiol. Ecol., 25, 391–403.

Caccavo, F.J.R., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F. and McInerney,

M.J., 1994. Geobacter sulfurreducens sp. nov., a hydrogen and acetate-

oxidizing dissimilatory metal reducing microorganism. Appl. Envol.

Microbiol., 60: 3752–3759.

Caccavo, J.R., Blakemore, F.R.P., and Lovley, D.R., 1992. A hydrogen oxidizing,

iron (III)-reducing microorganism from the Great Bay estuary, New

Hampshire. Appl. Environ. Microbiol., 58: 3211-3216.

Canfield, D.E., Thamdrup, B. and Hansen, J.W., 1993. The anaerobic degradation of

organic matter in Danish coastal sediments: Fe reduction, Mn reduction and

sulfate reduction. Geochim. Cosmochim. Acta, 57: 2563–2570.

Cappellen, V.P., Gaillard, J. F., Rabouille, C., 1993. Biogeochemical

transformations in sediments: kinetic models of early diagenesis. In:

Wollast, R., Mackenzie, F.T., Chou, L. (Eds.), Interactions of C, N, P and

S Biogeochemical Cycles and Global Change. Springer-Verlag. pp. 401–

455.

Cappuyns, V., Swennen, R., 2006. Comparison of metal release from recent and

aged Fe-rich sediments. Geoderma, 137: 242–251.

Cerrato, J.M., Falkinham, J.M., Dietrich, A.M., William, R., Knocke, McKinney,

C.W. and Pruden, A., 2010. Manganese-oxidizing and -reducing

Page 6: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

microorganisms isolated from biofilms in chlorinated drinking water

systems. Water Res., 44: 3935-3945.

Cervantes, F.J., Mancilla, A.R., Ríos-del Toro, E.E., Alpuche-Solís, A.G.,

Montoya-Lorenzana, L., 2011. Anaerobic degradation of benzene by

enriched consortia with humic acids as terminal electron acceptors. J.

Hazard. Mater., 195: 201-7.

Ceylan, O. and Ugur, A., 2012. Bio-Monitoring of Heavy Metal Resistance in

Pseudomonas and Pseudomonas related genus. J. Biol. Environ. Sci., 6(18):

233-242.

Chacon, N., Silver, W.L., Dubinsky, E.A. and Cusack, D.F., 2006. Iron reduction

and soil phosphorus solubilization in humid tropical forests soils: The roles

of labile carbon pools and an electron shuttle compound.

Biogeochemistry.78: 67–84.

Chen, J., Yao, S.P., 2005. Geomicrobiology and its progress. Geological Journal of

China University, 11(2): 54–166.

Cheng S., 2003. Heavy metal pollution in China: origin, pattern and control.

Environmental Sciences and Pollution Research,10: 192-198.

Childers, S.E., Clufo, S. and Lovley, D.R., 2002. Geobacter metallireducens

accesses insoluble Fe(III) oxide by chemotaxis. Nature. 416: 767–769.

Ching, S., Krukowska, K.S., Suib, L.S., 1999. A new synthetic route to todorokite-

type manganese oxide. Inorganica Chimica Acta, 294: 123–132.

Christensen, D., 1984. Determination of substrates oxidized by sulfate reduction

in intact cores of marine sediments. Limnol. Oceanogr., 29: 189 -192.

Chuan, M.C., Shu, G.Y., Liu, J.C., 1996. Solubility of heavy metals in a

contaminated soil: Effects of redox potential and pH. Water air soil poll., 90:

543-556.

Coa, X., 1997. Synthesis of pure amorphous Fe2O3. J. Mater. Res., 12: 402-406.

Coates, D.J., Ellis, E.L., Blunt-Harris, C.V., Gaw, E.E., Roden and Lovley, D.R.,

1998. Recovery of humic-reducing bacteria from a diversity of

environments. Appl. Environ. Microbiol., 64: 1504–1509.

Page 7: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Coates, J.D., Chakraborty, R., O'Connor, S.M., Schmidt, C. and Thieme, J., 2001.

The geochemical effects of microbial humic substances reduction. Acta

Hydrochimica et Hydrobiologica, 28: 420-427.

Cornell, R.M. and Schwertmann, U., 1996. The Iron Oxides: Structure, properties,

reactions, occurrence, and uses, New York: VCH, 573 pp.

Cornell, R.M. and Schwertmann, U., 2003. The Iron Oxides: Structure, properties,

reactions, occurences and uses, 2nd edition. Wiley-VCH, Verlag Gmbh and

Co. KGaA, Weinheim, Germany. ISBN: 3-5227-30274-3.

Cornu, S., Cattle, J.A., Samouelian, A., Laveuf, C., Guilherme, L.R.G., Alberic, P.,

2009. Impact of redox cycles on manganese, iron, cobalt, and lead in

nodules. Soil Sci Soc Am J., 73: 1231–1241.

Couper, J. 1987. On the effects of black oxide of manganese when inhaled into the

lungs. Br Ann Med Pharm.,1: 41-42.

Cox, P.A., 1995. The Elements on earth: Inorganic chemistry in the environment,

New York: Oxford University Press, 287 pp.

Crichton, R.R. and Charloteaux-Wauters, M., 1987 Iron transport and storage.

European Journal of Biochemistry 164, 485–506.

Csotonyi, J.T., Erko Stackebrand, T. and Vladimir Yurkov, 2006. Anaerobic

Respiration on Tellurate and Other Metalloids in Bacteriafrom

Hydrothermal Vent Fields in the Eastern Pacific Ocean. Appl. Environ.

Microbiol., 72(1): 4950–4956.

Cummings, D.E., March, A.W., Bostick, B., Spring, S., Caccavo Jr., F., Fendorf, S.,

Rosenzweig, R.F., 2000. Evidence for microbial Fe(III) reduction in anoxic,

mining-impacted lake sediments. Appl. Environ. Microbiol. 66: 154–162.

Das, A.P., Sukla, L.B., Pradhan, N. and Nayak, S., 2013. Manganese biomining: A

review. Bioresource Technology, 102: 7381–7387.

Davis, C.D., Malecki E.A. and Greger, J.L., 1992. Interactions among dietary

manganese, heme iron, and nonheme iron in women. Am. J. Clin. Nutr.

56:926–32.

Davison, W., 1993. Iron and manganese in lakes. Earth-Science Reviews, 34(2):

119–163.

Page 8: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

De Vrind, J.P.M., Boogerd, F.C. and De Vrind-De Jong, E.W., 1986. Manganese

reduction by a marine Bacillus species. Journal of Bacteriology, 167(1): 30-34.

Deng, Y., 1997. Effect of pH on the reductive dissolution rates of iron(III) hydroxide

by ascorbate. Langmuir, 13: 1835–1839.

Doelman, P., Jansen, E., Michels, M., Van Til, M., 1994. Effects of heavy metals in

soil on microbial diversity and activity as shown by the sensitivity-

resistance index: An ecologically relevant parameters. Biol. Fert. Soil.,

17:177-184.

Downs, B., (2001). Handbook of Mineralogy "Kyanite". The RRUFF Project.

Retrieved 2013-06-13.

Du, Y.G., Tyagi, R.D, Sreekrishnan, T.R., 1995. Operational strategy for metal

bioleaching based on pH measurements. J Environ Eng., 121: 527–535.

Edward Raja, C., Selvam G.S and Kiyoshi O. 2009. Isolation, identification and

characterization of heavy metal Resistant bacteria from sewage.

International joint symposium on geodissator prevention and

geoenvironment in Asia, JS – Fukuoka.

Ehrlich, H.L. and Brierley, C.L., 1990. Microbial mineral recovery. Mc-Graw-Hill,

New York.

Ehrlich, H.L., 1987. Manganese oxide reduction as a form of anaerobic respiration.

Geomicrobiol. J., 5: 423-431.

Ehrlich, H.L., 2002. Geomicrobiology of iron, p. 345-429. In R. a. E. Fourth

Edition (ed.), Geomicrobiology. Marcel Dekker, Inc., New York, N.Y.

Ellis, R.J., Morgan, P., Weightman A.J. and Fry J.C., 2003. Cultivation dependent

approaches for determining bacterial diversity in heavy-metal-

contaminated soil. Appl. Environ. Microbiol., 69: 3223–3230.

Enning, D. and Garrelfs, J., 2014. Corrosion of Iron by Sulfate-Reducing Bacteria:

New Views of an Old Problem. Appl. Environ. Microbiol., 80(4): 1226–1236.

Eric D., Van Hullebusch., Piet N.L. Lens and Henry, H.T., 2005. Developments in

bioremediation of soils and sediments polluted with metals and

radionuclides. 3. Influence of chemical speciation and bioavailability on

contaminants immobilization/mobilization bio-processes. Reviews in

Environmental Science and Bio/Technology, 4:185–212.

