references - university of adelaide · references: abal, e.g ... mode of action of photosystem ii...

51
128 REFERENCES: Abal, E.G. (1996). Light, nutrient and water quality interactions with the seagrass, Zostera capricorni Aschers. Ph.D. Thesis, Department of Botany, The University of Queensland, Brisbane, Australia. Andrews, T.J., Abel, K.M. (1979). Photosynthetic Carbon Metabolism in Seagrasses. Plant Physiology 63, 650-656. Arthur, E.L., Perkovich, B.S., Anderson, T.A., Coats, J.R. (2000). Degradation of an atrazine and metolachlor herbicide mixture in pesticide-contaminated soils from two agrochemical dealerships in Iowa. Water, Air and Soil Pollution 119(1-4), 75-90. Asmus, R.M., Sprung, M., Asmus, H. (2000). Nutrient fluxes in intertidal communities of a South European lagoon (Ria Formosa): Similarities and differences with a northern Wadden Sea bay (Sylt-Romo Bay). Hydrobiologia . 436, 217-235. Aspelin, A.L. (1997). Pesticides industry sales and usage: 1994 and 1995 market estimates. U.S. EPA. Office of Pesticide Programs. Biological and Economic Analysis Division. Washington, D.C.; Aug. Badger, M.R., Price, G.D. (1994). The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 369-392. Beardall, J., Beer, S., Raven, J.A. (1998). Biodiversity of marine plants in an era of climate change: Some predictions based on physiological performance. Botanica Marina 41(1),113-123. Bell, J.D., Pollard, D.A. (1989). Ecology of fish assemblages and fisheries associated with seagrasses. In: Larkum, A.W.D., McComb, A.J. and Shepherd, S.A. (eds) Biology of Seagrasses, Elsevier, Amsterdam. 15 – 23. Bester, K. (2000). Effects of pesticides on seagrass beds. Helgoland-Marine-Research 2000; 54(2-3), 95-98. Bidleman, T.F. (1999). Atmospheric transport and air-surface exchange of pesticides. Water Air and Soil Pollution. Oct. 115(1-4), 115-166. Bird, K.T., Johnson, J.R., Jerilyn, J-S. (1998). In vitro culture of the seagrass Halophila decipiens. Aquatic Botany 60(4), 377-387. Blackburn, T.H. (1990). Elemental cycles. Seagrass research methods, Published by United Nations Educational, Scientific and Cultural Organization (UNESCO), 167 - 176.

Upload: trinhmien

Post on 07-Aug-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

128

REFERENCES:

Abal, E.G. (1996). Light, nutrient and water quality interactions with the seagrass,Zostera capricorni Aschers. Ph.D. Thesis, Department of Botany, The University ofQueensland, Brisbane, Australia.

Andrews, T.J., Abel, K.M. (1979). Photosynthetic Carbon Metabolism in Seagrasses.Plant Physiology 63, 650-656.

Arthur, E.L., Perkovich, B.S., Anderson, T.A., Coats, J.R. (2000). Degradation of anatrazine and metolachlor herbicide mixture in pesticide-contaminated soils from twoagrochemical dealerships in Iowa. Water, Air and Soil Pollution 119(1-4), 75-90.

Asmus, R.M., Sprung, M., Asmus, H. (2000). Nutrient fluxes in intertidal communitiesof a South European lagoon (Ria Formosa): Similarities and differences with a northernWadden Sea bay (Sylt-Romo Bay). Hydrobiologia . 436, 217-235.

Aspelin, A.L. (1997). Pesticides industry sales and usage: 1994 and 1995 marketestimates. U.S. EPA. Office of Pesticide Programs. Biological and Economic AnalysisDivision. Washington, D.C.; Aug.

Badger, M.R., Price, G.D. (1994). The role of carbonic anhydrase in photosynthesis.Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 369-392.

Beardall, J., Beer, S., Raven, J.A. (1998). Biodiversity of marine plants in an era ofclimate change: Some predictions based on physiological performance. Botanica Marina41(1),113-123.

Bell, J.D., Pollard, D.A. (1989). Ecology of fish assemblages and fisheries associatedwith seagrasses. In: Larkum, A.W.D., McComb, A.J. and Shepherd, S.A. (eds) Biology ofSeagrasses, Elsevier, Amsterdam. 15 – 23.

Bester, K. (2000). Effects of pesticides on seagrass beds. Helgoland-Marine-Research2000; 54(2-3), 95-98.

Bidleman, T.F. (1999). Atmospheric transport and air-surface exchange of pesticides.Water Air and Soil Pollution. Oct. 115(1-4), 115-166.

Bird, K.T., Johnson, J.R., Jerilyn, J-S. (1998). In vitro culture of the seagrass Halophiladecipiens. Aquatic Botany 60(4), 377-387.

Blackburn, T.H. (1990). Elemental cycles. Seagrass research methods, Published byUnited Nations Educational, Scientific and Cultural Organization (UNESCO), 167 - 176.

Page 2: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

129

Bollag, J-M. (1992). Decontaminating soil with enzymes. Environmental Science &Technology 26(10), 1876-1881.

Bowes, G., Ogren, W.L. (1972). Oxygen inhibition and other properties of soybeanribulose-1, 5-diphosphate carboxylase. Journal of Biological Chemistry 247, 2171-2176.

Bowes, G., Srinath, K.R, Estavillo, G.M., Reiskind, J.B. (2002). C4 mechanisms inaquatic angiosperms: comparisons with terrestrial C4 systems. Funct. Plant Biol. 29,379-392.

Bowmer, K.H. (1982). Adsorption characteristics of seston in irrigation water:Implications for the use of aquatic herbicides. Australian Journal of Marine andFreshwater Research 33(3), 443-458.

Brouns, J.J.W.M. (1985). The plastochrone interval method for the study of theproductivity of seagrasses: possibilities and limitations. Aquatic Botany 21, 71-88.

Bulthuis, D.A. (1990). Leaf surface area. Seagrass research methods, Published byUnited Nations Educational, Scientific and Cultural Organization UNESCO, 69-70.

Caffrey, J.M., Kemp, W.M. (1990). Nitrogen cycling in sediments with estuarinepopulations of Potamogeton perfoliatus and Zostera marina. Marine Ecology ProgressSeries 66(1-2), 147-160.

Chkanikov, D.I., Pavlova, N.N., Makeev, A.M., Nazarova, T.A. (1984). Picloram and2,4-D conjugates with mustard oils in cruciferous plants. Fiziologiya Rastenii 31(2),321-327.

Clarke, G.M. (1980). Statistics and Experimental Design (second edition). EdwardArnold (Publishers) Ltd. London, 37-43.

Clough, B.F., Attiwill, P.M. (1980). Primary productivity of Zostera muelleri inWesternport Bay (Victoria, Australia). Aquatic Botany 9(1), 1-14.

Connolly, R.M. (1994). The role of seagrass as preferred habitat for juvenileSillaginodes punctata (Cuv. and Val.) (Sillaginidae, Pisces): Habitat selection orfeeding? Journal of Experimental Marine Biology and Ecology 180(1), 39-47.

Craven, P.A., Hayasaka, S.S. (1982). Inorganic phosphate solubilization by rhizospherebacteria in a Zostera marina community. Canadian Journal of Microbiology 28(6), 605-610.

Czerny, A.B., Dunton, K.H. (1995). The effects of in situ light reduction on the growthof two subtropical seagrasses, Thalassia testudinum and Halodule wrightii. Estuaries 18,418-427.

Page 3: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

130

Dahroug, S., Mueller, F. (1990). Response of susceptible and tolerant plants to diclofop-methyl. Zeitschrift Fuer Pflanzenkrankheiten Und Pflanzenschutz 97(2), 154-167.

Dalla, V.J., Sturmbauer, C., Schoenweger, G., Soetz, E., Mathekowitsch, S., Stifter, M.,Rieger, R. (1998). Light gradients and meadow structure in Posidonia oceanica:Ecomorphological and functional correlates. Marine Ecology Progress Series 163, 267-278.

Davidonis, G.H., Arjmand, M., Hamilton, R.H. (1979). Biological properties of aminoacid conjugates of 2,4,5-trichlorophenoxyacetic acid. Journal of Agricultural and FoodChemistry 27, 1086-1088.

