regularization with singular energies martin burger institute for computational and applied...

56
Regularization with Singular Energies Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging (EIMI) Center for Nonlinear Science (CeNoS) Westfälische Wilhelms-Universität Münster

Post on 20-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Regularization with Singular Energies

Martin Burger

Institute for Computational and Applied MathematicsEuropean Institute for Molecular Imaging (EIMI)

Center for Nonlinear Science (CeNoS)

Westfälische Wilhelms-Universität Münster

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

In many inverse and imaging problems, a- priori information on the solution (or its interesting parts) needs to introduced in an effective way, e.g.

- smoothness away from edges (images) - (almost) piecewise constant (material densities with interfaces) - sparsity in some basis / frame (MRI, .. ), or in space (deconvolution, EEG/MEG, ..)

Introduction

¸2kAu ¡ f k2+

12kLuk2 ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Nanoscopy with optical (4pi) techniques, cell imaging: sparsity in space

© Andreas Schönle, MPI Göttingen

Examples

¸2kAu ¡ f k2+

12kLuk2 ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

PET / CT imaging of mouse heart coronal sagittal transverse

© Dept of Nuclear Medicine / SFB 658, WWU Münster

Examples

¸2kAu ¡ f k2+

12kLuk2 ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

MRI images for EEG/MEG modelling T1 PD

© Institute for BioSystemAnalysis, WWU Münster

Anisotropic Structures essential for field simulations and dipole source reconstructions in MEG

Examples

¸2kAu ¡ f k2+

12kLuk2 ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

MRI images for EEG/MEG modelling

Baillet, Mosher, Leahy, IEEE Signal Processing Magazine, 2001, 18(6), pp. 14-30.

Examples

¸2kAu ¡ f k2+

12kLuk2 ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Aerial images of buildings: strong anisotropy

© Aerowest GmbH

Münster Visualization Project, Dept. of Computer Science, WWU

Examples

¸2kAu ¡ f k2+

12kLuk2 ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

A-priori information or desired structures have to be incorporated into reconstruction methods and regularization schemes

One possibility are singular energies (not differentiable and not strictly convex), see also various speakers at AIP 07: Daubechies, Candes, Fornasier, Saab, Leitao, Mizera, Kindermann, Lorenz, Ramlau, Rauhut, Zhariy, Ring, Villegas, Klann, …

Introduction

¸2kAu ¡ f k2+

12kLuk2 ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Classical regularization schemes for inverse problems and imaging are based on linear smoothing = quadratic energy functionals

Example: Tikhonov regularization for linear operator equations A u = f

Linear Regularization

¸2kAu ¡ f k2+

12kLuk2 ! min

u

¸2kAu ¡ f k2+

12kLuk2 ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

These energy functionals are strictly convex and differentiable – standard tools from analysis and computation (Newton methods etc.) can be used Disadvantage: possible oversmoothing, seen from first-order optimality condition Tikhonov yields

Hence u is in the range of (L*L)-1A*

Linear Tikhonov

¸2kAu ¡ f k2+

12kLuk2 ! min

u

L¤Lu = ¡ ¸A¤(Auf )

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Classical example: integral equation of the first kind, regularization in L2 (L = Id), A = Fredholm integral operator with kernel k

Smoothness of regularized solution is determined by smoothness of kernel For typical convolution kernels like Gaussians, u is analytic !

Deblurring

¸2kAu ¡ f k2+

12kLuk2 ! min

u

u(x) = ¸Z Z

k(y;x)(¡ k(y;z)u(z) + f (z))dy dz

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Classical image smoothing: data in L2 (A = Id), L = gradient (H1-Seminorm)

On a reasonable domain, standard elliptic regularity implies

Reconstruction contains no edges, blurs the image (with Green kernel)

Image Smoothing

¸2kAu ¡ f k2+

12kLuk2 ! min

u

¡ ¢ u+¸u = ¸f

u 2 H 2(­ ) ,! C(­ )

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Let A be an operator on (basis repre-sentation of a Hilbert space operator, wavelet)

Penalization by squared norm (L = Id)

Optimality condition for components of u

Decay of components determined by A*. Even if data are generated by sparse signal (finite number of nonzeros), reconstruction is not sparse !

Sparse Reconstructions ?

¸2kAu ¡ f k2+

12kLuk2 ! min

u

2̀(Z)

uk = ¸ (A¤(¡ Au+ f ))k

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Error estimates for ill-posed problems can be obtained only under stronger conditions (source conditions)

cf. Groetsch, Engl-Hanke-Neubauer, Colton-Kress, Natterer. Nonlinear: Engl-Kunisch-Neubauer.

Equivalent to u being minimizer of Tikhonov functional with some data For many inverse problems unrealistic due to extreme smoothness assumptions

Error Estimates

¸2kAu ¡ f k2+

12kLuk2 ! min

u

9w : u = A¤w

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Condition can be weakened to

cf. Neubauer et al (algebraic), Hohage (logarithmic), Mathe-Pereverzyev (general).

