rekayasa nuklir

Download REKAYASA NUKLIR

Post on 01-Jul-2015

119 views

Category:

Documents

1 download

Embed Size (px)

TRANSCRIPT

Sejarah Nuklir di IndonesiaSejarah nuklir indonesia dimulai pada tanggal 16 November 1964 ketika ilmuwan -ilmuwan anak bangsa yang dipimpin Ir. Djali Ahimsa berhasil menyeleseikan criticality-experiment terhadap reaktor nuklir pertama Triga Mark II di Bandung. Pada keesokan harinya tertanggal 17 November 1964 Surat Kabar Harian Karya memberitakan soal kedatangan abad nuklir di Indonesia. Kemudian pada tanggal 18 November 1964 Radio Australia mengumumkan bahwa Indonesia mampu membuat reaktor atom . Disusul dengan ulasan dua menit oleh stringer AK Jacoby yang menulis : Indonesia masuk abad nuklir. Suatu hal yang sungguh membanggakan bahwa di umurnya yang masih 19 tahun, Indonesia berhasil melakukan apa yang negara - negara maju telah lakukan. Inilah bukti bahwa bangsa kita adalah sejajar dengan bangsa lain. Hari Sabtu, tanggal 20 Februari 1964 reaktor pertama dengan daya 250 kW ini diresmikan oleh Presiden Republik Indonesia pada waktu itu Ir.Soekarno. Reaktor ini digunakan untuk keperluan pelatihan, riset, produksi radio isotop. Reaktor ini mengalami dua kali pembongkaran untuk mengganti beberapa komponen utamanya pembongkaran pertama pada 1972 dipimpin Sutaryo Supadi dan yang kedua pada 1997 dipimpin Haryoto Djoyosudibyo dan A. Hanafiah. Reaktor Nuklir Kartini yang berlokasi di Yogyakarta, merupakan Reaktor Nuklir yang dirancang bangun oleh anak bangsa. Tidak cukup sampai disini pada tahun 1979. Indonesia mengoperasikan Reaktor kartini yang berdaya 100 kw yang didesain dan dirancang bangun oleh putra - putri terbaik bangsa. Pada tahun 1987 di serpong resmi dioperasikan reaktor serpong yang berdaya 30 Mw Pada pertengahan tahun 2000 TRIGA MARK II selesei diupgrade dengan daya 2000 kW, dan pengoperasiannya diresmikan oleh Wakil Presiden Megawati Soekarnoput i nama reaktor diubah r menjadi Reaktor TRIGA 2000 Bandung. Sadar akan kebutuhan SDM yang mahir dalam Ilmu Pengetahuan dan Teknologi Nuklir yang diperlukan untuk mampu memasuki Industri Nuklir maka pemerintah pada awal tahun 1980 -an membentuk Jurusan Teknik Nuklir di Fakultas Teknik Nuklir UGM, Jurusan instrumentasi Nuklir dan Proteksi Radiasi di bagian Fisika UI, serta Pendidikan Ahli Teknik Nuklir di Yogyakarta (sekarang Sekolah Tinggi Teknologi Nuklir). Namun pada tahun 1997 Program Nuklir Indonesia ( da lam hal ini perencanaan pembangunan PLTN ) berhenti yang salah satunya dikarenakan karena penemuan gas alam di kepulauan Natuna. Ini menyebabkan Jurusan Teknik Nuklir di UGM saat ini sudah berubah dan diganti menjadi Teknik Fisika, sedangkan Jurusan Instru mentasi dan juga Jurusan Proteksi Radiasi dari Bagian Fisika UI, ditutup. Namun saat ini masih terdapat kegiatan pendidikan tentang Iptek Nuklir di ITB sebagai bagian dari Departemen Fisika ITB (S1, S2, S3) dan juga di UGM (S3). Sehingga Praktis hanya di Sekolah Tinggi Teknologi Nuklir yang menjadi satu - satunya perguruan tinggi yang mencetak tenaga - tenaga profesional di bidang IPTEK Nuklir. Sadar tidak mampu memenuhi kebutuhan listrik Nasional jika hanya bertumpu pada pembangkit Listrik konvesional maka Pada Tahun 2005 Indonesia kembali menjalankan program nuklir ini. Pada tahun 2006 pemerintah menetapkan Kebijakan Energi Nasional (KEN) melalu Kepres No 5 tahun 2006, yang mengamanatkan bahwa pada tahun 2025, energi terbarukan plus nuklir bisa mencapai kurang lebih 5 persen untuk kebutuhan listrik Indonesia. Kerja sama dengan IAEA - meliputi persiapan pembangunan PLTN dan persiapan regulasi, kode, panduan, dan standar bagi PLTN-pun dirintis sejak 2005. Pada 2008, regulasinya diharapkan sudah siap. Saat ni Rancangan Peraturan i Pemerintah (RPP) sudah dibuat dan tinggal ditandatangani oleh Presiden. Kali ini rupanya pemerintah tidak main-main dalam rencananya ini, ini terlihat dalam kurun waktu berdekatan, Indonesia sudah menandatangani sejumlah nota kesepak atan kerja sama bidang nuklir dengan beberapa negara. Rusia, Jepang, Australia, dan Amerika Serikat (AS).Disini sudah jelas, bahwa ternyata bangsa kita sudah memiliki cukup pengalaman dalam bidang teknologi yang satu ini. Anak-