Davidonis, G.H., Hamilton, R.H., Vallejo, R.P., Mumma, R.O. (1982). Biologicalproperties of D-amino acid conjugates of 2,4-D. Plant Physiology 70, 357-360.

Davis R, Frearson, M. (1990). Mass Spectrometry: Analytical Chemistry by OpenLearning. John Wiley & Sons, 150-163.

Dawes, C.J., Kensworthy, W.J. (1990). Organic constituents. Seagrass researchmethods. Edited by Ronald C. Philips and C. Peter McRoy. Published by the UnitedNations Educational, Scientific and Cultural Organization. 87-96.

Dawes, C.J., Tomasko, D.A. (1988). Depth distribution of Thalassia testudinum in twomeadows on the west coast of Florida: a difference in effect of light availability.Pubblicazioni della Stazione zoologica di Napoli I. Marine Ecology 9(2), 123-130.

Dawson, S.P., Dennison, W.C. (1996). Effects of ultraviolet and photosyntheticallyactive radiation of five seagrass species. Marine Biology Berlin 125(4), 629-638.

Day, J.W., Jr., Hall, C.A.S., Kemp, W.M., Yanez-Arancibia, A. (1989). EstuarineEcology. John Wiley & Sons, New York. 1 – 34.

De Beer, P.R., Smit, C., Van Dyk, L.P. (1992). Air monitoring for pollution by auxin-type herbicides. Chemosphere 24, 719-733.

Dennison,W.C. (1979). Light adaptations of plants: A model based on the seagrassZostera marina L. (eelgrass). Fairbanks, University of Alaska (M.S. thesis.). 1 – 46.

Dennison, W.C. (1987). Effects of light on seagrass photosynthesis, growth and depthdistribution. Aquatic Botany 27, 15-26.

Dennison, W.C. (1990). Chlorophyll content. Seagrass research methods. Edited byRonald C. Philips and C. Peter McRoy. Published by the United Nations Educational,Scientific and Cultural Organization (UNESCO). 83-85.

Page 4: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

131

Dennison, W.C., Alberte, R.S. (1982). Photosynthetic responses of Zostera marina L.(eelgrass) to in situ manipulations of light intensity. Oecologia 55, 137-44.

Dennison, W.C., Alberte, R.S. (1986). Photoadaptation and growth of Zostera marina(eelgrass) transplants along a depth gradient. Journal of Experimental Marine Biologyand Ecology 98(3), 265-282.

Dixon, L.K. (2000). Establishing light requirements for the Seagrass Thalassiatestudinum: An Example from Tampa Bay, Florida. In Seagrasses: Monitoring, Ecology,Physiology and Management. Edited by A. Bortone, Ph.D. CRC Press, Boca Raton,London, New York. CRC Marine Science Series. 9-31.

Dixon, L.K., Kirkpatrick, G.K. (1995). Light attenuation with respect to seagrasses inSarasota Bay, Florida. Mote Marine Laboratory Technical Report No. 406. Submitted tothe Sarasota Bay National Estuary Program, Sarasota, FL.

Donnelly, Jr. R.A. (2004). The complete idiot's guide to Statistics; Alpha, a member ofPenguin Group (USA) Inc. 1 – 306.

Droppa, M., Horvath, G., Vass, I., Demeter, S. (1981). Mode of action of photosystem IIherbicides studied by thermoluminescence. Biochimica et Biophysica Acta 638(2), 210-216.

Ducker, S. C., N. Food, et al. (1977). Biology of Australian Seagrasses: the genusAmphibolis C. Agardh (Cymodocceaceae). Australian Journal of Botany 25: 67-95.

Duke, S.O., Vaughn, K.C., Meeusen, R.L. (1984). Mitochondrial involvement in themode of action of acifluorfen. Pesticide Biochemistry and Physiology 21(3), 368-376.

Dunk, I., Lewis, M. (2000). Seagrass and shallow water feature discrimination usingHYMAP imagery. 10th Australasian Remote Sensing and Photogrammetry Conference,Adelaide. 1092-1108.

Dunton, K.H. (1994). Seasonal growth and biomass of the subtropical seagrass Halodulewrightii in relation to continuous measurements of underwater irradiance. MarineBiology 120, 479-489.

Eggleston, D.B., Etherington, L.L., Elis, W.E. (1998). Organism response to habitatpatchiness: Species and habitat-dependent recruitment of decapod crustaceans. Journalof Experimental Marine Biology and Ecology 223(1), 111-132.

Environment Protection Agency (EPA), Department for Environment, Heritage andAboriginal Affairs, Government of South Australia. (1998). Changes in SeagrassCoverage and Links to Water Quality off the Adelaide Metropolitan Coastline. 12-13.

Page 5: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

132

Erskine, J.M., Koch, M.S. (2000). Sulfide effects on Thalassia testudinum carbonbalance and adenylate energy charge. Aquatic Botany, August 67, 275-285.

Falkowski, P.G., Raven, J.A. (1997). Aquatic Photosynthesis. Blackwell Science, Ltd. 1-50.

Faraday, P.A., Churchill, A.C. (1979). Uptake of cadmium by the eelgrass (Zosteramarina L.). Mar. Biol. 53, 293-8.

Feung, C-S., Hamilton, R.H., Mumma, R.O. (1973a). Metabolism of 2,4-dichlorophenoxyacetic Acid. IV. Mass spectra and chromatographic properties of aminoacid conjugates. Journal of Agricultural and Food Chemistry 21(4), 632-637.

Feung, C-S., Hamilton, R.H., Mumma, R.O. (1973b). Metabolism of 2,4-dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean callus tissuecultures. Journal of Agricultural and Food Chemistry 21(4), 637-640.

Feung, C-S., Hamilton, R.H., Witham, F.H. (1971). Metabolism of 2,4-Dichlorophenoxyacetic Acid by Soybean Cotyledon Callus Tissue Cultures. Journal OfAgricultural And Food Chemistry 19(3), 475-479.

Feung, C-S., Hamilton, R.H., Witham, F.H., Mumma, R.O. (1972). The relative amountsand identification of some 2,4-dichlorophenoxyacetic acid metabolites isolated fromsoybean cotyledon callus tissues. Plant Physiology 50, 80 - 86.

Forgacs, E., Cserhati, T., Barta, I. (2000). The binding of amino acids to the herbicide2,4-dichlorophenoxy acetic acid. Amino-Acids-Vienna. 2000; 18(1), 69-79.

Freed, H.V. (1946). Preparation and reactions of 2,4-dichlorophenoxyacetyl chloride. J.Amer. Chem. Soc. 68 (pt. 2), 2112.

Gallaher, K., Mueller, T.C., Hayes, R.M., Schwarz, O., Barrett, M. (1999). Absorption,translocation, and metabolism of primisulfuron and nicosulfuron in broadleaf signalgrass(Brachiaria platyphylla) and corn. Weed Science 47(1), 8-12.

Giesen, W.B.J.T., van Katwijk, M.M. & den Hartog, C. 1990. Temperature, salinity,insolation and wasting disease of eelgrass (Zostera marina) in the Dutch Wadden Sea inthe 1930's. Netherlands Journal of Sea Research 25, 395 - 404.

Grossmann, K. (1998). Quinclorac belongs to a new class of highly selective auxinherbicides. Weed Science 46(6), 707-716.

Grossmann, K., Kwiatkowski, J. (2000). The mechanism of quinclorac selectivity ingrasses. Pesticide Biochemistry and Physiology 66(2), 83-91.

Page 6: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

133

Grossmann, K., Scheltrup, F. (1997). Selective induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity is involved in the selectivity of the auxinherbicide quinclorac between barnyard grass and rice. Pesticide Biochemistry andPhysiology 58(2), 145-153.

Grossmann, K., Tresch, S., Plath, P. (2001). Triaziflam and diaminotriazine derivativesaffect enantioselectively multiple herbicide target sites. Zeitschrift fuer NaturforschungSection C Journal of Biosciences. July August 56(7-8), 559-569.

Haeder, D.P., Kumar, H.D., Smith, R.C., Worrest, R.C. (1998). Effects on aquaticecosystems. Journal of Photochemistry and Photobiology B Biology 46(1-3), 53-68.

