regional electricity and renewable integration: benefits ... - pineau.pdf · departement of...

30
DEPARTEMENT OF DECISION SCIENCES Pierre-Olivier Pineau Regional Electricity and Renewable Integration: Benefits of Hydropower Reservoirs Tuesday, June 20 th 2017 / 4:00 - 5:30 pm 40th IAEE International Conference Concurrent Session 33. Energy and Water Orchid: 4206 & 4306 with Sébastien Debia Léonard Langlois Sylvain Perron

Upload: dinhkhanh

Post on 17-Oct-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

DEPARTEMENT OF DECISION SCIENCES

Pierre-Olivier Pineau

Regional Electricity and Renewable

Integration: Benefits of Hydropower

Reservoirs

Tuesday, June 20th 2017 / 4:00 - 5:30 pm

40th IAEE International Conference

Concurrent Session 33. Energy and Water

Orchid: 4206 & 4306

with Sébastien DebiaLéonard LangloisSylvain Perron

2

Outline

1.The Electricity Challenge & New York

Case

2.Regional Electricity Models

3.Our Model

4.Results: Gains from Regional Integration

1. THE ELECTRICITY

CHALLENGE & NEW YORK

CASE

3

4

Global GHG Emissions 2010: 49 Gt CO2e

IPCC (2014)

Electricity & Heat

25%

5

Reduction Opportunities for the

Electricity Sector (from the IPCC)

• Increased Efficiency of Power Plants and Fuel

Switching

• Renewable Energy

• Increased Energy Efficiency (end-use)

• Nuclear Energy

• Carbon Capture Sequestration and Storage

… but not regional integration!

IPCC (2014) and EPA (2017)

6

Recent publications on electricity market

integration

7

Integrating Thermal and Hydro Electricity

Markets: Economic and Environmental Costs of

not Harmonizing Pricing Rules

E. Billette de Villemeur and P.-O. Pineau

2016 Volume 37, Number 1

>1 Mt of CO2

-37$/t of abatement cost

8

New York’s REV

• “50% of electricity consumed in New York to come

from renewable sources” (https://rev.ny.gov/)

• “50% of energy generation from renewable energy

sources” (https://energyplan.ny.gov/)

2. REGIONAL ELECTRICITY

MODELS

9

10

Model Horizon Focus: Energy

System / Electricity

Timeslice References

Times

(IEA-ETSAP)Long-run

Energy system;

multiregional

Typical days

/ Season

Loulou (2014) ;

[1]

OSeMOSYS Typical days

/ Season

Howells et al.

(2011)

EnergyPLAN

(Aalborg U.)

1 year Energy system; national Hour www.energypla

n.eu

ELMOD

(DIW Berlin)

1 year Electricity system;

national (high res.) or

regional

Hour Egerer (2014);

[2]

Haiku

(RFF)

20 years

(4-yr steps)

Electricity system;

multiregional

Typical days

/ Season

Paul and

Burtraw (2001);

[3]

Switch

(UC Berkley)

Long-run Electricity system;

multiregional

Hour [4]; switch-

model.org;

Johnston et al.

(2013)

ReEDS

(NREL)

Long-run

(2-yr steps)

Electricity system; high

geographic resolution;

multiregional

Typical days

/ Season

Eurel et al.

(2016) ; [5]

11

Renewable Integration Studies

2016

North American Renewable

Integration Study (NARIS)

NRCan / SNER / DoE-NREL

Final results for 2019

12

New York 140 TWh

41 % natural gas

1,7 % coal

New England 111 TWh

48 % natural gas

3,5 % coal

Ontario 154 TWh

10 % natural gas

New Brunswick 16 TWh

44 % fossil fuels

QC 200 TWh

99 % hydro27 large reservoirs

176 TWh of storage

QUEBEC ELECTRICITY PRODUCTION AND ITS NEIGHBORS (2015)

3. OUR MODEL

Renewable Integration and

Storage Assessment – RISA(Based on Tapia-Ahumada et al. 2015)

