relativistic hydrodynamics – stability and causality p. ván 1,2 and t. s. bíró 1 rmki, budapest...

24
Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction Causality parabolic equations – Stability Eckart problem – Separation of dissipative and nondissipative part – Conclusions Zimányi 75 Memorial Workshop’07, Budape

Upload: daniella-stevenson

Post on 11-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Relativistic hydrodynamics – stability and causality

P. Ván1,2 and T. S. Bíró1

RMKI, Budapest1 and University of Bergen2

– Introduction– Causality – parabolic equations– Stability – Eckart problem– Separation of dissipative and nondissipative parts– Conclusions

Zimányi 75 Memorial Workshop’07, Budapest

Page 2: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Nonrelativistic Relativistic

Local equilibrium (1st) Fourier, Navier-Stokes Eckart

Beyond local equilibrium Cattaneo-Vernotte, Israel-Stewart,(2nd) gen. Navier-Stokes Müller-Ruggieri

Öttinger, Carter, etc..

Conceptual issues plaguing relativistic hydrodynamics:

Causality – first order is bad – acausalsecond order is good - causal

Stability – first order is bad – instablesecond order is good - stable

Introduction:

Page 3: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Causality hyperbolic or parabolic? (Fichera 1992, Kostädt and Liu 2000)

Well-posedness Speed of signal propagation

0),,,,(2 TTTtxFTCTBTA txttxtxx

Second order linear partial differential equation:

02(*) 22 ttxx CBA

Corresponding equation of characteristics:

i) Hyperbolic equation: two distinct families of real characteristicsParabolic equation: one family of real characteristicsElliptic equation: no real characteristics

Well-posedness: existence, unicity, continuous dependence on initial data.

A characteristic Cauchy problem of (1) is well posed. (initial data on the characteristic surface: ))()0,( xfxT

,0 TT xxt (1)

Page 4: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

iii) The outer real characteristics that pass through a given point give its domain of influence .

),( 00 tx0

02)(

,0

~~4

2

~~2~~~~

Tc

v

c

vTv

TT

tttxxxxt

xxt

(1)

ii) (*) is transformation invariant ),(~~),,(~~ txtttxxx

t

x

t

x

?

0

cv

vtx

E.g.

)()0,(

,0

xxT

TT xxt

t

x

et

AtxT

4

2

2),(

-4 -2 2 4

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Page 5: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Infinite speed of signal propagation?physics - mathematics

Hydrodynamic range of validity:ξ – mean free pathτ – collision time

TT

TT tx

,

More complicated equations, more spacetime dimensions, ….

Water at room temperature:

Fermi gas of light quarks at :

t

x

et

AtxT

4

2

2),(

Vcv max

s

m

cv

V

14max

cTs

mmT

c

vmc

cv

V

V

V

31max 10

-4 -2 2 4

0.25

0.5

0.75

1

1.25

1.5

1.75

2

,0 TT xxt

Page 6: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

homogeneous equilibrium (thermodynamics = theory of stability of …)

linear and nonlinearlinear – necessary condition

Eckart theory:instable – due to heat conduction

Stability of what and in what sense?

scpc

T 3422

10)(

water

Israel-Stewart theory: strange condition

relaxation to the first order theory (Geroch 1995, Lindblom 1995)

1)(1 p ...),(),,( 1 aa

ea qqnsqns

Page 7: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

...),(),,,( 21 ababa

ae

aba qqnsqns

0 aa

aa

aa JussS

...1 T

q

T

qJ b

abaa

.....

0)( aaa

aa

aab

ba uqqupTu

Irreversible thermodynamics (standard method, e.g. B. Lukács):

Structure of dissipative hydrodynamic theories:

0)()(1

2 aa

a

ababab

aa

s uTTT

qupP

TTj

Eckart term

Page 8: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Complete Eckart system

.2

,

,

,

,0)(

,0

,0

ab

a

bv

cc

a

av

caca

ccaca

acbb

cac

ab

bbb

aacbb

ac

abab

aaa

aa

aab

ba

aa

aa

aa

uP

uP

Tj

uTTq

PquququT

uPuqquTu

junnN

.0,,,.,,, a

bvaaa Pqjconstun Equilibrium:

< > - symmetric traceless spacelike part

Page 9: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

x

x

x

nn

en

en

j

q

u

n

ik

Tik

Tik

TTTikTik

ikppikpik

ikpik

ikikn

~1

0000

01

00

00

0)(

00)(0

000

2

Q

xy

y

y

q

u

ik

T

ikp

10

01

)(

R

0)()det( 22 kpTT R

Stability condition for transverse modes:

)exp(0 ikxtAA exponential plane-waves (Hiscock and Lindblom, 1985)

/4/3~

root with a positive real part instabilitycoupling of shear viscosity and heat conduction

Landau frame? aaq 0

Page 10: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

First or second (or higher) order theory?