Harada, M. Minamatabyo [Minamata Disease]. Iwanami Shoten, 1972.

Hartman, R.T., Brown, D.L. (1967). Changes in internal atmosphere of submergedvascular hydrophytes in relation to photosynthesis. Ecology 48, 252-258.

Haynes, D., Ralph, P., Prange, J., Dennison, B. (2000). The impact of the herbicidediuron on photosynthesis in three species of tropical seagrass. Marine Pollution Bulletin.July December 41(7-12), 288-293.

Hellblom, F. (2000). Carbon acquisition in Zostera marina. Licentiate thesis in PlantPhysiology. Department of Botany Stockholm University, 9-11.

Hess, F.D. (1993). Herbicide effects on plant structure, physiology and biochemistry. InPesticide interactions in crop production: Beneficial and deleterious effects, ed. Altman,J. Boca Raton: CRC Press. 30 – 67.

Iizumi, H., Hattori, A., McRoy, C.P. (1980). Nitrate and nitrite in interstitial waters ofeelgrass (Zostera marina) beds in relation to the rhizosphere. Journal of ExperimentalMarine Biology and Ecology 47(2), 191-202.

Jones, T.W., Kemp, W.M., Stevenson, J.C., Means, J.C. (1982). Degradation of atrazinein estuarine water/sediment systems and soils. Journal of Environmental Quality 11(4),632-638.

Jonkers, H.M., van Bergeijk, S.A., van Gemerden, H. (2000). Microbial production andconsumption of dimethyl sulfide (DMS) in a sea grass (Zostera noltii)-dominated marineintertidal sediment ecosystem (Bassin d'Arcachon, France). FEMS MicrobiologyEcology. Feb. 31(2), 163-172.

Kemp, W.M., Boynton, W.R., Murray, L., Madden, C.J., Wetzel, R.L., Vera Herrera, F.(1988). Light relations for the seagrass Thalassia testudinum, and its epiphytic algae in atropical estuarine environment. In Ecology of Coastal Ecosystems in the Southern Gulfof Mexico: The Terminos Lagoon Region, A. Yanez-Arancibia and J.W. Day, Jr. (eds.).

Page 7: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

134

Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma deMexico, Mexico, D.F. p 193.

Kensworthy, W.J., Haunert, D.E. (1991). Scientific presentations. The LightRequirements of Seagrasses: Proc. of a Workshop to Examine the Capability of WaterQuality Criteria, Standards and Monitoring Programs to Protect Seagrasses. NOAATech. Memorandom. NMFS-SEFC-287, 3-10.

Kerr, E.A., Strother, S. (1985). Effects of irradiance, temperature and salinity onphotosynthesis of Zostera muelleri. Aquatic Botany 23(2), 177-184.

Kirk, J.T.O., Tilney-Bassett, R.A.E. (1978). The plastids. Elsevier North-Holland,Amsterdam. 11 – 28.

Kirkman, H. (1992). Large-scale restoration of seagrass meadows. In: Restoring theNation's Marine Environment. Maryland Sea Grant College, Univ. Maryland USA, 111-140.

Klumpp, D.W., Howard, R.K., Pollard, D.A. (1989). Trophodynamics and nutritionalecology of seagrass communities. In: Biology of Seagrasses, Larkum, A.W.D.,McComb, A.J. and Shepherd, S.A. (eds), Elsevier, Amsterdam, 394-457.

Kovats, E. (1958). Gas-chromatographische charakterisierung organischerverbindungen. Teil 1: retentionsindices aliphatischer halogenide, alkohole, aldehyde undketone. Helv. Chem. Acta 41(7), 1915-1932.

Kumar A., Chapman, J.C. (1998). Profenofos toxicity to the eastern rainbow fish(Melanotaenia duboulayi). Environmental Toxicology & Chem. 17(9): 1799-1806.

Kuo, J., Ridge, R.W., Lewis, S.V. (1990). The leaf internal morphology andultrastructure of Zostera muelleri Irmisch ex Aschers. (Zosteraceae): A comparativestudy of the intertidal and subtidal forms. Aquatic Botany 36(3), 217-236.

Hall, M.O., Tomasko, D.A. and Courtney, F.X. (1991). Responses of Thalassiatestudinum to in situ light reduction. In: The Light Requirements of Seagrasses:Proceedings of a Workshop to Examine the Capability of Water Quality Criteria,Standards and Monitoring Programs to Protect Seagrasses, W.J. Kensworthy and D.E.Haunert (eds.). NOAA Technical Memorandum, NMFS-SEFC-287.

Laing, H.E. (1940). The composition of the internal atmosphere of Nuphere advenumand other water plants. American Journal of Botany. 27, 861-868.

Lakshmana, M., Raju, T.R. (1996). 2,4-dichloro phenoxy acetic acid alters monoaminelevels, acetylcholinesterase activity and operant learning in rats. Indian Journal ofMedical Research 104, 234-239.

Page 8: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

135

Larney, F.J., Cessna, A.J., Bullock, M.S. (1999). Herbicide transport on wind-erodedsediment. Journal-of-Environmental-Quality. Sept.-Oct., 1999; 28(5), 1412-1421.

Larney, F.J., Leys, J.F., Muller, J.F., McTainsh, G.H. (1999). Dust and endosulfandeposition in a cotton-growing area of Northern New South Wales, Australia. Journal ofEnvironmental Quality 28(2), 692-701.

Lee, K., Dunton, K.H. (1997). Effects of in situ light reduction on the maintenance,growth and partitioning of carbon resources in Thalassia testudinum Banks ex Konig.Journal of Experimental Marine Biology and Ecology. 210, 53-73.

Lee, K.S., Dunton, K.H. (2000). Diurnal changes in pore water sulfide concentrations inthe seagrass Thalassia testudinum beds: The effects of seagrasses on sulfide dynamics.Journal of Experimental Marine Biology and Ecology. 255(2), 201-214.

Li, J., Ou Lee, T.M., Raba, R., Amundson, R.G., Last, R.L. (1993) Arabidopsisflavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5(2), 171-179.

Liao, W., Joe, T., Cusick, W.G. (1991). Multiresidue screening method for fresh fruitsand vegetables with gas chromatographic/mass spectrometric detection. Journal of TheAssociation of Official Analytical Chemists 74(3), 554-565.

Linscott, D.L., Hagin, R.D. (1970). Additions to the aliphatic moiety of chlorophenoxycompounds. Weed Science 18, 197 - 198.

Long, A.R., Charkhian, B., Hsieh, L.C., Short, C.R., Barker, S.A. (1990).Characterization of the thermal decomposition products of the sulfonylurea herbicidechlorsulfuron. Journal of Chromatography 505, 395-401.

Longstaff, B.J., Dennison, W.C. (1999). Seagrass survival during pulsed turbidityevents: The effects of light deprivation on the seagrasses Halodule pinifolia andHalophila ovalis. Aquatic Botany. Nov. 65(1-4), 105-121.

Ma, Q.L., Smith, A.E., Hook, J.E., Bridges, D.C. (1999). Surface transport of 2,4-Dfrom small turf plots: Observations compared with GLEAMS and PRZM-2 modelsimulations. Pesticide Science. April 55(4), 423-433.

Madhun, Y.A., Freed, V.H., Young, J.L. (1986a). Binding of ionic and neutralherbicides by soil humic acid. Soil Science Society of America Journal 50(2), 319-322.

Madhun, Y.A., Young, J.L., Freed, V.H. (1986b). Binding of herbicides by water-soluble organic materials from soil. Journal of Environmental Quality 15(1), 64-68.

Malea, P. (1994). Uptake of cadmium and the effect on viability of leaf cells in theseagrass Halophila stipulacea (Forsk.) Aschers. Botanica Marina 37(1), 67-73.

Page 9: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

136

Malea, P., Kevrekidis, T., Haritonidis, S. (1995). The short-term uptake of zinc and cellmortality of the seagrass Halophila stipulacea (Forsk.) Aschers. Israel Journal of PlantSciences 43(1), 21-30.

Maxwell, K., Johnson, G.N. (2000). Chlorophyll fluorescence - a practical guide.Journal Of Experimental Botany 51, 659 - 668.

