regulatory genomics lecture 1 november 2012 yitzhak (tzachi) pilpel 1

77
Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Upload: june-webb

Post on 20-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Regulatory Genomics

Lecture 1 November 2012

Yitzhak (Tzachi) Pilpel

Lecture 1 November 2012

Yitzhak (Tzachi) Pilpel1

Page 2: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Course requirements

• Attendance and participation

• Five reading assignments

• A final take home papers reading-based exam

• website

In total 13 or 14 meetings (not 17…)No meeting on Nov 15th

2

Page 3: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Genomics marked the beginning of a new age in

biology and medicine

1900

1953

1977

1980

1983

1990

1994-98

1998

2000

2005

Watson and Crick identify DNA(the double helix) as the Chemical basis of heredity

DNA markers used to map human disease genes to chromosomal regions

Human Genome Projects (HPG) begins-an international effort to map and sequence all the genes in the human genome

DNA markers used to map human disease genes to chromosomal regions

Release of Human Genome Project

Sanger and Gilbert derive methods of sequencing DNA

Huntington disease gene mapped to chromosome 4

Genetic and physical mapping

Working Draft of the human genome sequencing complete

Rediscovery of Mendel's laws helps establish the science of genetics

Source: Health Policy Research Bulletin, volume 1 issue2, September 2001

3

Page 4: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The genome browser

Link4

Page 5: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Number of protein coding genes20,210

19,735

13,601

5,616

20,568

482Mycoplasma genitalium

Mouse Fruit fly Mustered(Arabidopsis)

Worm (C elegans)

Yeast(S Cerevisiae)

5

Page 6: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

How comes we have so few genes give that we are so complex???

19,735

21,710•We have many non-protein coding genes

•Our genes are longer and more complex

•Regulation of human genes activity is more complex

•Repeats (formerly known as “junk DNA” (yet not garbage) contribute to complexity

•Combinatorial interactions among genes and products

6

Page 7: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The hierarchical structure of the genome

Lodish et al. Molecular Biology of the Cell (5th ed.). W.H. Freeman & Co., 2003.

7

Page 8: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Expressing the genome

8

Page 9: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The Central Dogma: a cellular context

915

Page 10: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

DNA mRNA Protein

Inactive DNA

The Central Dogma of Molecular BiologyExpressing the genome

RNA

10

Page 11: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Evolution

11

Page 12: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Corrected view of evolution

12

Page 13: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The tree of life

13

Page 14: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

How genomes evolve?

Consider two distinct possibilities:

•Genomes evolve by lots of de-novo “inventions”

•Genomes evolve predominantly by mixing and matching existings

parts 14

Page 15: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Classification of protein structures

15

Page 16: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Very slow growth in number of protein folds

Very few structural “inventions”

16

Page 17: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Comparing a certain family (e.g. kinases) in different species reveals few

“inventions”

17

Page 18: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Analogy:

•Technology

•Language

18

Page 19: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Some basic evolutionary operations

• Mutating existing DNA

• Change gene expression profiles

• Duplications of existing material (genes, chromosomes, genomes)

• Transfer of genes from one organism to another

• Functionalization of “junk DNA”

• Reverse transcription??19

Page 20: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Stress condition induce high DNA replication error rate

Because most newly arising mutations are neutral or deleterious, it has been argued that the mutation rate has evolved to be as low as possible, limited only by the cost of error-avoidance and error-correction mechanisms. But up to one per cent of natural bacterial isolates are 'mutator' clones that have high mutation rates. We consider here whether high mutation rates might play an important role in adaptive evolution. Models of large, asexual, clonal populations adapting to a new environment show that strong mutator genes (such as those that increase mutation rates by 1,000-fold) can accelerate adaptation, even if the mutator gene remains at a very low frequency (for example, 10[-5]). …

20

Page 21: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Some basic evolutionary operations

• Mutating existing DNA

• Change gene expression profiles

• Duplications of existing material (genes, chromosomes, genomes)

• Transfer of genes from one organism to another

• Functionalization of “junk DNA”

• Reverse transcription??21

Page 22: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

A slight change in expression program can make a big change: olfactory receptor can “smell the egg”

22

Page 23: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Science. 2003 Mar 28;299(5615):2054-8.Identification of a testicular odorant receptor mediating human sperm chemotaxis.Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H.SourceDepartment of Cell Physiology, Ruhr University Bochum, 150 University Street, D-44780 Bochum, Germany.AbstractAlthough it has been known for some time that olfactory receptors (ORs) reside in spermatozoa, the function of these ORs is unknown. Here, we identified, cloned, and functionally expressed a previously undescribed human testicular OR, hOR17-4. With the use of ratiofluorometric imaging, Ca2+ signals were induced by a small subset of applied chemical stimuli, establishing the molecular receptive fields for the recombinantly expressed receptor in human embryonic kidney (HEK) 293 cells and the native receptor in human spermatozoa. Bourgeonal was a powerful agonist for both recombinant and native receptor types, as well as a strong chemoattractant in subsequent behavioral bioassays. In contrast, undecanal was a potent OR antagonist to bourgeonal and related compounds. Taken together, these results indicate that hOR17-4 functions in human sperm chemotaxis and may be a critical component of the fertilization process.