anak bangsa terbukti mampu mengoperasikan 3 reaktor nuklir di indonesia selama bertahun - tahun dengan bersih dan belum memiliki catatan buruk mengenai kecelakaan nuklir yang membahayakan lingkungan dan masyarakat. Sudah ada pula ribuan aplikasi nuklir yang dipakai di bidang kesehata n seperti pada proses radiasi kanker dan teknik isotop untuk pengembangan obat. Ini belum Ratusan aplikasi nuklir yang dipakai di bidang industri seperti dalam proses desalinasi air, pemuliaan tanaman, dan banyak lagi. Ungkapan skeptis dan pesimis yang terhadap kemampuan SDM indonesia dalam teknologi nuklir, menurut saya tidak lebih dari sebuah mental inferior yang telah ditanamkan penjajah kepada kita selama bertahun - tahun, sehingga pemikiran ini bak warisan - diturunkan turun temurun dari generasi ke generasi, sehingga kita selalu berpikiran bahwa bangsa lain lebih hebat dari kita, bangsa lain lebih pandai dari kita. Padahal pada kenyataannya sekali - kali tidaklah demikian. Mental inferior inilah yang harus dihapuskan dari pemikiran para generasi muda jika bangsa kita ingin maju. Sejarah telah membuktikan bahwa kita mampu merdeka dengan keringat dan darah kita sendiri, dan bukan merupakan pemberian orang lain. Ini sebenarnya merupakan tanda bahwa kita adalah sejajar dengan bangsa - bangsa lain, bahwa bangsa ini merupakan bangsa besar yang juga mampu untuk melakukan apa yang bangsa lain telah lakukan demi kemajuan negerinya . Nuklir merupakan istilah yang berhubungan dengan inti atom yang tersusun atas dua buah pa rtikel fundamental, yaitu proton dan neutron. Di dalam inti atom terdapat tiga buah interaksi fundamental yang berperan penting, yaitu gaya nuklir kuat dan gaya elektromagnetik serta pada jangka waktu yang panjang terdapat gaya nuklir lemah. Gaya nuklir kuat merupakan interaksi antara partikel quark dan gluon yang dibahas dalam teori quantum chromodynamics (QCD) sedangkan gaya nuklir lemah adalah interaksi yang terjadi dalam skala inti atom seperti peluruhan beta yang dibahas dalam elecroweak theory.

