regressão - aula 03/04

52

Upload: rodrigo-de-sa

Post on 01-Jul-2015

9.684 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Análise de Regressão:Extensões e regressão múltipla

Rodrigo de Sá

Fundação de Economia e Estatística, 2011

Page 2: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Livro texto

Damodar GujaratiEconometria Básica3ª ed. 2005.

Page 3: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Regressão pela origem

Há ocasiões que a Teoria Econômica diz que o melhormodelo a ser utilizado é Yi = β1Xi + ui .

Nesse modelo, o intercepto é igual a zero, ou seja, aregressão passa pela origem.

Por exemplo, temos o Capital Asset Pricing Model(CAPM).

No CAPM, o retorno de um ativo i e o retorno da carteirade mercado são relacionados pela fórmula(ERi − rf ) = βi (ERm − rf ).

Page 4: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Regressão pela origem

Há ocasiões que a Teoria Econômica diz que o melhormodelo a ser utilizado é Yi = β1Xi + ui .

Nesse modelo, o intercepto é igual a zero, ou seja, aregressão passa pela origem.

Por exemplo, temos o Capital Asset Pricing Model(CAPM).

No CAPM, o retorno de um ativo i e o retorno da carteirade mercado são relacionados pela fórmula(ERi − rf ) = βi (ERm − rf ).

Page 5: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Regressão pela origem: visualização

Figura: CAPM

Page 6: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Regressão pela origem: propriedades

Estimador da inclinação

β1 =

∑XiYi∑X 2

i

A soma dos resíduos não é necessariamente igual a zero,como no caso com intercepto.

O r2 não precisa ser positivo.

Usa-se o r2 ajustado.

Pode ser mais interessante utilizar a regressãoconvencional, com intercepto.

Page 7: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Regressão pela origem: propriedades

Estimador da inclinação

β1 =

∑XiYi∑X 2

i

A soma dos resíduos não é necessariamente igual a zero,como no caso com intercepto.

O r2 não precisa ser positivo.

Usa-se o r2 ajustado.

Pode ser mais interessante utilizar a regressãoconvencional, com intercepto.

Page 8: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Modelo log-linear (log-log)

Linearização

Considere o modelo de regressão exponencial

Yi = β0Xβ1ieui

lnYi = lnβ0 + β1 lnXi + ui

Y ∗i = α + β1X

∗i + ui

onde Y ∗i

= lnYi , X ∗i

= lnXi e α = lnβ0.

Page 9: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

log-log: propriedades

No modelo log-log, a inclinação β1 meda aELASTICIDADE de Y em relação a X .

Elasticidade é a variação percentual em Y dada umavariação percentual em X (variação pequena, assim comono conceito de derivada).

Elasticidade

β1 =variação % em Yvariação % em X

β1 =∆Y /Y

∆X/X

=∆Y

∆X

X

Y

Page 10: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

log-log: propriedades

No modelo log-log, a inclinação β1 meda aELASTICIDADE de Y em relação a X .

Elasticidade é a variação percentual em Y dada umavariação percentual em X (variação pequena, assim comono conceito de derivada).

Elasticidade

β1 =variação % em Yvariação % em X

β1 =∆Y /Y

∆X/X

=∆Y

∆X

X

Y

Page 11: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

log-log: exemplo

Considere um modelo de demanda de um certo produto:

Y é a quantidade demandada;X é o preço.

Regredindo as duas variáveis em log, β1 será aelasticidade-preço do produto.

Page 12: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

log-log: visualização

Figura: Elasticidade

Page 13: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Modelo log-lin

Linearização

Considera a equação do crescimento (ou juros compostos)

Yt = Y0 (1 + r)t

lnYt = lnY0 + t ln (1 + r)

lnYt = β0 + β1t + ut

onde β0 = lnY0, β1 = ln (1 + r) e r é a taxa de crescimento outaxa de juros.

Page 14: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

log-lin: propriedades

No modelo log-lin, a inclinação β1 mede a variaçãoproporcional (ou relativa) constante em Y para uma dadavariação absoluta do regressor.

β1 =variação % em Y

variação absoluta em X

=∆Y /Y

∆X

Caso o regressor seja o tempo, t, a inclinação mede a taxade crescimento da variável Y .

Note que a taxa de crescimento é constante neste modelo.Para o cálculo desse modelo, a variável deve serestacionária.