Mc Millan, C. (1978). Morphogeographic variation under controlled conditions in fiveseagrasses, Thalassia testudinum, Halodule wrightii, Syringodium filiforme, Halophilaengelmanii, and Zostera marina. Aquatic Botany 4, 169-89.

Meinhardt, H.R., Vorster, L.M., Van Dyk, L.P. (1991), Threshold concentrations of 2,4-D acid or 2,4-D dimethylamine for causing morphological symptoms on lettuceseedlings. Applied Plant Science 5(2), 90-93.

McLafferty, W., Turecek, F. (1993). Interpretation of Mass Spectra (fourth edition).University Science Books, 72-76.

Millhouse, J., Strother, S. (1987). Further characteristics of salt-dependent bicarbonateuse by the seagrass Zostera muelleri. Journal of Experimental Botany 38(191), 1055-1068.

Mitra, S. (1986). Mercury in the Ecosystem. Aedermannsdorf, Switzerland: Trans TechPublications Ltd.

Mizushima, T., Takaya, Y. (1999). Annual changes in distribution and abundance of thelarvae of grass shrimp, Pandalus latirostris (Decapoda, Pandalidae). Scientific Reportsof Hokkaido Fisheries Experimental Station. March 55, 197-205.

Moore, K.A., Wetzel, R.L. (2000). Seasonal variations in eelgrass (Zostera marina L.)responses to nutrient enrichment and reduced light availability in experimentalecosystems. Journal of Experimental Marine Biology and Ecology. Feb. 244(1), 1-28.

Morgan, M.D. (1980). Grazing and predation of the grass shrimp Palaemonetes pugio.Limnology and Oceanography 25(5), 896-902.

Morrison, R.T., Boyd, R.N. (1974). Organic Chemistry, third edition. Allyn and Bacon,Inc. Boston., 675-682.

Musiyaka, V.K. (1995). Picloram, a herbicide with auxin-like activity. Fiziologiya iBiokhimiya Kul'turnykh Rastenii 27(4), 228-243.

Nakata, M. (1991). The mode of action of chlorsulfuron in culture cells of tobacco andhamster. Journal of Pesticide Science 16(4), 583-590.

Page 10: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

137

Neckles, H.A., Wetzel, R.L., Orth, R.J. (1993). Relative effects of nutrient enrichmentand grazing on epiphyte-macrophyte (Zostera marina L.) dynamics. Oecologia 93(2),285-295.

Neely, M.B. (2000). Somatic, Respiratory, and Photosynthetic Responses of theSeagrass Halodule wrightii to Light Reduction in Tampa Bay, Florida Including a WholePlant Carbon Budget. In Seagrasses: Monitoring, Ecology, Physiology, andManagement. Edited by A. Bortone, Ph.D. CRC Press, Boca Raton, London, New York.CRC Marine Science Series. 33-48.

Perez, L.J.L., Strother, S., Niell, F.X. (1994). Species differences in short-term pigmentlevels in four Australian Seagrasses in response to desiccation and rehydration. BotanicaMarina 37(1), 91-95.

Phillips, R. C. (1990). Responses to environmental conditions. In: Seagrass researchmethods, Published by the United Nations Educational, Scientific and CulturalOrganization (UNESCO): 43-46.

Phillips, R.C., Grant, W.S., McRoy, C.P. (1983). Reproductive strategies of eelgrass(Zostera marina). Aquatic Botany 16(1), 1-20.

Pinnerup, S.P. (1980). Leaf production of Zostera Marina L. at different salinities.Ophelia Suppl. 1, 219-224.

Pollard, P.C. (1999). Measuring photosynthetic characteristics of the seagrassSyringodium isoetifolium: Implications for in situ productivity estimates. New ZealandJournal of Marine and Freshwater Research. June 33(2), 173-180.

Prange, J.A., Dennison, W.C. (2000). Physiological responses of five seagrass species totrace metals. Marine Pollution Bulletin. July December 41(7-12), 327-336.

Preen, A.R., Lee Long, W.J., Coles, R.G. (1995). Flood and cyclone related loss, andpartial recovery, of more than 1000 km2 of seagrass in Hervey Bay, QueenslandAustralia. Aquatic Botany 52, 3-17.

Pregnall, A.M., Smith, R.D., Kursar, T.A., Alberte, R.S. (1984) Metabolic adaptation ofZostera marina (eelgrass) to diurnal periods of root anoxia. Marine Biology 83(2), 141-148.

Que Hee, S., Sutherland, R.G. (1981). The Phenoxyalkanoic Herbicides: Chemistry,Analysis, and Environmental Pollution. CRC Press, Inc. 1, 75.

Ralph, P.J. (1998). Photosynthetic responses of Halophila ovalis (R. Br.) Hook. f. toosmotic stress. Journal of Experimental Marine Biology and Ecology 227(2), 203-220.

Page 11: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

138

Ralph, P.J. (1999). Photosynthetic response of Halophila ovalis (R. Br.) Hook. f. tocombined environmental stress. Aquatic Botany. Nov. 65(1-4), 83-96.

Ralph, P.J. (2000). Herbicide toxicity of Halophila ovalis assessed by chlorophyll afluorescence. Aquatic Botany. Feb. 66(2), 141-152.

Ralph, P.J., Burchett, M.D. (1995). Photosynthetic responses of the seagrass Halophilaovalis (R. Br.) Hook. f. to high irradiance stress, using chlorophyll a fluorescence.Aquatic Botany 51(1-2), 55-66.

Ralph, P.J., Burchett, M.D. (1998a). Impact of petrochemicals on the photosynthesis ofHalophila ovalis using chlorophyll fluorescence. Marine Pollution Bulletin 36(6), 429-436.

Ralph, P.J., Burchett, M.D. (1998b) Photosynthetic response of Halophila ovalis toheavy metal stress. Environmental Pollution 103(1), 91-101.

Ralph, P.J., Gademann, R., Dennison, W.C. (1998). In situ seagrass photosynthesismeasured using a submersible, pulse-amplitude modulated fluorometer. Marine BiologyBerlin 132(3), 367-373.

Raven, J.A. (1997). Putting the C in phycology. European Journal of Phycology. 32,319-333.

Renberg, L. (1974). Ion exchange technique for the determination of chlorinated phenolsand phenoxy acids in organic tissue, soil, and water. Analytical Chemistry 46(3). 459-461.

Roberts, D.G., Moriarty, D.J.W. (1987). Lacunal gas discharge as a measure ofproductivity in the seagrasses Zostera capricorni Cymodocea serrulata and Syringodiumisoetifolium. Aquatic Botany 28(2), 143-160.

Rusness, D.G., Huwe, J.K., Lamoureux, G.L. (1998). Quinclorac ester toxicity andmetabolism in leafy spurge (Euphorbia esula) soil systems: Effects of foliar vs soilapplications. Pesticide Biochemistry and Physiology 61(2), 115-133.

Rysgaard, S., Risgaard, P.N., Sloth, N.P. (1996). Nitrification, denitrification, and nitrateammonification in sediments of two coastal lagoons in southern France. Hydrobiologia329(1-3), 133-141.

Sanchez, B.C., Perez, S., Tadeo, J.L. (1991). Determination of phenoxy ester herbicidesby gas and high-performance liquid chromatography. Journal Of Chromatography552(1-2), 235-240.

Page 12: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

139

Sand-Jensen, K., Sondergaard, M. (1981). Phytoplankton and epiphyte development andtheir shading effect on submerged macrophytes in lakes of different nutrient status.Internationale Revue der gesamten Hydrobiologie 66(4):529-552.

Sand-Jensen, K, Prahl, C., Stokholm, H. (1982). Oxygen release from roots ofsubmerged aquatic macrophytes. Oikos 38(3), 349-354.

Sandmann, E., De Beer, P.R., Van Dyk, L.P. (1991). Atmospheric pollution by auxin-type herbicides in Tala Valley, Natal (South Africa). Chemosphere 22(1-2), 137-146.

Sargent, C.J., Bowman, J.C., Zhou, J.L. (2000). Levels of antifoulant Irgarol 1051 in theConwy Marina, North Wales. Chemosphere. December 41(11), 1755-1760.