Page 9: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Esch, M.E.S., David H., Shull Allan, H., Devol, S. and Moran, B., 2013. Regional

patterns of bioturbation and iron and manganese reduction in the

sediments of the southeastern Bering Sea. Deep-Sea Res. II., 94: 80–94.

Fenchel, T. and Blackburn, T.H., 1979. Bacteria and Mineral Cycling. Academic

Press,Ltd., London, United Kingdom.

Filali, B.K., Taoufik, J., Zeroual, Y., Dzairi, F.Z., Talbi, M. and Blaghen, M., 2000.

Waste water bacteria resistant to heavy metals and antibiotics. Current

Microbiology., 41: 151-156.

Finke, N., Vandieken, V. and Jorgensen, B.B., 2006. Acetate, lactate, propionate,

and isobutyrate as electron donors for iron and sulfate reduction in Arctic

marine sediments, Svalbard. FEMS Microbiol Ecol. 59: 10–22.

Fiskesjo, G., 1997. Assessment of a chemicals genotoxic potential by recording

aberration in chromosomes and cell divisions in root tips of Allium cepa.

Environ. Toxicol. Water Qual., 9: 235-241.

Francis, C A., Anna, Y. Obraztsova and Tebo, B.M.,2000. Dissimilatory metal

reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl.

Environ. Microbiol., 66(2): 543.

Fravel, D.R. 1988. Role of antibiosis in the biocontrol of plant diseases. Ann. Rev.

Phytopathol. 26:75-91.

Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman,

N.W. and Li, S.M., 1998. Biogenic iron mineralization accompanying the

dissimilatory reduction of hydrous ferric oxide by a groundwater

bacterium. Geochim. Cosmochim. Acta., 62(19/20): 3239−3257.

Gadd, G.M. and White, C., 1993. Microbial treatment of metal pollution- a working

biotechnology. Trends Biotechnol., 11: 353-359.

Garcia-Balboa, C,I.C., Bedoya, F., Gonzalez, M.L., Blazquez, J.A. and Ballester, A.,

2010. Bio-reduction of Fe(III) ores using three pure strains of Aeromonas

hydrophila, Serratia fonticola and Clostridium celerecrescens and a natural

consortium. Bioresource Technology, 101: 7864–7871.

Garland, J.L. and Mills, A.L., 1991. Classification and characterization of

heterotrophic microbial communities on the basis of patterns of

Page 10: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

community-level sole-carbon-source utilization. Appl. Environ. Microbiol.,

57: 2351–2359.

Geology and Mineral Resources of the states of India - Tamil nadu and Puducherry

Author/Editors Officers of Operation TNPK, GSI Year 2006, Miscellaneous

Publication No. 30.

Gerlach, R., Field, E.K., Viamajala, S., Peyton, B.M., Apel, W.A. and Cunningham,

A.B., 2011. Influence of carbon sources and electron shuttles on ferric iron

reduction by Cellulomonas sp. strain ES6. Biodegradation, 22: 983-995.

Ghaderian, M.Y.S., Anthony, J.E.L., Baker, A.J.M. and Baker, 2000. Seedling

mortality of metal hyper accumulator plants resulting from damping off by

Pythium spp. New Phytology., 146: 219–224.

Ghiorse, W.C. and Ehrlich, H.L., 1992. Microbial biomineralization of iron and

manganese. In: Skinner HCW, Fitzpatrick RW (eds) Biomineralization.

Processes of iron and manganese. Modern and ancient environments.

Catena supplement 21. Catena Cremlingen-Destedt, pp 75-99.

Ghiorse, W.C., 1988. Microbial reduction of manganese and iron, p. 305-331. In

A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley.,

Sons Inc., New York, N.Y.

Glasauer, S., Weidler, P.G., Langley, S. and Beveridge, T.J., 2003. Controls on Fe

reduction and mineral formation by a subsurface bacterium. Geochimica et

Cosmochimica Acta, 67: 1277–1288.

Glasby, G.P., 1984. Manganese nodule research in Federal Republic of

Germany: A review. Mar. Mining. 4: 355-402.

Gleyzes, C., Tellier, S.M. and Astruc, M., 2002. Fractionation studies of trace

elements in contaminated soils and Sediments: a review of sequential

extraction procedure. Trend Analytical Chemistry, 21: 451-467.

Gorski, C.A., Nurmi, J.T., Tratnyek, P.G., Hofstetter, T.B. and Scherer, M.M. 2010.

Redox behavior of magnetite: Implications for contaminant reduction.

Environmental Science and Technology. 44: 55-60.

Gounot, A.M., 1994. Microbial oxidation and reduction of manganese:

consequences in groundwater and applications. FEMS Microbiol. Rev., 14:

339–350.

Page 11: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Greene, A.C., Patel, B.K. and Sheehy, A.J., 1997. Deferribacter thermophilus gen.

nov., sp. a novel thermophilic mang6anese and iron-reducing bacterium

isolated from a petroleum reservoir. Int. J. Syst. Bacteriol., 47(2): 505-9 .

Greenwood, N.N. and Earnshaw, A., 1997. Chemistry of the Element (2nd ed.).

Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4.

Gupta, N. and Vijay Kumar, 2012. Identification and isolation of heavy metal (copper)

resistant bacteria. Archives of Applied Science Research, 4 (1): 577-583.

Hada, H.S. and Sizemore, R.K., 1981 Incidence of plasmids in marine Vibrio spp.

isolated from an oil field in the North Western Gulf of Mexico. Appl.

Environ. Microbiol., 41: 199-202.

Hall GEM, P. and Pelchat, P., 1999. Water, Air, and Soil Pollution, 112: 141–

153.

Halverson, H.O. and Starkey, R.L., 1927. Studies on the transformations of iron in

nature. I. Theoretical considerations. J. Phys. Chem., 31: 626-631.

Halvorson, H.0. and Starkey, R.L., 1927. Studies on the transformations of iron in

nature. Part 11. Concerning the importance of micro-organisms in the

solution and precipitation of iron. Soil Sci. 24, 381.

Harrigan, W.F. and McCan, M.E., 1972. Laboratory method of microbiology.

Academic Press, London, New York.

Hassan, S.H.A., Abskharon, R.N.N., Gad El-Rab, S.M.F. and Shoreit, A.A.M., 2008.

Isolation, characterization of heavy metal resistant strain of Pseudomonas

aeruginosa isolated from polluted sites in Assiut city, Egypt. J. Basic

Microbiol., 48:168-176.

Hatch, J. and Finneran, K., 2008. Influence of reduced electron shuttling

compounds on biological H2 production in the fermentative pure culture

Clostridium beijerinckii. Curr. Microbiol., 56: 268–273.

He J.Z. and Qu D. 2008. Dissimilatory Fe(III) reduction characteristics of paddy

soil extract cultures treated with glucose or fatty acids. J. Environ. Sci.,

20:1103–1108.

He Y.T., Fitzmaurice A.G., Bilgin A., Choi S., O’Day P., Horst J., Harrington J.,

Reisinger H.J., Burris D.R. and Hering, J.G., 2010. Geochemical processes

Page 12: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

controlling arsenic mobility in ground water: A case study of arsenic

mobilization and natural attenuation. Appl. Geochem., 25: 69–80.

He, J.Z., Meng, Y.T., Zheng, Y.M. and Zhang, L.M., 2010. Cr(III) oxidation coupled

with Mn(II) bacterial oxidation in the environment. J. Soils Sediments, 10:

767–773.

Hering, J.G. and Stumm, W., 1990. Oxidative and reductive dissolution of

minerals. In Mineral-water Interface geochemistry (eds. M.F. Hochella

and A.F. White), Mineralogical society of America, 467-510.

Hill, G.T., Mitkowski, N.A., Aldrich-Wolfe, L., Emele, L.R., Jurkonie, D.D., Ficke,

A., Maldonado-Ramirez, S., Lynch, S.T. and Nelson, E.B., 2003. Methods

for assessing the composition and diversity of soil microbial communities.

Applied Soil Ecology, 15: 25–36.

Holt, J.G., Kreing, N.R., Sneath, P.H.A., Staley, J.T. and Williams, S.T., 1994.

Bergey’s manual of determinative bacteriology. Lippincott Willams and

Willkins, Baltimore. USA. ISBN-13:978.0683006032. 9, 787.

Hoque, M. and Philip, O., 2011. Biotechnological recovery of heavy metals from

secondary sources: An overview, Materials Science and Engineering., 31:

57-66.

Hori, T., Muller, A., Igarasi, Y., Conrad, R. and Friedrich, M.W., 2010.

Identification of iron reducing bacteria in anoxic rice paddy soil by 13c-

acetate probing. ISME. J., 4: 267-278.

HSDB 1999. Hazardous Substances Data Bank. National Library of Medicine,

Bethesda, Maryland.

Hu, X. and Boyer, G.L. 1996. Siderophore-mediated aluminum uptake by Bacillus

megaterium ATCC 19213. Applied and Environmental Microbiology, 62(11):

4044-4048.