Page 15: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

log-lin: propriedades

No modelo log-lin, a inclinação β1 mede a variaçãoproporcional (ou relativa) constante em Y para uma dadavariação absoluta do regressor.

β1 =variação % em Y

variação absoluta em X

=∆Y /Y

∆X

Caso o regressor seja o tempo, t, a inclinação mede a taxade crescimento da variável Y .

Note que a taxa de crescimento é constante neste modelo.Para o cálculo desse modelo, a variável deve serestacionária.

Page 16: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

log-lin: exemplo

Figura: Exemplo - taxa de crescimento

Page 17: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Modelo lin-log

lin-log

Yi = β0 + β1 lnXi + ui

β1 =variação absoluta em Y

variação % em X

=∆Y

∆X/X

Assim, se X crescer 1%, Y crescerá β1 unidades.

Page 18: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Modelos recíprocos

Modelo recíproco

Yi = β0 + β1

(1Xi

)+ ui

Propriedade: conforme X aumenta inde�nidamente

o termo β1 (1/Xi ) se aproxima de zero.Y se aproxima do valor-limite ou assintótico β0.

Page 19: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Modelos recíprocos

Modelo recíproco

Yi = β0 + β1

(1Xi

)+ ui

Propriedade: conforme X aumenta inde�nidamente

o termo β1 (1/Xi ) se aproxima de zero.Y se aproxima do valor-limite ou assintótico β0.

Page 20: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Modelos recíprocos: grá�cos

Figura: Modelo recíproco

Page 21: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Modelos recíprocos: curva de Phillips

Figura: Curva de Phillips

Page 22: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Síntese das formas funcionais

Figura: Modelos, inclinações e elasticidades

Page 23: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Regressão múltipla

Regressão de três variáveis

Yi = β0 + β1X1i + β2X2i + ui

Page 24: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Hipótese - ausência de colinearidade

Dentre as 10 hipóteses do modelo clássico de regressãolinear, é importante ressaltar a hipótese da AUSÊNCIA DECOLINEARIDADE (exata) entre as variáveis X .

Quando uma variável explicativa tem correlação com outra,dizemos que elas são COLINEARES ou LINEARMENTEDEPENDENTES.

Colinearidade perfeita existe quando HÁ RELAÇÃOLINEAR EXATA ENTRE as variáveis explicativas,X3 = a + bX2.

Page 25: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Hipótese - ausência de colinearidade

Dentre as 10 hipóteses do modelo clássico de regressãolinear, é importante ressaltar a hipótese da AUSÊNCIA DECOLINEARIDADE (exata) entre as variáveis X .

Quando uma variável explicativa tem correlação com outra,dizemos que elas são COLINEARES ou LINEARMENTEDEPENDENTES.

Colinearidade perfeita existe quando HÁ RELAÇÃOLINEAR EXATA ENTRE as variáveis explicativas,X3 = a + bX2.

Page 26: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Colinearidade perfeita

Efeito da colinearidade perfeita

X2i = 2X1i

Yi = β0 + β1X1i + β2X2i + ui

= β0 + (β1 + 2β2)X1i + ui

= β0 + αX1i + ui

Page 27: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Interpretação

Tomando a esperança em ambos os lados

E (Yi |X1i ,X2i ) = β0 + β1X1i + β2X2i

β1 mede a mudança no valor médio de Y , E (Yi |X1i ,X2i ),por variação unitária em X1, mantendo constante todas asoutras variáveis explicativas (X2).

Isto é, fornece o efeito DIRETO ou LÍQUIDO da mudançaem X1.

Page 28: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Interpretação

Tomando a esperança em ambos os lados

E (Yi |X1i ,X2i ) = β0 + β1X1i + β2X2i

β1 mede a mudança no valor médio de Y , E (Yi |X1i ,X2i ),por variação unitária em X1, mantendo constante todas asoutras variáveis explicativas (X2).

Isto é, fornece o efeito DIRETO ou LÍQUIDO da mudançaem X1.

Page 29: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Propriedades dos estimadores de MQO

A reta (superfície) de regressão passa pelas médias Y , X 1

e X 2.

O valor médio do Yi estimado é igual ao valor médio do Yi

verdadeiro.

A soma dos resíduos é igual a zero.

Os resíduos não tem correlação com nenhuma das variáveisexplicativas.

Page 30: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Propriedades dos estimadores de MQO

As variâncias dos estimadores de MQO são diretamenteproporcionais a σ2.

Os estimadores são MELNV (não viesados e de variânciamínima).