Sarmah, A.K., Kookana, R.S., Alston, A.M. (1998). Fate and behaviour of triasulfuron,metsulfuron-methyl, and chlorsulfuron in the Australian soil environment: A review.Australian Journal of Agricultural Research 49(5), 775-790.

Sarmah, A.K., Kookana, R.S. (1999). Simultaneous analysis of triasulfuron,metsulfuron-methyl and chlorsulfuron in water and alkaline soils by high-performanceliquid chromatography. Journal-of-Environmental-Science-and-Health-Part-B-Pesticides-Food-Contaminants-and-Agricultural-Wastes. May, 1999; 34(3), 363-380.

Sarmah, A.K., Kookana, R.S., Duffy, M.J., Alston, A.M., Harch, B.D. (2000).Hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in alkaline soil andaqueous solutions. Pest Management Science. May 56(5), 463-471.

Sastry, B.V.R., Janson, V.E., Clark, C.P., Owens, L.K. (1997). Cellular toxicity of 2,4,5-trichlorophenoxyacetic acid: Formation of 2,4,5-trichlorophenoxyacetylcholine. Cellularand Molecular Biology Noisy Le Grand 43(4), 549-557.

Scarlett, A., Donkin, P., Fileman, T.W., Evans, S.V., Donkin, M.E. (1999). Risk posedby the antifouling agent Irgarol 1051 to the seagrass, Zostera marina. AquaticToxicology Amsterdam. April 45(2-3), 159-170.

Seddon, S., Connolly, R.M., Edyvane, K.S. (2000). Large-scale seagrass dieback innorthern Spencer Gulf, South Australia. Aquatic Botany. April 66(4), 297-310.

Shafer, D.J. (1999). The effects of dock shading on the seagrass Halodule wrightii inPerdido Bay, Alabama. Estuaries . Dec. 22(4), 936-943.

Short, F.T., Neckles, H.A. (1999). The effects of global climate change on seagrasses.Aquatic Botany 63(3-4), 169-196.

Snel, J.F.H., Vos, J.H., Gylstra, R., Brock, T.C.M. (1998). Inhibition of Photosystem II(PSII) electron transport as a convenient endpoint to assess stress of the herbicidelinuron on freshwater plants. Aquatic Ecology 32(2), 113-123.

Page 13: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

140

Stryer, L. (1981). Biochemistry (second edition), W.H. Freeman and Company, 431-454.

Subramaniam, S.P. (1990). Chwaka Bay (Zanzibar, East Africa) as a nursery ground forPenaeid prawns. Hydrobiologia 208(1-2), 111-122.

Suwalsky, M., Benites, M., Villena, F., Aguilar, F., Sotomayor, C.P. (1996). Interactionof 2,4-dichlorophenoxyacetic acid (2,4-D) with cell and model membranes. Biochimicaet Biophysica Acta 1285(2), 267-276.

Takizawa, Y. (1979). Epidemiology of mercury poisoning. In: The Biogeochemistry ofMercury in the Environment, Nriague, J.O. (ed.) Elsevier Amsterdam, 325-366.

Talbot, J.L., Nesbitt, R.W. (1968). Geological Excursions in the Mount Lofty Rangesand the Fleurieu Peninsula. Angus and Robertson Ltd, 1-17.

Terrados, J., Duarte, C.M., et al. (1999) Are seagrass growth and survival constrained bythe reducing conditions of the sediment? Aquatic Botany. 65(1-4), 175-197.

Thompson, D.G., Stephenson, G.P., Solomon, K.R., Skepasts, A.V. (1984). Persistenceof 2,4-D and 2-(2,4-dichlorophenoxy)propionic acid in agricultural and forest soils ofnorthern and southern Ontario (Canada). Journal of Agricultural and Food Chemistry32, 578-581.

Tiller, K.G., Smith, L.H., Merry, R.H. (1987). Accessions of atmospheric dust east ofAdelaide, South Australia (Australia) and the implications for pedogenesis. AustralianJournal of Soil Research 25(1), 43-54.

Tomasko, D.A. (1993). Assessment of seagrass habitats and water quality in SarasotaBay. In Proceedings and Conclusions of Workshops on Submerged Aquatic VegetationInitiative and Photosynthetically Active Radiation, L.J. Morris and D.A. Tomasko (eds.)Indian River Lagoon National Estuary Program, Palatka, FL. 43 – 56.

Tomasko, D.A., Hall, M.O. (1999). Productivity and biomass of the seagrass Thalassiatestudinum along a gradient of freshwater influence in Charlotte Harbor, Florida (USA).Estuaries 22:592-602.

Tominack, R.L. (2000). Herbicide formulations. Journal of Toxicology and ClinicalToxicology. 38(2), 129-135.

Touchette, B.W., Burkholder, J.M. (2000). Review of nitrogen and phosphorusmetabolism in seagrasses. Journal of Experimental Marine Biology and Ecology. 250(1-2), 133-167.

Trocine, R.P., Rice, J.D., Wells, G.N. (1981). Inhibition of seagrass photosynthesis byUV-B radiation. Plant Physiology 68(1), 74-81.

Page 14: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

141

Tyerman, S. (2002). Photosynthesis: Lecture notes (Viticulture Science 2002WT). RedBox 1142, University of Adelaide Waite Campus.

Van Dijk, H.F.G., Guicherit, R. (1999). Atmospheric dispersion of current-usepesticides: A review of the evidence from monitoring studies. Water Air and SoilPollution 115, 21-70.

Viaroli, P., Bartoli, M., Bondavalli, C., Christian, R.R., Giordani, G., Naldi, M. (1996).Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide andnutrients in shallow eutrophic environments. Hydrobiologia 329(1-3), 105-119.

Vogel A.I. (1996). Vogel's Textbook of Practical Organic Chemistry. Fifth Edition.Produced by Longman Singapore Publishers Pty. Ltd. 50 – 78.

Warnau, M., Ledent, G., Temara, A., Bouquegneau, J.M., Jangoux, M., Dubois, P.(1995). Heavy metals in Posidonia oceanica and Paracentrotus lividus from seagrassbeds of the north-western Mediterranean. Science of the Total Environment 171(1-3),95-99.

Wear, D.J., Sullivan, M.J., Moore, A.D., Millie, D.F. (1999). Effects of water-columnenrichment on the production dynamics of three seagrass species and their epiphyticalgae. Marine Ecology Progress Series. 15(179), 201-213.

Welch, H.E., Muir, D.C.G., Billeck, B.N., Lockhart, W.L., Brunskill, G.J., Kling, H.J.,Olson, M.P., Lemoine, R.M. (1991). Brown snow: A long-range transport event in theCanadian Arctic. Environmental Science and Technology 25(2), 280-286.

Wernicke, W., Gorst, J., Milkovits, L. (1986). The ambiguous role of 2,4-D in wheattissue culture. Physiologia Plantarum 68(4), 597-602.

Whitcomb, C.E. (1999). An introduction to ALS-inhibiting herbicides. Toxicology andIndustrial Health. Jan. March 15(1-2), 231-239.

Wilson, R.D., Geronimo, J., Armbruster, J.A. (1997). 2,4-D Dissipation in field soilsafter applications of 2,4-D dimethylamine salt and 2,4-D 2-ethylhexyl ester.Environmental Toxicology and Chemistry 16(6), 1239-1246.

Wood, J.W., Fontaine, T.D. (1952). Synthetic plant-growth regulators III. 2,4 – dichloro– phenoxyacetyl derivatives of amino acids. Journal of Organic Chemistry 17(6), 891-896.

Yates, W.E., Akesson, N.B. (1966). Proc. 3rd International Agric. Aviat. Congr; Int.Agriculture Aviation Centre, The Hague, 129. 23 – 28.

Page 15: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

142

Yip, W.K., Yang, S.F. (1998). Ethylene biosynthesis in relation to cyanide metabolism.Botanical Bulletin of Academia Sinica Taipei 39(1), 1-7.

Young, P.C. (1978). Moreton Bay: a nursery area for juvenile Penaeid prawns.Australian Journal of Marine and Freshwater Research. 29, 55 - 75.

Zimdahl, R.L. (1993). Fundamentals of weed science. San Diego CA: Academic Press.6 – 27.