Hugh, R. and Leifson, E. 1953. The taxonomic significance of fermentative versus

oxidative metabolism of carbohydrates by various gram-negative rods. J.

Bacteriol. 66: 24–26.

Hussein, H., Moawad, H. and Farag, S., 2004. Isolation and characterization of

Pseudomonas resistant to heavy metals contaminants. Arab J. of

Biotechnol. 7: 13-22.

Page 13: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Husson, O., 2013. Redox potential (Eh) and pH as drivers of

soil/plant/microorganism systems: a transdisciplinary overview pointing to

integrative opportunities for agronomy. Plant Soil, 362: 389–417.

Hyacinthe, C., Bonneville, S., Van Cappellen, P., 2006. Reactive iron(III) in

sediments: Chemical versus microbial extractions. Geochim Cosmochim

Acta, 70: 4166-4180.

International Standard Organization (1995) Soil quality. Extraction of trace

elements Soluble in Aqua Regia, ISO 11466.

IOM (Institute of Medicine) Dietary reference intakes: VitaminA, vitamin K, arsenic,

boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel,

silicon, vanadium, and zinc. Washington DC: National Academy Press;

2001.

IPCS (2002) Principles and methods for the assessment of risk from essential trace

elements. Geneva, World Health Organization, International Programme on

Chemical Safety (Environmental Health Criteria 228).

Iretskaya, S., Nzihou, A., Zahraoui, C. and Sharro, P., 2004. Metal leaching from

MSW fly ash before and after chemical and thermal treatments.

Environmental Progress, 18: 144-148.

Jackson, C.R, Harrison, K.G. and Dugas, S.L., 2005. Enumeration and

characterization of culturable arsenate resistant bacteria in a large

estuary, Systematic and Applied Microbiology, 28.

Jacobson, M.E., 1994. Chemical and biological mobilization of Fe (III) in marsh

sediments. Biogeochemistry, 25: 41-60.

Jadhav, U.U. and Hocheng, H., 2013. A review of recovery of metals from

industrial waste. Journal of Achievements in Materials and Manufacturing

Engineering., 54( 2): 159-164.

Janssen, B.H, Willigen, P., 2006. Ideal and saturated soil fertility as bench marks

in nutrient management: 1. Outline of the framework. Agric Ecosys

Environ., 116: 132–146.

Jilbert, T. and Slomp, C.P., 2013. Iron and manganese shuttles control the

formation of authigenic phosphorus minerals in the euxinic basins of the

Baltic Sea. Geochimica et Cosmochimica Acta, 107: 155-169.

Page 14: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Jones, J. G., Gardener, S., Simon, B. M., 1984. Bacterial reduction of ferric iron in

a stratified eutrophic lake. J. Gen. Microbiol. 129: 131-139.

Jorand, F., Zegeye, A., Landry, F. and Ruby, C., 2007. Reduction of ferric green

rust by Shewanella putrefaciens. Lett. Appl. Microbiol., 45(5): 515−521.

Kai, K., Yoshida, Y., Kageyama, H., Saito, G., Ishigaki, T., Furukawa, Y. and

Kawamata, J., 2008. Room-temperature synthesis of manganese oxide

monosheets. J. Am. Chem. Soc., 130: 15938-15943.

Kakimoto, D., Okita, K. and Inai, M., 1974. Mineral requirements of marine

bacteria. In: Effect of ocean environment on microbial activities. R. R.

Colwell and R. Y. Morita (eds.): 16-37, University Park Press, USA.

Kamnev, A.A., Antonyuk, L.P. and Ignatov, V.V., 1999. Biodegradation of organic

pollution Involving soil iron(III) solubilized by bacterial siderophores as an

Electron acceptor. In. Biodegradation of Organic Pollution, 22: 206-217.

Kamnev, A.A., Antonyuk, L.P. and Ignatov, V.V., 1999. Biodegradation of organic

pollution Involving soil iron(III) solubilized by bacterial siderophores as an

Electron acceptor. In. Biodegradation of Organic Pollution, 22: 206-217.

Kandeler, E., Tscherko, D., Bruce, K. D., Stemmer, M., Hobbs, P. J., Bardgett,

R. D., Amelung, W., 2000. Structure and function of the soil microbial

community in micro habitats of a heavy metal polluted soil. Biol. Fertil.

Soils. 32: 390–400.

Kanso, S., Greene, A.C. and Patel, B.K.C., 2002. Bacillus subterraneus sp. nov., an

iron and manganese reducing bacterium from a deep subsurface

Australian thermal aquifer. Int. J. Syst. Evol. Microbiol., 52: 869-874.

Karaka, A. 2004. Effect of organic wastes on the extractability of cadmium, copper,

nickel and zinc in soil. Geoderma, 122: 297–303.

Karavaiko, G.I., Yurchenko, V.A. Remizov, V.I. and Klyushnikova, T.M., 1987.

Reduction of manganese dioxide by cellfree Acinetobacter calcoaceticus

extracts. Microbiology, 55: 553-558.

Karelova, E., Harichova, J., Stojnev, T., Pangallo, D. and Ferianc, P., 2011. The

isolation of heavy-metal resistant culturable bacteria and resistance

determinants from a heavy-metal-contaminated site. Biologia, 66(1): 18-26.

Page 15: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Kashefi, K., Holmes, D. E., Reysenbach, A. L. and Lovley, D. R. 2002. Use of Fe(III)

as an electron acceptor to recover previously uncultured

hyperthermophiles: Isolation and characterization of Geothermobacterium

ferrireducens gen. nov., sp. nov. Appl. Envol. Microbiol., 68: 1735–1742.

Kashefi, K., Holmes, D.E., Reysenbach, A.L. and Lovley, D.R. 2002. Use of Fe(III)

as an electron acceptor to recover previously uncultured

hyperthermophiles: Isolation and characterization of Geothermobacterium

ferrireducens gen. nov., sp. nov. Appl. Envol. Microbiol., 68: 1735–1742.

Kenneth Todar., 2012. Web Review on Online Textbook of Bacteriology. "The Good,

the Bad, and the Deadly", http://textbookofbacteriology.net/nutgro.html.

Khan, S., Hesham, A.E.L., Qiao, M., Rehman, S. and He, J.Z., 2010. Effect of Cd

and Pb on soil microbial community structure and activities. Evol. Sci.

Polut. Res. 17: 288–296.

Kilburn, C.J., 1987. Manganese, malformations and motor disorders: findings in a

manganese-exposed population. Neurotoxicology 8: 421- 430.

Kim, B., Kim, Y.S., Kim, B.M., Hay, A.G. and McBride, M.B., 2011. Effect of soil

metal contamination on glyphosate mineralization: role of zinc in the

mineralization rates of two copper-spiked mineral soils. Environ. Toxicol.

Chem. 30(3):596-601.

Kinoshita, T., Akita, S., Kobayashi, N., Nii, S., Kawaizumi, F. and Takahashi, K.

2003. Metal recovery from non-mounted printed wiring boards via

hydrometallurgical processing, Hydro-metallurgy, 69: 73-79.

Knight, V. and Blakemore, R., 1998. Reduction of diverse electron acceptors by

Aeromonas hydrophila. Arch. Microbiol., 169: 239–248.

Komaki, H., Maisawa, S., Sugair, K., Kobayashi, Y., and Hashimoto, T., 1999.

Tremor and seizures associated with chronic manganese intoxication.

Brain and Development, 21:122-124.

Kostka, J.E, Wu, J., Nealson, K.H, Stucki, J.W., 1999. Effects of microbial

reduction on physical and chemical properties of clay minerals. Geochim

Cosmochim Acta, 63: 3705–3713.

Kostka, J.E., Dalton, D.D., Skelton, H., Dollhopf, S. and Stucki, J.W., 2002.

Growth of Iron(III)-reducing bacteria on clay minerals as the sole electron

Page 16: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

acceptor and comparison of growth yields on a variety of oxidized iron forms.

Appl. Environ. Microbiol., 68: 6256-6262.

Kostka, J.E., Luther, G.W. and Nealson, K.H., 1995. Chemical and biological

reduction of Mn(III) pyrophosphate complexes e potential importance of

dissolved Mn(III) as an environmental oxidant. Geochimica Et Cosmochimica

Acta., 59 (5): 885-894.

Krishnan, M.S. and Aiyengar, N.K.N. (1944). The iron ore deposits of parts of

Salem and Tiruchirapalli District. Geol. Surv. India. Bull. Series an Econ.

Geol. pp. 164.

Kristensen, E., King, G.M., Holmer, M., Banta, G.T., Jensen, M.H., Hansen, K. and

Bussarawit, N., 1994. Sulfate reduction, acetate turnover and carbon

metabolism in sediments of the Ao Nam Bor mangrove, Phuket, Thailand.

Mar. Ecol. Prog. Ser., 109: 245–255.