Energi nuklir dihasilkan di dalam inti atom melalui dua buah jenis reaksi nuklir, yaitu reaksi fusi dan reaksi fisi. Reaksi fusi adalah suatu reaksi yang menggabungkan beberapa partikel atomik menjadi sebuah partikel atomik yang lebih berat. Reaksi fusi dapat menghasilkan energi yang sangat besar seperti yang terjadi pada bintang. Salah satu reaksi contoh reaksi fusi adalah penggabungan partikel deuterium (D atau 2H) dan tritium (T atau 3H) (Gambar 1.a). Langkah pertama, deuterium dan tritium dipercepat dengan arah yang saling mendekati pada suhu termonuklir. Penggabungan antara dua buah partikel tersebut membentuk helium-5 (5He) yang tidak stabil sehingga mengakibatkan peluruhan. Dalam proses peluruhan ini, sebuah neutron dan partikel helium (4He) terhambur -4 disertai dengan energi yang sangat besar, yaitu 14,1 MeV untuk penghamburan neutron dan 3,5 MeV untuk penghamburan helium-4. Sampai saat ini, reaksi fusi belum dapat dirancang oleh

manusia karena membutuhkan suhu yang sangat tinggi. Hal ini menyebabkan pema nfaatan reaksi fusi sebagai sumber energi listrik belum dapat direalisasikan. Reaksi nuklir lain yang sudah dapat dimanfaatkan sebagai sumber energi listrik adalah reaksi fisi. Reaksi fisi merupakan kebalikan dari reaksi fusi, yaitu reaksi yang membelah suatu partikel atomik menjadi menjadi beberapa partikel atomik lainnya dan sejumlah energi. Salah satu contoh dari reaksi fisi adalah reaksi fisi pada partikel uranium-235 (235U) yang ditumbuk oleh sebuah neutron yang bergerak pelan (Gambar 1.b). Proses penyerapan neutron oleh uranium-235 mengakibatkan terbentuknya partikel uranium-236 (236U) yang tidak stabil sehingga terbelah menjadi partikel krypton-92 (92Kr), barium-141 (141Br), dan beberapa neutron bebas serta sejumlah energi. Reaksi fisi dapat berlangsung secara terus menerus yang biasa disebut dengan reaksi rantai. Dalam reaksi rantai, neutron yang telah terhambur dari reaksi fisi dapat mengakibatkan terjadinya reaksi fisi lain sama baiknya dengan reaksi fisi sebelumnya. Energi yang dihasilkan dari reaksi ini dapat dikonversi menjadi energi listrik pada sebuah pembangkit listrik tenaga nuklir (PLTN). Tiga hal menarik yang terjadi pada proses reaksi fisi adalah sebagai berikut:y

y y

Peluang sebuah atom U-235 menangkap sebuah neutron bernilai sangat tinggi. Dalam sebuah reaktor yang bekerja (dikenal dengan keadaan kritis), sebuah neutron yang terhambur dari setiap reaksi fisi dapat menyebabkan terjadinya reaksi fisi yang lainnya. Proses penyerapan dan penghamburan neutron terjadi dengan sangat cepat pada orde pikosekon (110-12 sekon) Jumlah energi yang dihasilkan berupa panas dan radiasi gamma luar biasa besar pada sebuah reaksi fisi yang terjadi. Dalam reaksi ini terbentuk beberapa produk fisi dan neutron dengan massa total yang lebih ringan dari partikel U-235 pada awal reaksi. Perbedaan massa ini diubah menjadi energi dengan nilai yang dirumuskan dalam E = mc2. Dalam satu kali peluruhan atom U-235 bisa dihasilkan energi sebesar 200 MeV (1 eV = 1,6.10-19 joule). U-235 dapat bekerja dalam sebuah sampel uranium yang diperkaya menjadi 2 sampai 3 persen. Pada senjata nuklir, komposisi U-235 mencapai 90 persen atau lebih dari sebuah sampel uranium.

Pembangkit Listrik Tenaga Nuklir Pembangkit listrik tenaga nuklir (PLTN) menyediakan sekitar 17 persen dari total tenaga listrik dunia. Beberapa negara membutuhkan tenaga nuklir yang lebih besat dari negara lain. Di Prancis, menurut International Atomic Energy Agency (IAEA), 75 persen tenaga listriknya dihasilkan oleh reaktor nuklir. Jumlah pembangkit tenaga listrik di dunia diperkirakan lebih dari 400 buah dengan 100 buah diantaranya berada di Amerika Serikat. Pada PLTN, bahan bakar sebuah reaktor nuklir berupa uranium. Uranium merupakan salah satu hasil tambang yang terdapat di bumi. Uranium-238 (U-238) mempunyai waktu paruh yan

Recommended

View more >