Zimmerman, R.C., Reguzzoni, J.L., Wyllie-Echeverria, S., Josselyn, M., Alberte, R.S.(1991). Assessment of environmental suitability for growth of Zostera marina L.(eelgrass) in San Francisco Bay. Aquatic Botany 39, 353-366.

WEBSITE REFERENCES (2004):

“Fisheries.” abare inovation in economics. The Australian Bureau of Agricultural andResource Economics. Retrieved 11 Apr.2005.<http://www.abare.gov.au/research/fisheries/fisheries.html>

Visible Earth. The National Aeronautics and Space Administration. Dust storm overeastern Australia. Image courtesy of the SeaWFS Project, NASA/Goddard Space FlightCentre, and ORBIMAGE. Retrieved 11 Apr.2005.<http://www.visibleearth.nasa.gov/view_rec.php?vev1id=21003>

Thomas, A. “Dust storms may trigger asthma.” News in science health & medical.Retrieved 11 Apr. 2005.<http://www.abc.net.au/science/news/health//HealthRepublish_150480.htm>

“dust over Adelaide”. CSIRO. Commonwealth Scientific and Industrial ResearchOrganization. Retrieved 11 Apr.2005.<http://www.csiro.au/index.asp?type=imageDef&id=dust_over_adelaide>

“The Melbourne dust-storm of February 1983.” Climate Education. AustralianGovernment Bureau of Meteorology. Retrieved 11 Apr. 2005.<http://www.bom.gov.au/lam/climate/levelthree/c20thc/storm7.htm>

“The Pacific Dust Express.” Science@NASA. National Aeronautics and SpaceAdministration. Retrieved 11 Apr. 2005.<http://science.nasa.gov/headlines/y2001/ast17may%5F1.htm>

Page 16: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

143

“Wrong kind of dust could derail Kyoto.” Geology News. The Geological Society.Retrieved 11 Apr. 2005.<http://www.geolsoc.org.uk/template.cfm?name=dust>

Heap, I. Weedscience.com. Funded by the Herbicide Resistance Action Committee(HRAC), the North American Herbicide Resistance Action Committee (NAHRAC), andthe Weed Science Society of America (WSSA). Retrieved 11 Apr. 2005.<http://www.weedscience.org/in.asp>

Page 17: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

144

APPENDICES

Appendix A: Chromatography (High Performance Thin Layer (HPTLC),

Gas Chromatography Mass Spectrometry (GCMS) and High

Performance Liquid Chromatography (HPLC)). Kovats

Analysis and Fourier Transform Infrared

Spectrometry (FTIR).

Appendix B: Size Fractionation of Dried Soils of the Yorke Peninsula.

Page 18: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

145

Appendix A

High performance thin layer chromatography (HPTLC)

Figure A1: High performance thin layer chromatography of glutamic acid (glu), 2,4-dichlorophenoxyacetic acid (2,4-D) and the conjugate of 2,4-D and glu (2,4-D-glu). The dashed line represents the solvent front.

glu glu2,4-D 2,4-D2,4-D-glu

Page 19: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

146

Figure A2: High performance thin layer chromatography of aspartic acid (asp), 2,4-dichlorophenoxyacetic acid (2,4-D) and the conjugate of 2,4-D and asp (2,4-D-asp). The dashed line represents the solvent front.

2,4-D-aspasp asp2,4-D 2,4-D

Page 20: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

147

Figure A3: High performance thin layer chromatography of aspartic acid (asp),glutamic acid (glu) and three soil extracts (S1, S2 and S3). The dashedline represents the solvent front.

glu asp S1 S2 S2

Page 21: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

148

Figure A4 (a): Mass spectral profile of an analyte obtained from soil extracts thateluted at the solvent front in HPTLC preparations

Figure A4 (b): Isotopic ratio analysis of analytes obtained from soil extracts that eluted at the solvent front in HPTLC preparations (m/z 133, 135 and 137).

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 3400

1000

2000

3000

4000

5000

6000

7000

m/z-->

Abundance

Average of 25.411 to 25.425 min.: 25GMAR09.D43

69

95 204

133109

147 18982 161 21817556 344269

329231 316255 284

22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.500

5000

10000

15000

Time-->

Abundance

Ion 133.00 (132.70 to 133.70): 25GMAR09.D

22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.500

5000

10000

15000

Time-->

Abundance

Ion 135.00 (134.70 to 135.70): 25GMAR09.D

22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.500

5000

10000

15000

Time-->

Abundance

Ion 137.00 (136.70 to 137.70): 25GMAR09.D

Figure A4: Isotope ratio analysis of soil extracts

Page 22: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

149

Figure A4 (b) continued: Isotopic ratio analysis of analytes obtained from soil extracts that eluted at the solvent front in HPTLC preparations (m/z 145, 147, 149 and 161, 163, 165).

22.50 23.00 23.50 24.00 24.50 25.00 25.500

2000

4000

6000

8000

Time-->

Abundance

Ion 145.00 (144.70 to 145.70): 25GMAR09.D

22.50 23.00 23.50 24.00 24.50 25.00 25.500

2000

4000

6000

8000

Time-->

Abundance

Ion 147.00 (146.70 to 147.70): 25GMAR09.D

22.50 23.00 23.50 24.00 24.50 25.00 25.500

2000

4000

6000

8000

Time-->

Abundance

Ion 149.00 (148.70 to 149.70): 25GMAR09.D

22.50 23.00 23.50 24.00 24.50 25.00 25.500

1000

2000

3000

4000

5000

6000

7000

Tim e-->

Abundance

Ion 161.00 (160.70 to 161.70): 25G M AR09.D

22.50 23.00 23.50 24.00 24.50 25.00 25.500

1000

2000

3000

4000

5000

6000

7000

Tim e-->

Abundance

Ion 163.00 (162.70 to 163.70): 25G M AR09.D

22.50 23.00 23.50 24.00 24.50 25.00 25.500

1000

2000

3000

4000

5000

6000

7000

Tim e-->

Abundance

Ion 165.00 (164.70 to 165.70): 25G M AR09.D

Page 23: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

150

(a)

(b)

Figure A5: Pyrrolysis products and mass spectra of the triazine moiety (a) and the non-triazine moiety (b) of chlorsulfuron (a sulfonylurea herbicide).

30 40 50 60 70 80 90 1001101201301401501601701801902002102200

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

m/z-->

Abundance

Average of 9.929 to 9.937 min.: 31JUL05.D69

14042 110

58

8395 123 168 219198

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 2000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

m/z-->

Abundance

Average of 16.318 to 16.318 min.: 31JUL03.D111

75

128

191

50

17564

9241

15684 100

Page 24: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

151

(a)

(b)

Figure A6: The mass spectra of 9,Octadecenoic acid methyl ester (a) and Oleoyl alcohol (b)

40 60 80 100 120 140 160 180 200 220 2400

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

m/z-->

Abundance

Average of 12.948 to 12.955 min.: 03GNOV25.D (-)41 55

67 82

96

109

123

137152 250166 194180 222208

CH3

OH

CH3

O

O

CH3

40 60 80 100 120 140 160 180 200 220 240 260 280 3000

50000

100000

150000

200000

250000

300000

350000

400000

m/z-->

Abundance

Average of 37.294 to 37.301 min.: 07FEB43.D55

41

67 79

95

108123

135 264149 180 222166 236 296207193 249 278

Page 25: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

152

Figure A7: GCMS analysis of twelve aliphatic esters of 2,4-D.

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

Time-->

Abundance

TIC: 07GFEB07.D

O

Cl

Cl

O

O

CH3

2,4-D methyl ester

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

Time-->

Abundance

TIC: 07GFEB09.D

O

Cl

Cl

O

O

CH3

2,4-D ethyl ester

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

Time-->

Abundance

TIC: 07GFEB11.D

O

Cl

Cl

O

O

CH3

2,4-D propyl ester

Page 26: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

153

30 40 50 60 70 80 90 1001101201301401501601701801902002102202302400

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

210000

m/z-->

Abundance

Average of 10.434 to 10.441 min.: 07GFEB07.D199

175

45

234

111

14573

161133

63

85 97

36 121 184 21954

2,4-D methyl ester

40 60 80 100 120 140 160 180 200 220 240 2600

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

m/z-->

Abundance

Average of 11.288 to 11.302 min.: 07GFEB11.D43

185

175

162

111 145 262

7563 133

22085 9853 205121

2,4-D propyl ester

2,4-D ethyl ester

40 60 80 100 120 140 160 180 200 220 2400

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

m/z-->

Abundance

Average of 10.780 to 10.787 min.: 07GFEB09.D175

185

111

145

248

162

7559

133213

42

87

98

121 202 224

Figure A7: (continued).