23

Page 24: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Some basic evolutionary operations

• Mutating existing DNA

• Change gene expression profiles

• Duplications of existing material (genes, chromosomes, genomes)

• Transfer of genes from one organism to another

• Functionalization of “junk DNA”

• Reverse transcription??24

Page 25: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

nonfunctionalization

neofunctionalization subfunctionalization

duplication

Gene duplication might provide redundancy

25

Page 26: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

chromosome III duplicates in heat

Gene Index

log 2(e

xpre

ssio

n ev

o39

/ evo

30)

all genes

chromosome III genes

P value < 10e-100

26

Page 27: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Heat shock tolerance correlates with chromosome III copy number

0

0.5

1

1.5

2

2.5

3

3.5

Rela

tive

Surv

ival

WT Two copies

Evolved 3 copies

WT One copyWT, 3 copies27

Page 28: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

• Chromosomes are easily gained and lost in yeast evolution

• A more fine-tuned solution may follow chromosome duplication

• A sticking similarity between repetitive experiments

• A chromosome-condition specificity?

Conclusions from the experiment

28

Page 29: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

29

Page 30: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Many gene duplicate distances Correspond to 60-70 mya!!

Sequences similarity between gene pairs

30

Page 31: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Some basic evolutionary operations

• Mutating existing DNA

• Change gene expression profiles

• Duplications of existing material (genes, chromosomes, genomes)

• Transfer of genes from one organism to another

• Functionalization of “junk DNA”

• Reverse transcription??31

Page 32: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Horizontal (“lateral”) gene transfer: transfer genes between organisms –

mostly in stress

32

Page 33: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Some basic evolutionary operations

• Mutating existing DNA

• Change gene expression profiles

• Duplications of existing material (genes, chromosomes, genomes)

• Transfer of genes from one organism to another

• Functionalization of “junk DNA”

• Reverse transcription??33

Page 34: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Evolution of transcriptional switches

Similar function

Neutral selection

Disrupted function

Low ratepurifying selection

TF1

TF2

Altered function

Low ratepurifying selection

TF1

Gained function

TF1

CACGCGTACACGCGTT

TF1

CACGAGTTCACGCGTT

CACACGTTCACGCGTTCACACGTTCACGCGTT

Low ratepurifying selection

34

Page 35: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Evolution of transcription networks

35

Page 37: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Repetitive elements in the human genome

•Alu are repetitive retrotransposons elements in the Human genome. •Alu elements are about 300 base pairs long and are therefore classified as short interspersed elements (SINEs) •There are over one million Alu elements interspersed throughout the human genome•About 10% of the human genome consists of Alu sequences. 37

Page 38: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Retro-transposition

38

Page 39: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Alus may contain binding sites for TFs, microRNAs…

Alus

Alus 39

Page 40: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Can the phenotype shape the genotype?

Classical Darwinian theory

Lamarckian Theory

Genotype Phenotype

Genotype Phenotype

40

Page 41: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The Central Dogma: a cellular context

4115

Page 42: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

42

Page 43: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

cell division

celldeath

Attack a virus differentiate

proteinsynthesis

* * *

Cell membrane

Nucleus

43

Page 44: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

* * *From parts to networks…

44

Page 45: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Reporter gene reveal spatio-temporal expression programs

45

Page 46: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

In uni-cellulars response to environmental signals affect gene expression dramatically

Genes

Gasch et al Mol Biol Cell. 2000 Dec;11(12):4241-57.46

Page 47: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The transcriptome during the cell cycle

Spellman et al Mol Biol Cell. 1998 Dec;9(12):3273-9747

Page 48: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Coding DNA strandNon-coding strandRNA

48

Page 49: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Transcription regulation

• The hardware

• The software

• The input

• The output

49

Page 50: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The initiation machinery complex

50

Page 51: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Transcription factors bind the DNA

51

Page 52: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

ATACGAT

Keys (regulators) can scan the genomes in search for their locks (recognition sites)

52

Page 53: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Transcription regulation