Conforme aumenta r12 (o coe�ciente de correlação entreX1e X2), as variâncias de β1e β2 aumentam.

No limite, quando r12 = 1, as variâncias de β1e β2 setornam in�nitas.Quanto mais correlacionadas forem as variáveisexplicativas, mais difícil �ca fazermos testes sobre os seusefeitos (isolados).

Page 31: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Propriedades dos estimadores de MQO

As variâncias dos estimadores de MQO são diretamenteproporcionais a σ2.

Os estimadores são MELNV (não viesados e de variânciamínima).

Conforme aumenta r12 (o coe�ciente de correlação entreX1e X2), as variâncias de β1e β2 aumentam.

No limite, quando r12 = 1, as variâncias de β1e β2 setornam in�nitas.Quanto mais correlacionadas forem as variáveisexplicativas, mais difícil �ca fazermos testes sobre os seusefeitos (isolados).

Page 32: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

R2 e R2 ajustado

Chamamos de R2 o COEFICIENTE MÚLTIPLO DEDETERMINAÇÃO, semelhante ao r2 do caso univariado.

Uma propriedade do R2 é que ele é uma função nãodecrescente do número de variáveis explicativas.

Quando o número de regressores aumento, o R2 quaseinvariavelmente aumenta, e nunca diminui.

Uma variável adicional X não diminuirá o R2.

Assim devemos ser cautelosos ao usar o R2 paracompararmos modelos com um número diferente devariáveis.

Page 33: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

R2 e R2 ajustado

Chamamos de R2 o COEFICIENTE MÚLTIPLO DEDETERMINAÇÃO, semelhante ao r2 do caso univariado.

Uma propriedade do R2 é que ele é uma função nãodecrescente do número de variáveis explicativas.

Quando o número de regressores aumento, o R2 quaseinvariavelmente aumenta, e nunca diminui.

Uma variável adicional X não diminuirá o R2.

Assim devemos ser cautelosos ao usar o R2 paracompararmos modelos com um número diferente devariáveis.

Page 34: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

R2 e R2 ajustado

Chamamos de R2 o COEFICIENTE MÚLTIPLO DEDETERMINAÇÃO, semelhante ao r2 do caso univariado.

Uma propriedade do R2 é que ele é uma função nãodecrescente do número de variáveis explicativas.

Quando o número de regressores aumento, o R2 quaseinvariavelmente aumenta, e nunca diminui.

Uma variável adicional X não diminuirá o R2.

Assim devemos ser cautelosos ao usar o R2 paracompararmos modelos com um número diferente devariáveis.

Page 35: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

R2 e R2 ajustado

O R2 ajustado(R2)leva em conta o número de variáveis

para melhorar a comparação.

R2

= 1−∑

u2i/ (n − k)∑

y2i/ (n − 1)

O R2 ajustado pode ser menor do que um e é menor doque o O R2 não ajustado quando k > 1.

Mesmo com o O R2 ajustado deve-se tomar cuidado aousá-lo para comparar dois ou mais modelos concorrentes.

Page 36: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

R2 e R2 ajustado

O R2 ajustado(R2)leva em conta o número de variáveis

para melhorar a comparação.

R2

= 1−∑

u2i/ (n − k)∑

y2i/ (n − 1)

O R2 ajustado pode ser menor do que um e é menor doque o O R2 não ajustado quando k > 1.

Mesmo com o O R2 ajustado deve-se tomar cuidado aousá-lo para comparar dois ou mais modelos concorrentes.

Page 37: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

R2 e R2 ajustado

O R2 ajustado(R2)leva em conta o número de variáveis

para melhorar a comparação.

R2

= 1−∑

u2i/ (n − k)∑

y2i/ (n − 1)

O R2 ajustado pode ser menor do que um e é menor doque o O R2 não ajustado quando k > 1.

Mesmo com o O R2 ajustado deve-se tomar cuidado aousá-lo para comparar dois ou mais modelos concorrentes.

Page 38: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Exemplo: função de produção Cobb-Douglas

Linearização

Seja a seguinte função de produção, onde Y é o produto, X1 éo trabalho e X2 é o capital.

Yi = β0Xβ11iX

β22ieui

lnYi = lnβ0 + β1 lnX1i + β2 lnX2i + ui

Esse é um modelo log-log.

β1 é a elasticidade parcial do produto em relação ao insumotrabalho, isto é, mede a variação percentual no produto parauma variação de 1% na quantidade de trabalho, mantendocontante o capital.