13

Capacity expansion model (LP)

•Regional electricity model (Quebec – New York)

•Hourly loads and generation (2015-2030)

•Water storage

•Transmission

•Objective:

MINIMIZE investment and operations costs to

supply demand

s.t. operational constraints (reliability, security of

supply, start-up, water management)

14

15

Scenarios

• RISA1: “BAU” no renewable energy constraint

• RISA2: 50% renewable generation in NY by 2030

• RISA5: Quebec imports count as renewable (no new transmission)

• RISA6: RISA5 + new transmission possible

4. RESULTS

16

35,62 $

37,45 $

36,20 $

35,54 $

34,50 $

35,00 $

35,50 $

36,00 $

36,50 $

37,00 $

37,50 $

38,00 $

RISA1 RISA2 RISA5 RISA6 17

Total Cost ($G)

0

5

10

15

20

25

30

35

40

45

50G

W

Solar

Wind

PS

ROR

FO2

NG - OC

NG - CC

FO6

NG - Steam

Coal

Ur

18

NY Capacity – RISA1

0

5

10

15

20

25

30

35

40

45

50

20

15

20

16

20

17

20

18

20

19

20

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20

28

20

29

20

30

GW

Solar

Wind

PS

ROR

FO2

NG - OC

NG - CC

FO6

NG - Steam

Coal

Ur

19

NY Capacity – RISA2

0

5

10

15

20

25

30

35

40

45

50

20

15

20

16

20

17

20

18

20

19

20

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20

28

20

29

20

30

GW

Solar

Wind

PS

ROR

FO2

NG - OC

NG - CC

FO6

NG - Steam

Coal

Ur

20

NY Capacity – RISA5

0

5

10

15

20

25

30

35

40

45

50

20

15

20

16

20

17

20

18

20

19

20

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20

28

20

29

20

30

GW

Solar

Wind

PS

ROR

FO2

NG - OC

NG - CC

FO6

NG - Steam

Coal

Ur

21

NY Capacity – RISA6

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

20

15

20

16

20

17

20

18

20

19

20

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20

28

20

29

20

30

RISA1

RISA2

RISA5

RISA6

22

QC-NY Transmisison Capacity

0,0

5 000,0

10 000,0

15 000,0

20 000,0

25 000,0

30 000,0

35 000,0

20

15

20

16

20

17

20

18

20

19

20

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20

28

20

29

20

30

RISA1

RISA2

RISA5

RISA6

RISA2 NY to QC

RISA5 NY to QC

RISA6 NY to QC

23

Quebec-NY Trade (GWh)

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000G

Wh

Solar

Wind

PS

ROR

FO2

NG - OC

NG - CC

FO6

NG - Steam

Coal

Ur

24

NY Production – RISA1

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000G

Wh

Solar

Wind

PS

ROR

FO2

NG - OC

NG - CC

FO6

NG - Steam

Coal

Ur

25

NY Production – RISA2

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000G

Wh

Solar

Wind

PS

ROR

FO2

NG - OC

NG - CC

FO6

NG - Steam

Coal

Ur

26

NY Production – RISA5

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000G

Wh

Solar

Wind

PS

ROR

FO2

NG - OC

NG - CC

FO6

NG - Steam

Coal

Ur

27

NY Production – RISA6

0,0

10,0

20,0

30,0

40,0

50,0

60,0

20

15

20

16

20

17

20

18

20

19

20

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20

28

20

29

20

30

RISA1

RISA2

RISA5

RISA6

28

NY Prices ($/MWh)

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

50,0

20

15

20

16

20

17

20

18

20

19

20

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20

28

20

29

20

30

RISA1

RISA2

RISA5

RISA6

29

Quebec Prices ($/MWh)

30

Conclusion

• Integration can decrease cost

• Renewable energy goals leads to some types of

“production leaks” (and possibly higher GHG emissions)

• Next steps:

• Add carbon constraints

• Better analyze hydropower’s role

• Add other regions

Your suggestions are welcome!