Advantage: more realistic conditions

Disadvantage: Estimates get worse with

Error Estimates

¸2kAu ¡ f k2+

12kLuk2 ! min

u

9v : u =¾(A¤A)v

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Analogous (local) theory for nonlinear

inverse problems (as long as forward operator is Frechet differentiable, and additional technical conditions satisfied)

Nonlinear Problems

¸2kAu ¡ f k2+

12kLuk2 ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Image smoothing: try nonlinear energy

for penalization:

Optimality condition is nonlinear PDE

r is strictly convex and smooth: usual smoothing behaviour / elliptic regularity

r is not convex: problem not well-posed

Try borderline case: singular energy

Singular Energies

¸2kAu ¡ f k2+

12kLuk2 ! min

u

¡ r ¢((r r)(r u)) +¸u= ¸f

Rr(r u)

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Simplest choice yields total variation method (Rudin-Osher-Fatemi 89, Acar-Vogel 93, Chambolle-Lions 96, …)

Singular energy: nondifferentiable, not strictly convex

„ “

Total Variation Methodsr(p) = jpj

jujB V =

Zjr uj dx

jujB V = supg2C 10 ;kgk1 · 1

Zu(r ¢g) dx

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

A operator on

Singular energy

Regularized minimization

Daubechies et al 04-07, Loubes 06/07, Ramlau, Maass, Klann 07, …

Sparsity

¸2kAu ¡ f k2+

12kLuk2 ! min

u

2̀(Z) \ 1̀(Z)

J (u) = kuk1 =Pjukj

¸2kAu ¡ f k2+J (u) ! min

u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Optimality condition for components of u

A* is the adjoint operator to ,hence

Implies sparsity of u, since

Sparsity

¸2kAu ¡ f k2+

12kLuk2 ! min

u

sign (uk) = ¸A¤(f ¡ Au)k

sign (uk) 2 2̀(Z)

2̀(Z)

ksign(u)k2 =number of nonzero components

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

For A being the identity, the result is well-known soft-thresholding: Donoho, Johnstone 94,

Chambolle, DeVore, Lee, Lucier 98, …

implies

Sparsity / Thresholding

¸2kAu ¡ f k2+

12kLuk2 ! min

u

uk =

8<

:

f k ¡ 1¸ f k > 1

¸f k + 1

¸ f k < ¡ 1¸

0 else

sign (uk) +¸uk = ¸f k

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

ROF model for denoising

Rudin-Osher Fatemi 89/92, Chambolle-Lions 96, Scherzer-Dobson 96, Meyer 01,…

ROF Model

¸2

Z(u ¡ f )2+jujB V ! min

u2B V

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Optimality condition for ROF denoising

Dual variable p enters – related to mean curvature of edges for total variation

Subdifferential of convex functional

ROF Model

p+¸u= ¸f ; p2 @jujB V

@J (u) = fp2 X ¤ j 8v 2 X :

J (u) +hp;v ¡ ui · J (v)g

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

ROF Model

Reconstruction (code by Jinjun Xu)

clean noisy ROF

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

ROF model denoises cartoon images resp. computes the cartoon of an arbitrary image, natural spatial multi-scale decomposition by varying

ROF Model

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Bachmayr, 2007

Numerical Differentiation with TV

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Methods with singular energies have great potential, but still some problems:- difficult to analyze and to obtain error estimates- systematic errors (like loss of contrast)- computational challenges- strong bias – how to incorporate uncertain a-priori structures (adaptively) ?

Singular Energies

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Berkels, mb, Droske, Nemitz, Rumpf 06

Systematic Errors and Bias

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

ROF minimization loses contrast, total variation of the reconstruction is smaller than total variation of clean image. Image features left in residual f-u

g, clean f, noisy u, ROF f-u

mb-Gilboa-Osher-Xu 06

Loss of Contrast

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Idea: add the residual („noise“) back to the image to pronounce the features decreased too much. Then do ROF again. Iterative procedure

Osher-mb-Goldfarb-Xu-Yin 04

Iterative Refinement

uk =argminu

·¸2

Z(u ¡ f ¡ vk¡ 1)2+jujB V

¸

vk =vk¡ 1+(f ¡ uk); v0 =0

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Improves reconstructions significantly

Iterative Refinement & ISS

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Iterative Refinement & ISS

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Works for inverse problems in a similar way

Osher-mb-Goldfarb-Xu-Yin 04

Iterative Refinement

uk =argminu

·¸2kAu¡ f ¡ vk¡ 1k2+J (u)

¸

vk =vk¡ 1+(f Auk); v0 =0

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Observation from optimality condition

Implies relation between decomposed residual and subgradient

Iterates determined by equivalent minimization of

Iterative Refinement & ISS

pk = ¸A¤vk

¸2kAu¡ f k2+J (u) J (uk¡ 1) ¡ ¸hvk¡ 1;Au Auk¡ 1i

=¸2kAu¡ f k2+J (u) J (uk¡ 1) ¡ hpk¡ 1;u uk¡ 1i

pk = ¸A¤(¡ Auk +f +vk¡ 1) 2 @J (uk)

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Dual update formula

Iterative refinement = dual proximal method = Bregman iteration. Minimization in each step of

Generalized Bregman distance

Iterative Refinement & ISS

¸2kAu¡ f k2+Dpk ¡ 1J (u;uk¡ 1)

DqJ (u;v) = J (u) J (v) ¡ hq;u viq2 @J (v)

pk =pk¡ 1+¸A¤(¡ Auk +f )

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Choice of parameter less important, can be kept small (oversmoothing). Regularizing effect comes from appropriate stopping.