Causality: speed of the VALIDITY < speed of light both for first and second order

Stability: Landau choice (q=0) is a temporary escape - entropy production, multicomponent fluidsboth for first and second order

Origin of stability problem: wrong separation of dissipative and non dissipative terms and

effects

e.g. the choice of velocity field is not free (e.g. entropy production)

Page 11: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

.0)ˆ(ˆ

,0ˆ

,0

acbb

cac

ab

bbb

aacbb

ac

abab

aaa

aa

aab

ba

aabb

PquququT

uPuqquTu

T

Separation condition:

0ˆ,ˆˆˆ aa

aaa ququeE

ababab

bab uquueuE 0)ˆˆ()ˆ(

Separation of dissipation (PV and TSB arXiv:0704.2039)

flow energy

ijj

iab

aba

aa

abbababaab

Pq

qeeT

PuquPuqquuuT

ˆ

ˆ

0,0,ˆ

Page 12: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Something more…

.0ˆˆˆˆ)(

,0ˆˆˆˆ)(aab

baca

cbc

bac

aaa

aba

ba

ueuqquEb

uqueeuEua

0ˆˆ bb

aa uEE.

(a) energies: total= internal+ flow (mass?)(b) velocity – momentum (heat) flow energy – heat flux

ababab

bb

aabab uquueuEEuE 0)ˆˆ(ˆˆ)ˆ(

0ˆ0,0 euq aa

Page 13: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Thermodynamics:

,ˆ,)ˆ( pTsEeTdsEed aa

Statics:

TE

s

e

sa

)(ˆ2

1ˆˆˆˆ 42222 qqq O

eeeqqeE a

aa

q dependence:

normal with internal energy e, or:

...ˆ2

1)()

ˆ2

1ˆ()ˆ( 22 qq

eTs

eeesEes a

Page 14: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality
Page 15: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Summary

– momentum density = but ≡ heat flow – energy = internal energy + flow energy

ADDS:– entropy flux and can ben justified

(thermodynamic theory construction – Liu procedure)

– linear stability of homogeneous equilibrium

Thermodynamics stability of matter

)ˆ( aEes

Page 16: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Thank you for your attention!

Page 17: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

0)(

11

11)(

1

))((1

2

aa

a

aa

aa

a

aa

aa

aa

a

a

aa

aa

aa

aa

a

a

aa

a

aa

aa

aa

uTTT

q

Tquq

T

T

qqu

Tq

TuTsp

T

T

qusququp

T

T

qus

s

JussS

))(( aaa

aa

a uqqup

Tdsd

T

qJ

aa

pTs 0aaqu

Page 18: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

01

1)(

1

))((1

)(

2

.

TT

q

Tq

T

qq

TuTsEep

T

T

qusquEpe

T

T

qusE

E

se

e

s

JusEesS

a

a

aa

a

aa

aa

a

a

aa

aa

aa

a

a

aa

a

aa

aa

aa

TdsEed )(

pTsEe

Page 19: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

.0)(

,0)(a

baba

bbacb

bac

aa

aa

abb

a

puqupeT

qupeeTu

Net balances:

....

....

,Tq caca

Balance of entropy:

Stable!

0)(1

2 T

T

qupP

TTj a

a

ababab

aa

0ˆ bab

abb uET

Page 20: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

aaa

aaaean

aaean

aa

aaaaean

aa

aa

aa

aa

jquen

quTT

eTT

nTT

jeT

nT

u

queepnp

qupee

junn

.0

,0

,0

,0

,0)(

,0

222

LinearizationAAA 0

Page 21: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Routh-Hurwitz:

0)(

0,0

n

pnpe

e

pTne

T thermodynamic stability

hydrodynamic stability

TT

TTk

pTpTnT

pT

ppeTk

TT

TTpek

TTTkpnpepTk

TTTepTk

peT

QDet

enne

enneenne

enne

nene

ne

2

24

2

2222

2222

23

)(

)(

))((

))((

)(

)(

Page 22: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

Nonrelativistic experience – a four vector formalism

Energy units of mass: )1(][][ ce

,0)3(

,0)2(

,0)1(

ijiji

ii

i

iijj

i

ii

vPqvee

Pv

v

mass

velocity (momentum ?)

internal energy

velocity-momentum (relativistic?).)4( ii vq

,0)2(

0:)4()2()1(iij

jj

jii

ijj

jj

ii

Pvqqa

Pvvv

,0)4( iijj

ii vvqqa

Page 23: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

,0)3( ijiji

ii

i vPqvee ,0)2( iijj

jj

ii Pvqqa

AAvAAv

Au

uqqvu

xtx

ii

titibb

aaia

Tia

aia

),(1

1);,0(;),1(

);0,0,0,1();,(

spacelike, timelike, vectors and covectors,

substantial time derivative

,0~

aa

baab

abb

bab

baab

ab uqqPqveeT

Nonrelativistic spacetime: there is time (absolute)

j

jb

a

iP

qeT

0~

?energy-momentum tensor

Page 24: Relativistic hydrodynamics – stability and causality P. Ván 1,2 and T. S. Bíró 1 RMKI, Budapest 1 and University of Bergen 2 – Introduction – Causality

0)1( iiv ,0)4( iij

jii vvqqa

0

)(

ab

baab

baa

baab

bab

uuqquuu

uquuE

aaa quE

mass-momentum vector

j

i

jb

ab

ab

a

iPq

qeuETT

~

)4()3()2()1(0)(0 aauEandT bab

bab

total energy-momentum tensor

separation of dissipative and nondissiaptive parts