Kristensen, E., King, G.M., Holmer, M., Banta, G.T., Jensen, M.H., Hansen, K. and

Bussarawit, N., 1994. Sulfate reduction, acetate turnover and carbon

metabolism in sediments of the Ao Nam Bor mangrove, Phuket, Thailand.

Mar. Ecol. Prog. Ser., 109: 245-255.

Kusel, K., Tanja Porsch, Acker, G. and Stackebrandt, E., 1999. Microbial

reduction of Fe (III) in acidic sediments, isolation of Acidiphillum cryptom

JF-5 capable of coupling the reduction of Fe (III) to the oxidation of glucose.

Appl. Environ. Microbiol., 65(8): 3633- 3640.

Landa, E.R. and Gast, R.G., 1973. Evaluation of crystallinity in Hydrated ferric

oxides. Clays and Clay Minerals, 2: 121-130.

Lee, A.K. and Newman, D.K., 2003. Microbial iron respiration: impacts on

corrosion processes. Appl. Microbiol. and Biotechnol., 62: 134-139.

Lee, J.H., Roh, Y., Kim, K.W. and Hur, H.G., 2007. Organic acid-dependent iron

mineral formation by a newly isolated iron reducing bacterium, Shewanella

sp. HN-41, Geomicrobiol. J., 24: 31-41.

Levy, L.S., Aitken, R,P., Hug. J., Holmes hes, J., Hurley, F., Rumsby, P.C., Searl,

A., Shuker, L.K., Spurgeon, A. and Warren, F., 2004. Occupational

exposure limits: Criteria document for manganese and inorganic

manganese compounds, Institute for Environment and Health, Leicester.

Page 17: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Li, X.M., Zhou, S.G., Li, F.B., Wu, C.Y., Zhuang, L., Xu, W. and Liu, L., 2008.

Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly

isolated Klebsiella pneumonia strain L17. Journal of Applied Microbiology,

106: 130–139.

Lin, B., Braster, M., Van Breukelen, B.M., Van Verseveld, H.W., Westerhoff, H.V.,

and Roling W.F.M., 2005. Geobacteraceae community composition relates

to hydrochemistry and biodegradation in an iron-reducing aquifer polluted

by a neighboring landfill. Appl Environ Microbiol 71: 5983–5991.

Lipson, D.A., Jha, M., Raab, T. K. and Oechel, W. C., 2010. Reduction of iron (III)

and humic substances plays a major role in anaerobic respiration in an

Arctic peat soil, J. Geophys. Res., 115: 1-13.

Liu, C., Kota, S., Zachara, J.M., Fredrickson, J.K. and Brinkman, C.K., 2001.

Kinetic analysis of the bacterial reduction of goethite. Environ. Sci. Technol.,

35, 2482-2490.

Liu, X.F., Supek, F., Nelson, N. and Culotta, V.C., 1997. Negative control of heavy

metal uptake by the Saccharomyces cerevisiae BSD2 gene. J. Biol. Chem.,

272: 11763–11769.

Lloyd, J.R., Lovley, D.R. and Macaskie, L.E., 2004. Biotechnological application of

metal-reducing bacteria. Adv. Appl. Microbiol., 53: 85–128.

Love, C.A., Patel, B.K.C., Nichols, P.D. and Stackebrandt, E., 1993.

Desulfotomaculum australiacum, sp. nov., a thermophilic sulfate reducing

bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl.

Microbiol., 16: 244-251.

Lovley, D.R. and Anderson, R.T., 2000. Influence of dissimilatory metal reduction

on fate of organic and metal contaminants in the subsurface. Hydrogeol. J.,

8: 77–88.

Lovley, D.R. and Chapelle, F., 1995. Deep subsurface microbial processes. Rev.

Geophys 33:365-381.

Lovley, D.R. and Phillips, E.J., 1989. Organic matter mineralization with reduction of

ferric iron in anaerobic sediments. Appl. Environ. Microbiol., 51(4): 683-689.

Page 18: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Lovley, D.R. and Phillips, E.J.P., 1986. Organic matter mineralization with

reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol.,

51: 683-689.

Lovley, D.R. and Phillips, E.J.P., 1988. Novel mode of microbial energy

metabolism: organic carbon oxidation coupled to dissimilatory reduction of

iron or manganese. Appl. Environ. Microbiol., 54: 1472-1480.

Lovley, D.R., 1987. Organic matter mineralization with the reduction of ferric iron:

A review. Geomicrobiol. J., 5:375-399.

Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:

259–287.

Lovley, D.R., 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol., 47: 263–290.

Lovley, D.R., 1995. Bioremediation of organic and metal contaminants with

dissimilatory metal reduction. J. Ind. Microbiol. 14:85–93.

Lovley, D.R., 2000, posting date. The Prokaryotes: Dissimilatory Fe (III)- and

Mn(IV)-reducing prokaryotes. Springer-Verlag, New York Release 3.4.

Lovley, D.R., and Chapelle, F., 1995. Deep subsurface microbial processes. Rev.

Geophys., 33: 365-381.

Lovley, D.R., Chapelle, F.H. and Phillips, E.J.P., 1990. Fev (III)-reducing bacteria

in deeply buried sediments of the Atlantic Coastal Plain. Geology, 18: 954-

957.

Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P. and Woodward, J.C.,

1996. Humic substances as electron acceptors for microbial respiration.

Nature, 382: 445–448.

Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P. and

Coates, J.D., 1998. Humic substances as a mediator for microbially

catalyzed metal reduction. Acta Hydrochim. Hydrobiol., 26: 152–157.

Lovley, D.R., Holmes, D.E. and Nevin, K.P., 2004. Dissimilatory Fe(III) and Mn(IV)

reduction. Adv. Microb. Physiol., 49: 219-86.

Lovley, D.R., Klug, M.J., 1982. Intermediary metabolism of organic matter in

the sediments of a eutrophic lake. Appl Environ Microbiol. 43(3): 552-60.

Page 19: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Lovley, D.R., Phillips, E.J.P. and Lonergan, D.J., 1989. Hydrogen and formate

oxidation coupled to dissimilatory reduction of iron or manganese by

Alteromonas putrefaciens. Appl. Environ. Microbiol., 55: 700–706.

Luu, Y.S. and Ramsay, J.A., 2003. Review: microbial mechanisms of accessing

insoluble Fe (III) as an energy source. World J. Microb. Biotecnol., 19:215-225.

Malik, A. and Jaiswal, R., 2000. Metal resistance in Pseudomonas strains

isolated from soil treated with industrial wastewater. World J. Microbiol.

Biotechnol. 16: 177–182.

Malik, A. and Jaiswal, R., 2000. Metal resistance in Pseudomonas strains isolated

from soil treated with industrial wastewater. World J. Microbiol.Biotechnol.

16: 177–182.

Manovski, S., Roddick F.A. and Britz M.L., 1992.Isolation of lead tolerant microbes

from a contaminated site in Melbourne, Australia. In: Soil Decontamination

Using Biological Processes. EFB Task Group on Soil Decontamination

Using Biological Processes DECHEMA, Frankfurt. pp 689–695.

Mansfeldt, T., Schuth, S., Hausler, W., Wagner, F.E., Kaufhold, S. and Overesch,

M., 2011. Iron oxide mineralogy and stable iron isotope composition in a

Gleysol with petrogleyic properties. J. Soils Sediments, 12: 97–114.

Marmur J., 1961. A procedure for the isolation of deoxyribonucleic acid from

microorganisms. J. Mol. Biol., 3:208–218.

Marschner, P., Fu, Q. and Rengel, Z., 2003. Manganese availability and microbial

populations in the rhizosphere of wheat genotypes differing in tolerance to

Mn deficiency. J. Plant Nutr. Soil Sci., 166: 712-718.

Marsh, T.L. and McInterney M.J. 2001. Relationship of hydrogen bioavailability to

chromate reduction in aquifer sediment. Appl. Envol. Microbiol. 67: 1517-

1521.

Marsh, T.L. and McInterney, M.J., 2001. Relationship of hydrogen bioavailability

to chromate reduction in aquifer sediments. Appl. Envol. Microbiol.,

67:,1517–1521.

Marsili, E., Baron, D.B., Shikhare I.D., Coursolle, D., Gralnick, J.A. and Bond,

D.R., 2008. Shewanella secretes flavins that mediate extracellular electron

transfer. Proc. Natl. Acad. Sci., U.S.A. 105: 3968–3973.

Page 20: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Masscheleyn, P.H., Ronald, D.D. and Patrick, W.H., 1991. Effect of redox potential

and pH on arsenic speciation and solubility in a contaminated soil.

Environ. Sci. Tehnol., 25: 1414-1419.

Matthews, T.H., Doyle, R. J. and Streips, U. N., 1979. Contribution of

peptidoglycan to the binding of metal ions by the cell wall of Bacillus

subtilis. Curr. Microbiol. 3: 51–53.

Mc Cord, J.M., 1998. Iron, free radicals, and oxidative injury. Semin Hematol, 35:

5-12.