Quantitative stopping rules available, or „stop when you are happy“ in imaging – S.O. Limit to zero can be studied. Yields gradient flow for the dual variable („inverse scale space“)

mb-Gilboa-Osher-Xu 06, mb-Frick-Osher-Scherzer 06

Iterative Refinement & ISS

@tp(t) = A¤(¡ Au(t) + f ); p2 @J (u)

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Efficient numerical schemes for flow mb-Gilboa-Osher-Xu 06

Analysis of iteration and partly of the flowOsher-mb-Goldfarb-Xu-Yin 04, mb-Frick-Osher-Scherzer 06

Error estimates in Bregman distance mb-He-Resmerita 07

Non-quadratic fidelity is possible, some caution needed for L1 fidelityHe-mb-Osher 05, mb-Frick-Osher-Scherzer 06

Iterative Refinement & ISS

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Application to other energies, e.g. Besov norms (wavelets), is straight-forward

Starting from soft shrinkage, iterated refinement yields firm shrinkage, inverse scale space becomes hard shrinkageOsher-Xu 06

Bregman is distance natural sparsity measure, number of nonzero components is constant in error estimates

Iterative Refinement & ISS

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Smoothing of surfaces in level set represenation

3D Ultrasound, Kretz / GE Med.

Surface Smoothing

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Inverse Scale Space

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06

Penalization TV + Besov

MRI Reconstruction

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06

Penalization TV + Besov

MRI Reconstruction

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Generalization to nonlinear inverse problems possible Bachmayr, Thesis 07

Different ways of approximating nonlinearity lead to different iterative schemes (similar to iterated Tikhonov / Landweber / Levenberg-Marquardt)

Example: parameter identification (diffusivity) in elliptic PDE

Iterative Refinement & ISS

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Exact Solution

Reconstructions at 1 % noise

Iterative 1 Iterative 2 Standard TV

Iterative Refinement & ISS

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Generalization to combination with EM / Richardson-Lucy method in progress A.Sawatzky, C.Brune

Application 1: 4pi / STED nanoscopy

Application 2: PET/CT imaging with O15

isotopes (fast decay, hence bad statistics)

Current / Future Work: EM-TV

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Bias of one functional often too strong

Better: use a family of functionals parametrized by

Example: adaptive anisotropy in total variation methods

Adaptive Bias / Parametrization

J (u;®)®2 A

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

In aerial images the typical anisotropy is rectangular, houses have 90° angles

But not all of them have the same orientation

Adaptive Anisotropy

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Bias for edges with 90° angles from functional of the form

R is rotation matrix for angle to capture

the orientation

Since orientation is not constant over the image, has to vary and to be found adaptively by minimization

Adaptive Anisotropy

J (u;®) =

Z(jv1j + jv2j) dx; v=R®r u

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

To avoid microstructure, variation of has to be regularized, too

Possible functional to be minimized

Adaptive Anisotropy

¸2

Z(u ¡ f )2+J (u;®) +

¹ 12

Zjr ®j2+

¹ 22

Zj¢®j2

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Improves angles, still loses contrast

Adaptive Anisotropy

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Contrast correction again by iterative refinement

Angle parameter provides classification of orientations in the image

Adaptive Anisotropy

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Cartoon reconstruction and orientational classification of aerial images

Berkels, mb, Droske, Nemitz, Rumpf 06

Adaptive Anisotropy

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Cartoon reconstruction and orientational classification of aerial images

Berkels, mb, Droske, Nemitz, Rumpf 06

Adaptive Anisotropy

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Analogous problem in segmentation of MRI brain images for EEG/MEG

Regularization by total variation (= length of curves in segmentation) kills noise, but also elongated structures

Adapt anisotropy (locally like sharp ellipse) to find sulci accurately and provide classification of normals (for dipole fitting, source reconstruction)

Adaptive Anisotropy

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Denis Neiter, results of internship 2007

Adaptive Anisotropy

4.6.2007 Regularization with Singular Energies AIP 2007, Vancouver, June 07

Papers and talks at

www.math.uni-muenster.de/u/burgeror by email

[email protected]

Thanks for input and suggestions to:

S.Osher, J.Xu, G.Gilboa, D.Goldfarb, W.Yin, L.He, E.Resmerita, M.Bachmayr, B.Berkels, M.Droske, O.Nemitz, M.Rumpf, K.Frick, O.Scherzer, A.Schönle, T.Hohage, C.Wolters, T.Kösters, K.Schäfers, F.Wübbeling, A.Sawatzky, D.Neiter

Download and Contact