Page 27: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

154

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

Time-->

Abundance

TIC: 07GFEB15.D

O

Cl

Cl

O

O

CH3

2,4-D butyl ester

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

Time-->

Abundance

TIC: 07GFEB17.D

O

Cl

Cl

O

O

CH3

2,4-D hexyl ester

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

Time-->

Abundance

TIC: 07GFEB19.D

O

Cl

Cl

O

O

CH3

2,4-D octyl ester

Figure A7: (continued).

Page 28: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

155

40 60 80 100 120 140 160 180 200 220 240 260 2800

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

m/z-->

Abundance

Average of 11.861 to 11.868 min.: 07GFEB15.D57

41 185

162

145111 276

75 220133

9886 173 241205122

2,4-D butyl ester

40 60 80 100 120 140 160 180 200 220 240 260 280 3000

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

320000

340000

360000

380000

400000

420000

m/z-->

Abundance

Average of 13.305 to 13.312 min.: 07GFEB17.D43

185

22016285

14557 111 304

13369

98203

2,4-D hexyl ester

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 3400

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

m/z-->

Abundance

Average of 15.181 to 15.202 min.: 07GFEB19.D43 57

71

220

175

162

145111332

8497 128 188204

2,4-D octyl ester

Figure A7: (continued).

Page 29: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

156

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

2800000

3000000

3200000

Time-->

Abundance

TIC: 09GFEB21.D

O

Cl

Cl

O

O

CH3

(2,4-D) cis-3-nonenyl ester

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

Time-->

Abundance

TIC: 07GFEB25.D

O

Cl

Cl

O

O

CH2

(2,4-D) 10-undecenyl ester

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

8000000

Time-->

Abundance

TIC: 07GFEB27.D

O

Cl

Cl

O

O

CH3

(2,4-D) undecanylester

Figure A7: (continued).

Page 30: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

157

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 3400

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

m/z-->

Abundance

Average of 16.144 to 16.151 min.: 09GFEB21.D54

8268

220

12496

175

14539

161110344

274199

(2,4-D) cis-3-nonenyl ester

40 60 80 100 120 140 160 180 200 220 240 260 280 300 3200

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

m/z-->

Abundance

Average of 18.687 to 18.701 min.: 07GFEB25.D55

41

220

69

82

17596

111 162145

124

193 330288274

(2,4-D) 10-undecenyl ester

30 40 50 60 70 80 90 1001101201301401501601701801902002102202300

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

m/z-->

Abundance

Average of 18.675 to 18.696 min.: 07GFEB27.D43

57

220

71

175

85 162

111145

185

97133

199

121

(2,4-D) undecanyl

Figure A7: (continued).

Page 31: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

158

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

8000000

8500000

Time-->

Abundance

TIC: 07GFEB29.D

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

Time-->

Abundance

TIC: 07GFEB31.D

O

Cl

Cl

O

O

CH3

O

Cl

Cl

O

O

CH3

(2,4-D) dodecanyl

(2,4-D) hexadecanyl

12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.000

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

Time-->

Abundance

TIC: 07GFEB33.D

O

Cl

Cl

O

O

CH3

(2,4-D) oleoyl ester

Figure A7: (continued).

Page 32: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

159

30 40 50 60 70 80 90 1001101201301401501601701801902002102202300

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

m/z-->

Abundance

Average of 19.956 to 19.970 min.: 07GFEB29.D43

57

220

71

175

85 162111

145

18597133

195123 204

(2,4-D) dodecanyl

40 60 80 100 120 140 160 180 200 220 240 2600

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

m/z-->

Abundance

Average of 23.256 to 23.263 min.: 07GFEB31.D43

57

220

71

17585

111 16297

145

133186 269

207

(2,4-D) hexadecanyl

40 60 80 100 120 140 160 180 200 220 2400

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

m/z-->

Abundance

Average of 24.561 to 24.561 min.: 07GFEB33.D55

41

82

96

67

220

110

124 175

138162

152 250207193

(2,4-D) oleoyl ester

Figure A7: (continued).

Page 33: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

160

Figure A8: Isotope ratio analysis of the nonenyl ester of 2,4-D prepared bythe method of Sanchez et al. (1991).

14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.000

5000

10000

15000

Time-->

AbundanceIon 133.00 (132.70 to 133.70): 07GFEB21.D

14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.000

5000

10000

15000

Time-->

AbundanceIon 135.00 (134.70 to 135.70): 07GFEB21.D

14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.000

5000

10000

15000

Time-->

AbundanceIon 137.00 (136.70 to 137.70): 07GFEB21.D

14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.000

10000

20000

30000

40000

Time-->

Abundance

Ion 145.00 (144.70 to 145.70): 07GFEB21.D

14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.000

10000

20000

30000

40000

Time-->

Abundance

Ion 147.00 (146.70 to 147.70): 07GFEB21.D

14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.000

10000

20000

30000

40000

Time-->

Abundance

Ion 149.00 (148.70 to 149.70): 07GFEB21.D

Page 34: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

161

Figure A8: (continued).

14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.000

2000

4000

6000

8000

10000

Time-->

Abundance

Ion 161.00 (160.70 to 161.70): 07GFEB21.D

14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.000

2000

4000

6000

8000

10000

Time-->

Abundance

Ion 163.00 (162.70 to 163.70): 07GFEB21.D

14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.000

2000

4000

6000

8000

10000

Time-->

Abundance

Ion 165.00 (164.70 to 165.70): 07GFEB21.D

Page 35: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

162

Figure A9: Isotope ratio analysis of whole soil #91

23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.000

5000100001500020000250003000035000

Time-->

Abundance

Ion 133.00 (132.70 to 133.70): 20GJUN02.D

23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.000

5000100001500020000250003000035000

Time-->

Abundance

Ion 135.00 (134.70 to 135.70): 20GJUN02.D

23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.000

5000100001500020000250003000035000

Time-->

Abundance

Ion 137.00 (136.70 to 137.70): 20GJUN02.D

22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.000

10000

20000

30000

40000

50000

Time-->

Abundance

Ion 145.00 (144.70 to 145.70): 20GJUN02.D

22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.000

10000

20000

30000

40000

50000

Time-->

Abundance

Ion 147.00 (146.70 to 147.70): 20GJUN02.D

22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.000

10000

20000

30000

40000

50000

Time-->

Abundance

Ion 149.00 (148.70 to 149.70): 20GJUN02.D

Page 36: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

163

Figure A9: (continued).

22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.000

5000100001500020000250003000035000

Time-->

Abundance

Ion 161.00 (160.70 to 161.70): 20GJUN02.D

22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.000

5000100001500020000250003000035000

Time-->

Abundance

Ion 163.00 (162.70 to 163.70): 20GJUN02.D

22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.000

5000100001500020000250003000035000

Time-->

Abundance

Ion 165.00 (164.70 to 165.70): 20GJUN02.D

Page 37: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

164

Figure A10: GCMS analysis of dust (fraction 5) obtained from soil #47

Note: m/z = 220 was not detected. A high quality control (HQC) mixture of herbicidesand a dust ‘blank’, containing no herbicide, also showed no response other than for theinternal standard emphasizing the specificity of the methodology for 2,4-D and 2,4-Dlike compounds.

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.000

200

400

600

800

1000

1200

1400

1600

1800

Time-->

Abundance

Ion 178.00 (177.70 to 178.70): 27GMAR03.DIon 133.00 (132.70 to 133.70): 27GMAR03.DIon 145.00 (144.70 to 145.70): 27GMAR03.DIon 162.00 (161.70 to 162.70): 27GMAR03.DIon 220.00 (219.70 to 220.70): 27GMAR03.D

Page 38: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

165

Eight fatty acid methylesters were analysed:tetradecanoic acid methylester (14:0); pentadecanoicacid methyl ester (15:0);hexdecanoic acid methylester (16:0); 9,12octadecadienoic acidmethyl ester (18:2); 9octadecenoic acid methylester (18:1); octadecanoicacid methyl ester (18:0);11-eicosenoic acid methylester (20:1); eicosanoicacid methyl ester (20:0).