McKeague, J.A. and Day, J.H., 1996. Dithionite and oxalate extractable Fe and Al

As aids in differentiating various classes of soils. Cn. Soil. Sci. 46: 13-24.

Mclaughlin, M.J., Parker, D.R. and Clarke, J.M., 1999. Metals and micronutrients-

food safety issues. Field Crop Res., 60: 143–163.

Mclaughlin, M.J., Parker, D.R. and Clarke, J.M., 1999. Metals and micronutrients-

food safety issues. Field Crop Res. 60: 143–163.

Mergler, D., 1994. Nervous system dysfunction among workers with long-term

exposure to manganese. Environmental Research, 64:151-180.

Meruane, G. and Vargas, T., 2003. Bacterial oxidation of ferrous iron by

Acidithiobacillus ferroxidans in the pH range 2.5-7.0. J. Soil. Microbiol. 44:

139-152.

Methe, B., Fraser, C. M., 2004. Roll with the flow: Microbial masters of redox

chemistry. Trends Microbiol., 12, 439–441.

Mevel, G., Prieur, D., 2000. Heterotrophic nitrification by a thermophilic Bacillus

species as influenced by different culture conditions. Canadian J.

Microbiol., 46: 465–473.

Miranda, P., Cabirol, N., George-Tellez, R., Zamudio-Rivera, L.S. and Fernandez,

F.J., 2007. O-CAS, a fast and universal method for siderophore detection.

Journal of Microbiological Methods. 70: 127–131.

Misra, V., Pandey, S.D. and Viswanathan, P.N., 1996. Environmental significance

of humic acid in the sequestration of metals. Chem. Ecol., 13: 103-112.

Moral, R., Gilkes, R.J. and Jordán, M.M., 2005. Distribution of heavy metals in

calcareous and non-calcareous soils in Spain. Water, Air and Soil Pollution

162, 127–142.

Page 21: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Muller-Wegener, U., 1988. Interaction of humic substances with biota. In F.H.

Frimmel and R.F. Christman (ed.), Humic substances and their role in the

environment. John Wiley & Sons, New York, N.Y., p. 179–193.

Murray, J.W., 1979. Iron oxides. In Burns R.G. (ed.), Marine Minerals: Short

Course Notes: Mineralogical Society of America 6: 47-98.

Myers, C.R. and Nealson, K.H., 1988. Microbial reduction of manganese oxides:

interactions with iron and sulfur. Geochimicaet Cosmochimica Acta, 52:

2727-2732.

Myers, C.R. and Nealson, K.H., 1988. Bacterial manganese reduction and growth

with manganese oxide as the sole electron acceptor. Science, 240: 1319-1321.

Myers, C.R. and Nealson, K.H., 1988. Microbial reduction of manganese oxides:

interactions with iron and sulfur. Geochimica Et Cosmochimica Acta., 52

(11): 2727-2732.

Myers, C.R. and Nealson, K.H., 1990. Iron mineralization by bacteria: metabolic

coupling of iron reduction to cell metabolismin Alteromonas putrefaciens

strain MR-1. In Iron Biominerals ed. Frankel, R.B. and Blakemore, R.P. pp.

131-149. New York: Plenum Press.

Myers, C.R. and Nealson, K.H., 1990. Respiration-linked proton translocation

coupled to anaerobic reduction of manganese (IV) and iron (III) in

Shewanella putrefaciens MR-1. Journal of Bacteriology, 172: 6232–6238.

Nakano, M.M.,Dailly, Y.P., Zuber,P.and Clark, D.P.,1997. Characterization of

anaerobic fermentative growth of Bacillus subtilis: identification of

fermentation end products and genes required for growth. Journal of

Bacteriology, 179(21): 6749–6755.

Naresh Kumar, R., Nagendran, R. and Parvathi, K., 2007. Microbial solubilization

of heavy metals from soil using indigenous sulfur oxidizing bacterium:

Effects of sulfur/soil ratio. Journal of Scientific and Industrial research, 66:

680-683.

National Research Council. Iron. Baltimore, MD, University Park Press, 1979.

Requirements of vitamin A, iron, folate and vitamin B12. Report of a Joint

FAO/WHO Expert Consultation. Rome, Food and Agriculture Organization

of the United Nations, 1988 (FAO Food and Nutrition Series, No. 23).

Page 22: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Nealson, K.H. and Myers, C.R., 1992. Microbial reduction of manganese and iron:

new approaches to carbon cycling. Appl. Environ. Microbiol., 58:439-443.

Nealson, K.H., Myers, C.R. and Wimpee, R.R., 1991. Isolation and identification of

manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing

potential in the Black Sea. Deep-Sea Res., 38: S907-S920.

Neha Gupta and and Vijay Kumar, 2012. Identification and Isolation of Heavy

Metal (Copper) Resistant Bacteria. Archives of Applied Science Research, 4

(1):577-583.

Neilands, J.B. 1973. Microbial iron transport compounds (siderochromes), p. 167-

202. In G. L. Eichorn (ed.), Inorganic biochemistry. vol. 1. Elsevier

Scientific Publishing Co., Amsterdam.

Nevin, K. P. and Lovley, D.R., 2002. Mechanisms for Fe(III) oxide reduction in

sedimentary environments. Geomicrobiol.J., 19: 141-159.

Nevin, K.P. and Lovley, D.R., 2002. Mechanisms for Fe(III) oxide reduction in

sedimentary environments. Geomicrobiol. J., 19: 141-159.

Nuzhat, A., Uzma, B., Raihan, S., 2001. Resistance and accumulation of heavy

metals by indigenous bacteria: bioremediation. In: Nuzhat, A., Qureshi,

F.M., Khan, O., Khan, Y., (Eds).Industrial and environmental

biotechnology. Wymondham, UK: Horizon Scientific Press; 2001.p.81–102.

Nwuche, C.O. and Ugoji, E.O. 2008.Effects of heavy metal pollution on the soil

microbial activity. Int. J. Evol. Sci. Tech. 5: 409–414.

O’Loughlin, E.J., 2008. Effects of electron transfer mediators on the

biodegradation of lepidocrocite (γ-FeOOH) by Shewanella putrefaciens

CN32. Environ. Sci. Technol., 42(18): 6876−6882.

Obuekwe, C.O., Weslake, D.W.S. and Cook, F.D., 1981. Effect of nitrate on

reduction of ferric iron by a bacterium isolated from crude oil. Can. J.

Microbiol., 27: 692-697.

Ogilvie, L.A. and Grant, A., 2008. Linking pollution induced community tolerance

(PICT) and microbial community structure in chronically metal polluted

estuarine sediments. Mar. Evol. Res. 65: 187–198.

Page 23: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Okoro, H.K., Fatoki, O.S., Adekola, F.A., Ximba, B.J. and Snyman, R.G., 2012. A

Review of Sequential Extraction Procedures for Heavy Metals Speciation in

Soil and Sediments. 1: 181. doi:10.4172/scientificreports.181.

Ottow, J.C.G. and Von Klopotek, A., 1969. Enzymatic Reduction of Iron Oxide by

Fungi. Applied Microbiology, 19 (1): 41-43.

Papanikolaou, G. and Pantopoulos, K., 2005. Iron metabolism and toxicity.

Toxicology and Applied Pharmacology, 202: 199– 211.

Parmar, N., Gorby, Y.A., Beveridge, T.J., Ferris, F.G., 2001. Formation of green

rust and immobilization of nickel in response to bacterial reduction of

hydrous ferric oxide. Geomicrobiology Journal, 18: 375–385.

Pechrada, J., Sajjaphan, K. and Sadowsky, M.J., 2010. Structure and diversity of

arsenic-resistant bacteria in an old tin mine area of Thailand. J. Microbiol.

Biotechnol. 20: 169–178.

Pelczar, Michael J., Chan, E.C.S., Krieg, Noel R., 2003. Microbiology of soil.

Microbiology, 5th Edn. Tata McGraw-Hill Publishing Company Limited, New

Delhi.

Petrie, L., North, N. N., Dollhopf, S. L., Balkwill, D. L. and Kostka, J. E. 2003.

Enumeration and characterization of iron(III)-reducing microbial

communities from acidic subsurface sediments contaminated with

uranium(VI). Appl. Envol. Microbiol. 69: 7467–7479.

Pettrucci, Ralph, William Harwood, and Geoffrey Haring, F., 2007. General

Chemistry: Principles and modern Applications. Upper Saddle River:

Pearson Prentice Hall.

Phillips, E.J.P. and Lovley, D.R. 1987. Determination of Fe(III) and Fe(II) in oxalate

extracts of sediment. Soil Sci. Soc. Am. J., 51: 938-941.

Piotrowska-Seget, Z., Cycon, M. and Kozdroj, J., 2005. Metal-tolerant bacteria

occurring in heavily polluted soil and mine spoil. J. Appl. Soil Ecology, 28:

237–246.