Analogamente, β2 é a elasticidade parcial do produto emrelação ao insumo capital.

A soma β1 + β2 nos informa sobre os RETORNOS DE ESCALA.

Page 39: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Exemplo: função de produção Cobb-Douglas

Linearização

Seja a seguinte função de produção, onde Y é o produto, X1 éo trabalho e X2 é o capital.

Yi = β0Xβ11iX

β22ieui

lnYi = lnβ0 + β1 lnX1i + β2 lnX2i + ui

Esse é um modelo log-log.

β1 é a elasticidade parcial do produto em relação ao insumotrabalho, isto é, mede a variação percentual no produto parauma variação de 1% na quantidade de trabalho, mantendocontante o capital.

Analogamente, β2 é a elasticidade parcial do produto emrelação ao insumo capital.

A soma β1 + β2 nos informa sobre os RETORNOS DE ESCALA.

Page 40: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Exemplo: função de produção

Figura: Produto real, dias-trabalho e capital no setor agrícola deTaiwan

Page 41: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Exemplo: função de produção

Figura: Produto real, dias-trabalho e capital no setor agrícola deTaiwan

Page 42: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Modelo de regressão polinomial

Regressão polinomial de k-ésimo grau

Yi = β0 + β1Xi + β2X2

i + . . .+ βkXki + ui

Polinômios aproximam bem funções contínuas(aumentando k).

Há apenas uma variável explicativa (X ).

X , X 2, X 3, . . . são correlacionados, mas não apresentamcorrelação perfeita.

Page 43: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Modelo de regressão polinomial

Regressão polinomial de k-ésimo grau

Yi = β0 + β1Xi + β2X2

i + . . .+ βkXki + ui

Polinômios aproximam bem funções contínuas(aumentando k).

Há apenas uma variável explicativa (X ).

X , X 2, X 3, . . . são correlacionados, mas não apresentamcorrelação perfeita.

Page 44: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Exemplo: função custo total

Figura: Função custo total

Page 45: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Exemplo: função custo total

Figura: Função custo total

Page 46: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Exemplo: função custo total

Figura: Função custo total

Page 47: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Outra vez a hipótese da normalidade

Assim como na regressão simples, supondo a normalidadedos resíduos, os estimadores de MQO da regressãomúltipla são os melhores estimadores não viesados.

Os estimadores dos betas são normalmente distribuídoscom esperança igual ao valor verdadeiro do parâmetropopulacional.

Para cada um dos estimadores, pode-se aplicar o teste t,como no caso simples.

Page 48: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Teste de hipótese individuais

Pode-se testar uma certa hipótese sobre um estimador deregressão parcial INDIVIDUALMENTE.

Funciona de maneira idêntica à regressão simples.

Page 49: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Teste de signi�cância global

Consideremos a hipótese H0 : β1 = β2 = 0.

A hipótese nula é uma hipótese conjunta de que β1 e β2são conjunta ou simultaneamente iguais a zero.

Este teste é um teste de SIGNIFICÂNCIA GLOBAL da retade regressão observada ou estimada, isto é, se Y temrelação linear tanto com X1 quanto com X2.

Testar esta hipótese não é o mesmo que testar asigni�cância de cada um dos parâmetros individualmente!

Page 50: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Teste de signi�cância global: teste F

Dada a impossibilidade de testar a signi�cância dosparâmetros isoladamente, outra abordagem é necessária.

A alternativa é o teste F.

Pode-se mostrar que, sob a hipótese nula β1 = β2 = 0, avariável F tem distribuição F com 2 e n − 3 graus deliberdade.

F =SQE/ (k − 1)

SQR/ (n − k)

Page 51: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

Teste de signi�cância global: teste F

Dada a impossibilidade de testar a signi�cância dosparâmetros isoladamente, outra abordagem é necessária.

A alternativa é o teste F.

Pode-se mostrar que, sob a hipótese nula β1 = β2 = 0, avariável F tem distribuição F com 2 e n − 3 graus deliberdade.

F =SQE/ (k − 1)

SQR/ (n − k)

Page 52: Regressão - aula 03/04

Análise deRegressão:Extensões eregressãomúltipla

Rodrigo deSá

Extensões

Regressãomúltipla -estimação

Regressãomúltipla -inferência

ANOVA

Figura: Tabela de análise de variância (ANOVA)