Twelve aliphatic estersof 2,4-D were analysed:2,4-D methyl ester; 2,4-D ethyl ester; 2,4-Dpropyl ester; 2,4-D butylester; 2,4-D hexyl ester;2,4-D octyl ester; (2,4-D) cis-3-nonenyl ester;(2,4-D) 10-undecenylester; (2,4-D) undecanyl;(2,4-D) dodecanyl; (2,4-D) hexadecanyl and(2,4-D) oleoyl ester.

Kovats analysis of fatty acid methyl esters

y = 0.0236x + 1.1228

= 0.99

1.4

1.45

1.5

1.55

1.6

1.65

10 12 14 16 18 20 22

carbon number

Log

rete

ntio

n tim

e R2

Kovats analysis of 2,4-D aliphatic esters

y = 0.0238x + 0.9899

R 2 = 0.99

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20

carbon number

log

rete

ntio

n tim

e

Figure A11: Kovats analysis of retention time data.

Page 39: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

166

Figure A11: (continued).

Kovats analysis of 2,4-D like chemicals

1.35

1.40

1.45

1.50

1.55

0 10 20 30

arithmetic carbon series

y = 0.005x + 1.3613

R2 = 0.95

Log

rete

ntio

n tim

e

Page 40: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

167

(a) Scan of an extract of whole soil #58 (no treatment) showing an acid-labile analyte (arrow).

(b) Scan of an extract of whole soil #58 (extracted ion m/z =145) after an acid hydrolysis treatment

Figure A12: Scans of acid and alkali treatments of soil extracts.

21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

23000

24000

25000

Time-->

Abundance

Ion 145.00 (144.70 to 145.70): 17GJUN02.D

21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.000

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

Time-->

Abundance

Ion 145.00 (144.70 to 145.70): 17GJUN04.D

Released 2,4-Dlike chemicals

Page 41: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

168

(c) Scan of an extract of whole soil #58 (extracted ion m/z =145) after sequential treatments with acid then alkali.

Figure A12 (continued): Scans of acid and alkali treatments of soil extracts.

21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

23000

24000

25000

26000

Time-->

Abundance

Ion 145.00 (144.70 to 145.70): 27GJUN06.D

Page 42: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

169

Figure A13: FTIR of isolated 2,4-dichlorophenoxyacetic acid

Figure A14: FTIR of an amino acid conjugate (2,4-D-asp) of 2,4-D.

carbonyl stretching

C-O stretching

N-H stretchingcarbonyl stretching

C-N stretching

Ar-Cl

Page 43: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

170

Figure A14 (continued): FTIR of an amino acid conjugate (2,4-D-glu) of 2,4-D.

N-H stretchingcarbonyl stretching Ar-Cl

C-N stretching

Page 44: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

171

Figure A15: (a) The oleoyl ester of 2,4-dichlorophenoxyacetic acid

Figure A15: (b) Soil extract

Figure A15: FTIR of the oleoyl ester of 2,4-dichlorophenoxyacetic acid and a soil extract.

Ar-Cl

C-H stretching carbonyl stretching

C-O stretching

C-H stretching

carbonyl stretching

Ar-Cl

C-O stretching

Page 45: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

172

a ‘blank’ HPLC trace

TS MS CS

a low quality controlmixture

triasulfuron (TS), metsulfuron-methyl (MS) and chlorsulfuron (CS)

soil containing nosulfonylurea herbicide

soil containingmetsulfuron-methyl

MS

Figure A16: Sulfonylurea analysis of whole soils by HPLC

Page 46: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

173

Appendix B

SIZE FRACTIONATION OF DRIED SOILS OF THE YORKE PENINSULA.

Page 47: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

174

Whole Soil #39 (Sandy Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #40 (Red Sandy loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #55 (Red Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #56 (Red/Brown Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #9 (Sandy)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #10 (Sandy Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #37 (N/A)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #38 (N/A)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #75 (Grey/Sandy Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #76 (Grey Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Figure B1: Size fractionation of dried soils of the Yorke Peninsula.

Page 48: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

175

Whole Soil #47 (Grey Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #48 (Grey Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #79 (Clay / Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #80 (Sand)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #71 (Red Clay loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #72 (Red Clay Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #89 (Sand)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #90 (Loam - Wet Patch)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #63 (Grey Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #64 (N/A)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Figure B1 (continued): Size fractionation of dried soils of the Yorke Peninsula.

Page 49: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

176

Whole Soil #97 (Grey Mallee)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #98 (Grey Mallee)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #85 (Heavy Red)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #86 (Sand over Clay)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #44 (Grey Mallee Rise)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #61 (N/A)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #62 (N/A)

01020304050607080

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #99 (Loam)

01020304050607080

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #43 (Red Brown Clay Loam)

0

20

40

60

80

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Whole Soil #100 (Loam)

01020304050607080

1 2 3 4 5

Sieve Fraction

Wei

ght (

g)

Figure B1 (continued): Size fractionation of dried soils of the Yorke Peninsula.

Page 50: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

177

Mean dry weights (g) Standard deviation of dry weights (g)

SoilID#

x > 2 mm 1 mm < x <2 mm

0.5 mm < x< 1 mm

0.25 mm <x < 0.5 mm

x < 0.25mm

x > 2 mm 1 mm < x <2 mm

0.5 mm < x< 1 mm

0.25 mm <x < 0.5 mm

x < 0.25mm

Fraction 1 Fraction 2 Fraction 3 Fraction 4 Fraction 5 Fraction 1 Fraction 2 Fraction 3 Fraction 4 Fraction 539 0 1 8 46 45 0 0 1 1 340 10 11 12 21 47 2 1 0 0 455 44 15 11 11 19 8 2 1 2 456 25 15 13 16 31 1 0 0 0 19 0 0 2 42 56 0 0 0 1 210 18 11 12 20 38 3 0 1 1 237 19 15 14 17 35 1 2 0 1 038 57 19 10 6 8 7 4 2 1 075 9 10 15 29 38 2 0 1 0 276 15 16 14 18 36 2 1 1 1 147 30 14 12 14 31 3 1 1 0 148 32 13 11 14 30 1 0 0 0 279 13 15 16 18 38 1 0 1 0 180 0 0 1 18 81 0 0 0 1 171 30 13 12 16 29 4 1 1 1 272 33 19 14 15 19 2 1 1 1 289 0 0 10 41 49 0 0 1 2 290 28 21 19 15 17 2 1 1 1 163 32 17 14 12 24 4 0 1 1 564 29 17 14 13 26 2 0 1 0 197 31 17 14 13 25 2 1 1 0 098 25 12 11 16 37 6 1 1 2 4

Table 1: Size fractionation of dried soils of the Yorke Peninsula.

Page 51: REFERENCES - University of Adelaide · REFERENCES: Abal, E.G ... Mode of action of photosystem II herbicides ... dichlorophenoxyacetic Acid. V. Identification of metabolites in soybean

178

Mean dry weights (g) Standard deviation of dry weights (g)

SoilID#

x > 2 mm 1 mm < x <2 mm

0.5 mm < x< 1 mm

0.25 mm <x < 0.5 mm

x < 0.25mm

x > 2 mm 1 mm < x <2 mm

0.5 mm < x< 1 mm

0.25 mm <x < 0.5 mm

x < 0.25mm

Fraction 1 Fraction 2 Fraction 3 Fraction 4 Fraction 5 Fraction 1 Fraction 2 Fraction 3 Fraction 4 Fraction 585 15 14 17 24 28 3 1 0 1 386 0 0 8 51 41 0 0 0 1 143 29 25 19 13 13 5 3 2 2 444 9 10 14 25 42 1 0 1 0 161 13 12 12 19 44 1 1 0 0 162 4 8 12 26 50 1 1 1 0 299 39 22 17 11 9 4 1 1 2 5100 26 21 18 18 16 2 1 0 0 0

Table 1 (continued): Size fractionation of dried soils of the Yorke Peninsula.