Prakash, O, Gihring, T.M, Dalton, D.D., 2010. Geobacter daltonii sp. nov., an

Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow

subsurface exposed to mixed heavy metal and hydrocarbon contamination.

Int J Syst Evol Microbiol., 60: 546–553.

Page 24: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Rahman, A., Ali, A., Muneer, B., and Shakoori, A.R., 2007. Resistance and

biosorption of mercury bacteria isolated from industrial effluents. Pakistan

J. Zool., 39: 137-146.

Raja, S., Rajendran, S., Poovalinga Ganesh, B., Thirunavukkarasu, A., 2010.

Study on Hyperspectral Signatures for Magnetite Iron ore in

Thattayengerpet region of Trichirappalli district in Tamil Nadu State,India.

International Journal of Geomatics and Geosciences, 1: 188-196.

Rajbanshi, A., 2008. Study on heavy metal resistant bacteria in Guheswori sewage

treatment plant. Our Nature, 6: 52-57.

Rajhi, H., Diaz, E.E. and Rojas, P., Sanz, J.L., 2013. Microbial Consortia for

Hydrogen Production Enhancement. Curr Microbiol. 67: 30–35.

Ranjard, L., Brothier, E. and Nazaret, S., 2000. Sequencing bands of ribosomal

intergenic spacer analysis fingerprints for characterization and micro

scale distribution of soil bacterium populations responding to mercury

spiking. Appl. Environ. Microbiol., 66: 5334–5339.

Rashid, G. H. and Schaefer, R., 1988. The influence of glucose and other sources

of carbon on nitrate reduction rates in two temperate forest soils. Plant

Soil, 106: 43–48.

Raskin, I., Smith, R. D. and Salt, D. E. 1997. Phytoremediation ofmetals: using

plants to remove pollutants from the environment. Curr. Opin. Biotechnol.,

8: 221–6.

Rathnayake, I.V.N., Megharaj, M., Krishnamurti, G.S.R. and Bolan, N.S., 2013.

Heavy metal toxicity to bacteria – Are the existing growth media accurate

enough to determine heavy metal toxicity?. Chemosphere, 90:1195-1200.

Ratledge, C. and Dover, L.G., 2000. Iron metabolism in pathogenic bacteria.

Annual Reviews in Microbiology, 54, 881–941.

Ray, S. and Ray, M.K., 2009. Bioremediation of heavy metal toxicity-with special

reference to chromium. Al Ameen J. Med. Sci., 2:57-63.

Reimann, A., Biebl, H. and Deckwer, W., 1996. Influence of iron, phosphate and

methyl viologen on glycerol fermentation of Clostridium butyricum. Appl.

Microbiol. Biotechnol., 45: 47–50.

Page 25: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Rengel, Z., 2000. Uptake and transfort of manganese in plants, in A. Sigel and H.

Sigel: Metal ions in biological systems. Marcel Dekker, New York, p. 57-87.

Richard, A.R., William, D.B., Angela, S. Fisher Richard, R. UNZ, and Brain, A.

Dempsey. 2002. Enhancement of biological reduction of hemetite by

electron shttling and Fe (II) complexation. Environmental Science and

Technology, 36: 1939 – 1946.

Richardson, J.L., Arndt, J.L. and Montgomery, J.L., 2001. Hydrology of wet land

related soils. In: Richardson J.L and Vepraskas M.J., (eds) Wetland soils:

Genesis, Hydrology, Landscapes, and Classification. CRC Press LLC, Boca

Raton, FL.

Roane, T.M. and Kellog, S.T. 1996. Characterization of bacterial communities in

heavy metal contaminated soils. Can. J. Microbiol., 42: 593–603.

Roberts, J.L., 1947. Reduction of ferric hydroxide by strains of Bacillus polymyxa.

Soil Sci., 63: 135-140.

Roden, E.E. and Lovely, D.R., 1993. Dissimilatory Fe(III) reduction by the

marine microorganism, Desulfuromonas acetoxidans. Appl. Environ.

Microbiol., 59:734-742.

Roden, E.E. and Urrutia, M.M., 2002. Influence of biogenic Fe(II) on bacterial

crystalline Fe(III) oxide reduction. Geomicrobiol. J. 19: 209-251.

Roden, E.E. and Wetzel, R.G., 2002. Kinetics of microbial Fe (III) oxide

reduction in freshwater wetland sediments. Limnol. Oceanogr. 47: 198-

211.

Roden, E.E. and Zachara, J.M., 1996. Microbial Reduction of Crystalline Iron(III)

Oxides: Influence of oxide surface area and potential for cell growth.

Environ. Sci. Technol., 30: 1618-1628.

Roels, H., Lauwerys, R., Buchet, J.P., Genet, P., Sarhan, M.J., Hanotiau, I., de

Fays, M., Bernard, A. and Stanescu, D., 1987. Epidemiological survey

among workers exposed to manganese: Effects on lung, central nervous

system, and some biological indices. Am. J. Ind. Med., 11: 307-327.

Roels, H.A., 1992. Assessment of the permissible exposure level to manganese in

workers exposed to manganese dioxide dust. British Journal of Industrial

Medicine, 49: 25–34.

Page 26: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Roh, Y., Gao, H., Vali, H., Kennedy, D.W., Yang, Z.K., Gao, W., Dohnalkova, A.C.,

Stapleton, R.D., Moon, J.W., Phelps, T.J., Fredrickson, J.K. and Zhou, J.,

2006. Metal reduction and iron Biomineralization by a pschrotolerant Fe

(III) Reducing Bacterium, Shewanella sp.strain Pv-4. Appl. Environ.

Microbiol., 72: 3236-3244.

Rompp, H., 1990. Römpp Chemie-Lexikon, Band 2. Stuttgart: Georg Thieme Verlag.

Rossello-Mora R. A., Caccavo F. J. R., Osterlehner N., Springer, N., Spring, S.,

Schuler, D., Ludwig, W., Amann, R., Vannacanneyt, M. and Schleifer, K. H.

1994. Isolation and taxonomic characterization of a halotolerant,

facultative anaerobic iron-reducing bacterium. Syst. Appl. Microbiol., 17:

569–573.

Ryan, T.P., and Aust, S.D., 1998. The role of iron in oxygen mediated toxicities.

Crit Rev Toxicol., 22:119-41.

Salas, E.C., Berelson, W.M. Hammond, D.E. Kampf, A.R. and Nealson, K.H., 2010.

The impact of bacterial strain on the products of dissimilatory iron

reduction. Geochim. Cosmochim. Acta., 74(2): 574−583.

Salt, D. E, Smith, R. D, Raskin, I., 1998. Phytoremediation. Annu Rev Plant

Physiol Plant Mol Biol. 3: 468–74.

Sandaa, R.A., Torsvik, V., Enger, O., Daae, F.L., Castberg, T. and Hahn, D., 2006.

Analysis of bacterial communities in heavymetal-contaminated soils at

different levels of resolution. FEMS Microbiol. Ecol. 30: 237–251.

Sandell, E.B., (1959). Colorimetric determination of trace metals, 3rd edition

interscience publishers inc. Newyork.

Santos, S., Isabel F.F.N., Machado, M.D., Helena, M.V.M. and Soares, E. D., 2014.

Siderophore Production by Bacillus megaterium: Effect of Growth Phase

and Cultural Conditions. Appl. Biochem. Biotechnol., 172: 549–560.

Saravanan, S., 1969. Origin of iron ores of Kanjamalai, Salem District, Madras

state:Indian Mineralogist, P.R.J. Naidu, Vol. 10, pp. 236244.

Schimmield, G.B. and Pedersen, T.F., 1990. The geo chemistry of reactive trace

metals and halogens in hemipelagic continental margin sediments. Rev.

Aquatic Sci., 3: 255-279.

Page 27: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Schlegel, H.G., Cosson, J. P., Baker, A.J.M., 1991. Nickel-hyperaccumulating

plants provide a niche for nickel-resistant bacteria. Botany Acta, 104: 18–

25.

Schwertmann, U. and Taylor, R.M., 1989. Iron oxides, Chapter 8. In Dixon,J.B.,

and Weed, S.B., eds., Minerals in Soil Environments, 2nd edn.,Madison,

WI: Soil Sci. Soc. America Book Ser. No. 1, pp. 379–438.

Schwertmann, U., 1993. Relations between iron oxides, soil color, and soil

formation. In Bigham, J.M., and Giolkosz, E.J., eds., Soil Color. SSSA

Spec. Publ., 31: 51–69.

Schwertmann, U., and Cornell, R.M., 2000. Iron oxides in the laboratory. 2nd Ed.

Weinheim: Wiley‐VCH, 188 pp.

Schwertmann, U., and Taylor, R.M., 1989. Iron oxides, Chapter 8. In Dixon, J.B.,

and Weed, S.B., eds., Minerals in Soil Environments, 2nd edn.,Madison,

WI: Soil Sci. Soc. America Book Ser. No. 1, pp. 379–438.