• The hardware

• The software

• The input

• The output

53

Page 54: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

http://esg-www.mit.edu:8001/esgbio/pge/lac.html

In the absence of Lactose

54

Page 55: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

http://esg-www.mit.edu:8001/esgbio/pge/lac.html

In the presence of Lactose

The Lac Operon (Jacob and Monod)

55

Page 56: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

http://esg-www.mit.edu:8001/esgbio/pge/lac.html

In the absence of Glucose

56

Page 57: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The logic of the Lac operon regulation

CAPsite

Operator

Glu

cose

Lac

tose

+ -

- +

- -

+ +

Activity

OFF

ON

OFF

OFF

Lactose

n y

OFF

n y

OFF ON

Glucose

57

Page 58: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Genomic Regulatory Logic

58

Page 59: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

DNA binding proteins for unique pathways

59

Page 60: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

A global map of combinatorial expression control

mRPE72

SWI5

SFF '

MCM1

SFFMCM1'

ECB SCB

MCB

PAC

mRRPE

mRRSE3

GCN4

BAS1

LYS14

RAP1

mRPE34

mRPE57

mRPE6mRPE58

STRE

RPN4 ABF1

PDR

CCA

PHO4

AFT1

STE12

MIG1

CSRE

HAP234

ALPHA1'

ALPHA1

ALPHA2

mRPE8

mRPE69

Heat-shockCell cycleSporulationDiauxic shiftMAPK signalingDNA damage

*High connectivity

*Hubs*Alternative partners in various conditions

60

Page 61: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Transcription regulation

• The hardware

• The software

• The input

• The output

61

Page 62: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

AlignACE ExampleAlignACE Example

…HIS7 …ARO4…ILV6…THR4…ARO1…HOM2…PRO3

300-600 bp of upstream sequence per gene are searched in

Saccharomyces cerevisiae.

62

Page 63: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

AAAAGAGTCA

AAATGACTCA

AAGTGAGTCA

AAAAGAGTCA

GGATGAGTCA

AAATGAGTCA

GAATGAGTCA

AAAAGAGTCA

**********

AlignACE ExampleAlignACE Example

MAP score = 20.37

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

The Best MotifThe Best Motif

63

Page 64: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Transcription regulation

• The hardware

• The software

• The input

• The output

64

Page 65: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Expression regulation of genes determines complex spatio-temporal patterns

65

Page 66: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Monitor expression during

cell cycle

0 5 10 15-2

-1

0

1

2

3

4

Time

mR

NA

exp

ress

ion

leve

l

G1 S G2 M G1 S G2 M 66

Page 67: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Time-point 1

Tim

e-po

int 3

Tim

e-po

int 2

-1.8

-1.3

-0.8

-0.3

0.2

0.7

1.2

1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3

Time -pointTime -point

Time -point

Nor

mal

ized

Exp

ress

ion

Nor

mal

ized

Exp

ress

ion

Nor

mal

ized

Exp

ress

ion

Genes can be clustered based on time-dependent expression profilesGenes can be clustered based on time-dependent expression profiles

67

Page 68: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The K-means algorithm

• Start with random positions of centroids.

Iteration = 0

68

Page 69: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

K-means

• Start with random positions of centroids.

• Assign data points to centroids

Iteration = 1

69

Page 70: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

K-means

• Start with random positions of centroids.

• Assign data points to centroids.

• Move centroids to center of assigned points.

Iteration = 1

70

Page 71: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

K-means

• Start with random positions of centroids.

• Assign data points to centroids.

• Move centroids to center of assigned points.

• Iterate till minimal cost. Iteration = 3

71

Page 72: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The diauxic shift

Time 72

Page 73: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Genetic reprogramming of the yeast metabolism upon glucose deletion

73

Page 74: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Glucose

Pyruvate

2 ADP+Pi

2 ATP

NAD+

NADH

EthanolLactateFermentFerment

AcetylCoA

TCA

NAD+NADHRespirate

At the beginning – whenglucose is abundant

74

Page 75: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Glucose

Pyruvate

2 ADP+Pi

2 ATP

NAD+

NADH

EthanolLactateFermentFerment

O2O2

AcetylCoA

TCA

NAD+NADHRespirate

~20 hours laterwhen glucose is depleted

75

Page 76: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

The promoter sequences of co-expressed genes

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…HIS7 …ARO4…ILV6…THR4…ARO1…HOM2…PRO3

76

Page 77: Regulatory Genomics Lecture 1 November 2012 Yitzhak (Tzachi) Pilpel 1

Promoter Motifs and expression

profilesCGGCCCCGCGGA

CTCCTCCCCCCCTTC TGGCCAATCA

ATGTACGGGTG

77