Schwyn, B. and Neilands, J.B.,1987. Universal chemical assay for the detection

and determination of siderophores. Anal Biochem.,160: 47–56.

Seeliger, S., Ruwisch, R.C. and Schink, B., 1998. A periplasmic and

extracellular c-type cytochrome of Geobacter sulfurreducens acts as a

ferric iron reductase and as an electron carrier to other acceptors or to

partner bacteria. J. Bacteriol., 180: 3686-3691.

Semple, K.M. and Westlake, D.W.S., 1987. Characterization of iron-reducing

Alteromonas putrefaciens strains from oil field fluids. Can. J. Microbiol., 33:

366-371.

Shakya, B. and Pradhan, 2013. Isolation and characterization of arsenic resistant

Pseudomonas stutzeri ASP3 for its potential in arsenic resistance and

removal. Kathmandu University Journal of Science, Engineering and

Technology, 9(I): 48-59.

Page 28: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Shange, R.S., Ankumah, R.O., Ibekwe, A.M., Zabawa, R. and Dowd, S.E., 2012.

Distinct soil bacterial communities revealed under a diversely managed

agro ecosystem. PLOS One, 7: 403-38.

Sherameti, I. and Varma, A., 2011. Detoxification of Heavy Metals, Series: Soil

Biology, Vol. 30. Springer - Verlag, pp. 448.

Shi, L.N., Zhang, X. and Chen, Z.L., 2010. Removal of chromium(VI) from

wastewater using bentonite-supported nanoscale zero-valent iron. Water

Res., 2: 1879-2010.

Silver, S., Phung, L.T., Lo J-F. and Gupta, A., 2001. Toxic metal resistances:

molecular biology and the potential for bioremediation. In: Nuzhat

A,Qureshi, F.M., Khan, O., Khan, Y. (Eds). Industrial and environmental

biotechnology. Wymondham, UK: Horizon Scientific Press, p. 33– 41.

Simek, M. and Cooper, J.E., 2002. The influence of soil pH on denitrification:

progress towards the understanding of this interaction over the last 50

years. Eur. J. Soil. Sci., 53: 345–354.

Sokolova-Dubina, G.A. and Deryugina, Z.P., 1967. On the role of microorganisms

in the formation of rhodochrosite in Punnus-Yarvi Lake. Microbiology., 36:

445-451.

Sorensen, J., Christensen, D. and Jorgensen, B.B., 1981. Volatile fatty acids and

hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine

sediment. Appl .Environ. Microbiol., 42: 5-11.

Soriano, A., Pallares, S., Pardo, F., Vicente, A.B., Sanfeliu, T. and Bech, J., 2012.

Deposition of heavy metals from particulate settleable matter in soils of an

industrialised area. Journal Geochemical Exploration, 113: 36-44.

Southam, G., 2000. Bacterial surface-mediated mineral formation. In:

Environmental Microbe-Mineral Interactions. Lovley DR (ed) ASM Press,

Washington, DC, p 257-276.

Sparks, N.H.C., Mann, S., Bazylinski, D.A., Lovley, D.R., Jannasch, H.W., Frankel,

R.B., 1990. Structure and morphology of magnetite anaerobically-produced

by a marine magnetotactic bacterium and a dissimilatory iron-reducing

bacterium. Earth Planet Sci Lett, 98: 14-22.

Page 29: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Srinivasamoorthy, K., Vijayaraghavan. K., Vasanthavigar, M., Rajivgandhi, R.,

Sarma, V.S., 2011. Integrated techniques to identify groundwater

vulnerability to pollution in a highly industrialized terrain, Tamilnadu,

India. Environ Monit Assess, 182: 47–60.

Stevenson, F.J., 1994. Humus chemistry: genesis, composition, reactions. John

Wiley and Sons, New York, N.Y.

Stone, A.T. and Morgan, J.J., 1984. Reduction and dissolution of manganese (III)

and manganese (IV) oxides by organics: 2. Survey of the reactivity of

organics. Environmental Science and Technology, 18 (8): 617-624.

Straub, K.L., Benz, M. and Schink, B., 2001. Iron metabolism in anoxic

environments at near neutral pH. FEMS Microbiology Ecology, 34: 181-186.

Straub, K.L., Hanzlik, M. and Buchholz-Cleven, B.E.E., 1998. The use of

biologically produced ferrihydrite for the isolation of novel iron reducing

bacteria. Syst. Appl. Microbiol., 21, 442–449.

Stumm, W. and Sulzberger, B., 1992. The cycling of iron in natural environments:

Considerations based on laboratory studies of heterogeneous redox

processes.

Suryadi, Y., Susilowati, D.N., Putri, K.E. and Mubarik, N.R., 2011. Antagonistic

activity of indigenous Indonesian bacteria as the suppressing agent of rice

fungal pathogen. J.Int. Environ. Appl. Sci. 6(4):558-568.

Suzana, T., Britz, L.M. and Bhave, M., 1997. Detection of heavy metal ion

resistance genes in gram-positive and gram-negative bacteria isolated from

a lead-contaminated site. Biodegradation, 8: 113–124.

Tas, D.O. and Pavlostathis, S.G., 2007. The inflence of iron reduction on the

reductive biotranformation of pentachloronitrobenzene. Europ. J. Soil

Microbiol., 43: 264-275.

Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J. Parker, D., 2004.

Biogenic manganese oxides: Properties and mechanisms of formation.

Annu. Rev. Earth Planet. Sci., 32: 287–328

Tebo, B.M., Celement, B.G. and Dick, G.J., 1996. Biotransformations of

manganese. In Biotransformation and biodegradation, ed. DL Sparks, TJ

Grundl, Washington, DC: Am. Chem. Soc. pp. 1223-1238.

Page 30: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Thamdrup, B., Rossello-Mora, R., Amann, R., 2000. Microbial manganese and

sulfate reduction in black sea shelf sediments. Appl. Environ. Microbiol., 66:

2888 –2897.

Thirunavukkarasu, A., Rajendran, S., Poovalinga Ganesh, B., Shankar, K., Raja,

S., Rajamanickam, M. and Maharani, K., 2008. Trace Element Studies and

Origin of Magnetite Quartzite Iron Formations of Northern District of Tamil

Nadu, India. Asian Journal of Applied Sciences, 1: 327-333.

Thomas-Keprta, K.L., Bazylinski, D.A., Kirschvink, J.L., Clemett, S.J., McKay,

D.S., Wentworth, S.J., Vali, H., Gibson, E.K. and Romanek, C.S., 2000.

Elongated prismatic magnetite (Fe3O4) crystals in ALH84001 carbonate

globules: potential martian magnetofossils. Geochim Cosmochim Acta, 64:

4049-4081.

Tim Mansfeldt, Stephan Schuth, Werner Häusler, Friedrich E. Wagner, Stephan

Kaufhold and Mark Overesch, 2011. Iron oxide mineralogy and stable iron

isotope composition in a Gleysol with petrogleyic properties. J. Soils

Sediments, 12:97–114.

Timble, R.B. and H.L. Ehrlich. 1968. Bacteriology of manganese nodules. III.

reduction of MnO2 by two strains of nodule bacteria. Appl. Microbiol. 16,

695-702.

Tobler, N., 2003. Iron Reduction in Freshwater and Saltwater Environments. In.

Microbial Diversity Summer Course, Woods Hole. p. 1-13.

Trimble, R.B., and Ehrlich, H.L., 1970. Bacteriology of manganese nodules. IV.

Induction of an MnO2-reductase system in a marine Bacillus. Appl.

Microbiol., 19: 966-972.

Turick, C.E., Tisa, L.S., Caccavo, F. Jr., 2002. Melanin production and use as a

soluble electron shuttle for Fe (III) oxide reduction and as a terminal

electron acceptor by Shewanella alga BrY. App. Environ. Microbiol., 68:

2436-2444.

Unaldi, M.N., Korkmaz, H., Arikan, B. and Coral, G., 2003. Plasmid-Encoded

heavy metal resistance in Pseudomonas sp. Bull. Environ. Contam. Toxicol.,

71: 1145-1150.

Page 31: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Uren, N. C., 1981. Chemical reduction of an insoluble higher oxide of

manganese by plant roots. J. Plant Nutr., 4: 65-71.

Usman, M., Hanna, K., Abdelmoula, M., Zegeye, A., Faure, P. and Ruby, C., 2012.

Formation of green rust via mineralogical transformation of ferric oxides

(ferrihydrite, goethite and hematite). Applied Clay Sci., 64: 38–43.

Valko, M., Morris, H. and Cronin, M.T.D., 2005. Metals, toxicity and oxidative

stress. Current Medicinal Chemistry, 12: 1161-1208.

Van Hullebusch, E. D., Peerbolte, A., Zandvoort, M. H. and Lens, P. N. 2005.

Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and

sequential extraction. Chemosphere 58: 493–505.

Vandieken, V. and Thamdrup, B., 2013. Identification of acetate-oxidizing bacteria

in a coastal marine surface sediment by RNA-stable isotope probing in

anoxic slurries and intact cores. FEMS Microbiol Ecol., 84: 373–386.

Vandieken, V., Pester, M., Finke, N., Hyun, J.H., Friedrich, M.W., Loy, A. and

Thamdrup, B., 2012. Three manganese oxide-rich marine sediments

harbor similar communities of acetate oxidizing manganese-reducing

bacteria. ISME J., 6: 2078–2090.

Velde, B., 1995, Composition and mineralogy of clay minerals, in Velde, B., ed.,

Origin and mineralogy of clay s: New York, Springer-Verlag, p. 8-42.

Velusamy, P., Awad, Y.M., Abd El-Azeem, S.A.M. and Ok, Y.S., 2011. Screening of

Heavy Metal Resistant Bacteria Isolated from HydrocarbonContaminated

Soil in Korea. Journal of Agricultural, Life and Environmental Sciences,

23(1): 40-43.

Vicente, A.B., Sanfeliu, T., Jordán, M.M., Sánchez, A. and Esteban, M.D., 2008. Air

prediction models of pollutants in an industrialised area of the Mediterranean

basin. Fresenius Environmental Bulletin, 17 [10a]: 1554-1564.

Villalobos, M., Toner, B., Bargar, J. and Sposito, G., 2003. Characterization of the

manganese oxide produced by Pseudonomas putida strain MnB1. Geochim.

Cosmochim. Ac., 67 (14): 2649-2662.

Villar, L.D. and Garcia, O.J., 2006. Effect of Anaerobic Digestion and Initial pH on

Metal Bioleaching from Sewage Sludge. Journal of Environmental Science

and Health Part A., 41: 211–222.

Page 32: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Voegelin, A., Weber, F.-A. & Kretzschmar, R. 2007. Distribution and speciation of

arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF

element mapping and EXAFS spectroscopy. Geochimica et Cosmochimica

Acta, 71, 5804-5820.

Voordeckers, J.W, Kim, B.C, Izallalen, M., Lovley, D.R., 2010. Role of Geobacter

sulfurreducens outer surface c-type cytochromes in reduction of soil humic

acid and anthraquinone- 2,6-disulfonate. Appl Environ Microbiol., 76:

2371–2375.

Vrind, J.P.M., Boogerd, F.C. and De Vrind-De Jong, E.W., 1986. Manganese

reduction by a marine Bacillus species. J. Bacteriol., 167: 30-34.

Wayne, L.N., Munakata, N., Horneck, G., Melosh, H.J. and Setlow, P., 2000.

Resistance of Bacillus endospores to and extreme terrestrial and

extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548-572.

Webb, J. S., McGinness, S., Lappin-Scott, H. M., 1998. Metal removal by

sulphate reducing bacteria from natural and constructed wetlands.

Journal. Applied. Microbiology, 84: 240-248.

Weber, K.A. Churchill, P.F., Kukkadapu, KK. and Roden, E.E., 2006. Anaerobic

redox cycling of iron by freshwater sediment microorganisms. Environ.

Microbiol. doi:10.1111/j.1462-2920.2005.00873x (7) (PDF).

Wegener, M.U., 1988. Interaction of humic substances with biota, In F. H. Frimmel

and R. F. Christman (ed.), Humic substances and their role in the

environment. John Wiley and Sons, New York, N.Y. p.179-193.

Wei, G., Fan, L., Zhu, W., Fu, Y., Tang, M., 2009. Isolation and characterization

of the heavy metal resistant bacteria CCNWRS33-2 isolated from root

nodule of Lespedeza cuneatain gold mine tailings in China. J. Hazard.

Mater. 162: 50–56.

Weller, D.M. 1988. Biological control of soil borne pathogens in the rhizosphere

with bacteria. Ann. Rev. Pythopathol. 26:379-407.

Wells, M.S., Awad, W.M., 1992. Iron and heme metabolism. In: Devlin TM, editor.

Textbook of biochemistry: with clinical correlations. 3rd ed. New York:

Wiley-Liss, Inc; p.1001-23.

Page 33: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Wennberg, A., Iregren, A., Struwe, G., Cizinsky, G., Hagman, M. and Johansson,

L., 1991. Manganese exposure in steel smelters a health hazard to the

nervous system. Scand. J. Work Environ. Health., 17: 255-262.

Wernick, I. and Themelis, N.J., 1998. Recycling Metals for the Environment.

Annual Reviews Energy and Environment, 23: 465-497.

Winkelmann, G., 1991. Specificity of iron transport in bacteria and fungi, p. 65–

105. In G. Winkelmann (ed.), Handbook of microbial iron chelates. CRC

Press, Inc., Boca Raton, Fla.

World Health Organization (WHO), 2011. Guidelines for Drinking water Quality, 4th

edition, WHO Press, Geneva, Switzerland, ISBN 978 92 4 154815 1.

Woznica, A., Dzirba, J., Manka, D. and Labuzek, S., 2003. Effects of electron

transport inhibitors on iron reduction in Aeromonas hydrophila strain KB1.

Anaerobe 9, 125–130.

Wright, A.L. and Reddy, K.R. 2001. Phosphorus lading effects on extracellular

enzyme activity in Everglades wetland soils. Soil Sci. Soc. Am. J., 65: 588–

595.

Wu C.Y., Zhuang L., Zhou S.G., Li F.B. and Li Z.M. 2010. Fe(III)-enhanced

anaerobic transformation of 2,4-dichlorophenoxyacetic acid byan iron-

reducing bacterium Comamonas koreensis CY01. FEMS Microbiol. Ecol.

71:106–113.

Xuezheng, L., Aiguo, G., Haowen, C., 2008. Isolation and phylogenetic analysis of

cultivable manganese bacteria in sediments from the Arctic Ocean. Acta

Ecologica Sinica, 28(12): 6364-6370.

Yamaguchi, N., Kawasaki, A., Iiyama, I., 2009. Distribution of uranium in soil

components of agricultural fields after long term application of phosphate

fertilizers. Sci. Total. Environ., 407: 1383–1390.

Yang, L., Steefel, C.I. Marcus, M.A. and Bargar J.R., 2010. Kinetics of Fe (II)-

catalyzed transformation of 6-line ferrihydrite under anaerobic flow

conditions. Environ. Sci. Technol., 44: 5469–5475.

Yarlagadda, V.N., Gupta, A., Dodge, C.J. and Francis, A.J., 2012. Effect of

exogenous electron shuttles on growth and fermentative metabolism in

Clostridium sp. BC1. Bioresource Technology, 108: 295–299.

Page 34: References - Shodhganga : a reservoir of Indian theses ...shodhganga.inflibnet.ac.in/bitstream/10603/60302/13/13_references.pdf · References Abou-Shanab, R.A.I., Van Berkum, P.,

Yilmaz, E.I., 2003. Metal tolerance and biosorption capacity of Bacillus circulans

strain EB1. Res. Microbiol. 154:409–415.

Zachara, J.M., Fredrickson, J.K., Li, S.M., Kennedy, D.W., Smith, S.C. and

Gassman, P.L., 1998. Bacterial reduction of crystalline Fe3+ oxides in

single phase suspensions and subsurface materials. Am Mineral. 83:

1426–1443.

Zegeye, A., Ruby, C. and Jorand, F., 2007. Kinetic and thermodynamic analysis

during dissimilatory γ-FeOOH reduction: Formation of green rust 1 and

magnetite. Geomicrobiol. J., 24: 51−64.

Zehnder, A.J.B. and Stumm, W., 1988. Geochemistry and biogeochemistry of

anaerobic habitats, In A. J. B. Zehnder (ed.), Biology of anaerobic

microorganisms. John Wiley and Sons, New York, N.Y. p. 1-38.

Zhang, L.N.X. and Chen, Z. L., 2010. Removal of chromium(VI) from wastewater

using bentonite-supported nanoscale zero-valent iron. Water Res., 2: 1879-

2010.

Zhao, J.S., Manno, D., Beaulieu, C., Paquet, L. and Hawari, J. 2005.

Shewanella,sediminis,sp. nov., a novel Na+ requiring and hexahydro-1,3,5-

trinitro-1,3,5-triazine-degrading bacterium from marine sediment. Int.J.Sys

Evol.Microbiol., 55: 1511–1520.

Zheng, W.Y. and Li, H.R., 2005. Bio-chemistry process of iron and manganese

recycling in water-mineral-microbe system. Nonferrous Metals, 57(3): 67–69.

Zinder, B., Furrer, G. and Stumm, W., 1986. The coordination chemistry of

weathering: II. Dissolution of Fe(III) oxides. Geochimica et Cosmochimica

Acta, 50: 1861–1869.

Zwietering, M.H., Jongenburger, I., Rombouts, F.M. and Vantriet, K., 1990. Modeling

of the bacterial growth curve. Appl. Environ. Microbiol., 56: 1875–1881.