reliability and importance discounting of neutrosophic masses

14
1 Reliability and Importance Discounting of Neutrosophic Masses Florentin Smarandache, University of New Mexico, Gallup, NM 87301, USA Abstract. In this paper, we introduce for the first time the discounting of a neutrosophic mass in terms of reliability and respectively the importance of the source. We show that reliability and importance discounts commute when dealing with classical masses. 1. Introduction. Let Ξ¦ = {Ξ¦ 1 ,Ξ¦ 2 ,…,Ξ¦ n } be the frame of discernment, where β‰₯2, and the set of focal elements: = { 1 , 2 ,…, }, for β‰₯ 1, βŠ‚ . (1) Let = (,βˆͺ,∩, ) be the fusion space. A neutrosophic mass is defined as follows: : β†’ [0, 1] 3 for any ∈ , () = ((), (), ()), (2) where () = believe that will occur (truth); () = indeterminacy about occurence; and () = believe that will not occur (falsity).

Upload: ryan-elias

Post on 08-Apr-2016

212 views

Category:

Documents


0 download

DESCRIPTION

In this paper, we introduce for the first time the discounting of a neutrosophic mass in terms of reliability and respectively the importance of the source.

TRANSCRIPT

1

Reliability and Importance Discounting

of Neutrosophic Masses

Florentin Smarandache, University of New Mexico, Gallup, NM 87301, USA

Abstract. In this paper, we introduce for the first time the discounting of a

neutrosophic mass in terms of reliability and respectively the importance of

the source.

We show that reliability and importance discounts commute when

dealing with classical masses.

1. Introduction. Let Ξ¦ = {Ξ¦1, Ξ¦2, … , Ξ¦n} be the frame of discernment,

where 𝑛 β‰₯ 2, and the set of focal elements:

𝐹 = {𝐴1, 𝐴2, … , π΄π‘š}, for π‘š β‰₯ 1, 𝐹 βŠ‚ 𝐺𝛷. (1)

Let 𝐺𝛷 = (𝛷,βˆͺ,∩, π’ž) be the fusion space.

A neutrosophic mass is defined as follows:

π‘šπ‘›: 𝐺 β†’ [0, 1]3

for any π‘₯ ∈ 𝐺, π‘šπ‘›(π‘₯) = (𝑑(π‘₯), 𝑖(π‘₯), 𝑓(π‘₯)), (2)

where 𝑑(π‘₯) = believe that π‘₯ will occur (truth);

𝑖(π‘₯) = indeterminacy about occurence;

and 𝑓(π‘₯) = believe that π‘₯ will not occur (falsity).

2

Simply, we say in neutrosophic logic:

𝑑(π‘₯) = believe in π‘₯;

𝑖(π‘₯) = believe in neut(π‘₯)

[the neutral of π‘₯, i.e. neither π‘₯ nor anti(π‘₯)];

and 𝑓(π‘₯) = believe in anti(π‘₯) [the opposite of π‘₯].

Of course, 𝑑(π‘₯), 𝑖(π‘₯), 𝑓(π‘₯) ∈ [0, 1], and

βˆ‘ [𝑑(π‘₯) + 𝑖(π‘₯) + 𝑓(π‘₯)] = 1,π‘₯∈𝐺 (3)

while

π‘šπ‘›(Ρ„) = (0, 0, 0). (4)

It is possible that according to some parameters (or data) a source is

able to predict the believe in a hypothesis π‘₯ to occur, while according to other

parameters (or other data) the same source may be able to find the believe

in π‘₯ not occuring, and upon a third category of parameters (or data) the

source may find some indeterminacy (ambiguity) about hypothesis

occurence.

An element π‘₯ ∈ 𝐺 is called focal if

π‘›π‘š(π‘₯) β‰  (0, 0, 0), (5)

i.e. 𝑑(π‘₯) > 0 or 𝑖(π‘₯) > 0 or 𝑓(π‘₯) > 0.

Any classical mass:

π‘š ∢ 𝐺ф β†’ [0, 1] (6)

can be simply written as a neutrosophic mass as:

π‘š(𝐴) = (π‘š(𝐴), 0, 0). (7)

3

2. Discounting a Neutrosophic Mass due to Reliability of the

Source.

Let 𝛼 = (𝛼1, 𝛼2, 𝛼3) be the reliability coefficient of the source, 𝛼 ∈

[0,1]3.

Then, for any π‘₯ ∈ πΊπœƒ βˆ– {πœƒ, 𝐼𝑑},

where πœƒ = the empty set

and 𝐼𝑑 = total ignorance,

π‘šπ‘›(π‘₯)π‘Ž = (𝛼1𝑑(π‘₯), 𝛼2𝑖(π‘₯), 𝛼3𝑓(π‘₯)), (8)

and

π‘šπ‘›(𝐼𝑑)𝛼 = (𝑑(𝐼𝑑) + (1 βˆ’ 𝛼1) βˆ‘ 𝑑(π‘₯)

π‘₯βˆˆπΊπœƒβˆ–{πœ™,𝐼𝑑}

,

𝑖(𝐼𝑑) + (1 βˆ’ 𝛼2) βˆ‘ 𝑖(π‘₯), 𝑓(𝐼𝑑) + (1 βˆ’ 𝛼3) βˆ‘ 𝑓(π‘₯)

π‘₯βˆˆπΊπœƒβˆ–{πœ™,𝐼𝑑}π‘₯βˆˆπΊπœƒβˆ–{πœ™,𝐼𝑑}

)

(9),

and, of course,

π‘šπ‘›(πœ™)𝛼 = (0, 0, 0).

The missing mass of each element π‘₯, for π‘₯ β‰  πœ™, π‘₯ β‰  𝐼𝑑 , is transferred to

the mass of the total ignorance in the following way:

𝑑(π‘₯) βˆ’ 𝛼1𝑑(π‘₯) = (1 βˆ’ 𝛼1) βˆ™ 𝑑(π‘₯) is transferred to 𝑑(𝐼𝑑), (10)

𝑖(π‘₯) βˆ’ 𝛼2𝑖(π‘₯) = (1 βˆ’ 𝛼2) βˆ™ 𝑖(π‘₯) is transferred to 𝑖(𝐼𝑑), (11)

4

and 𝑓(π‘₯) βˆ’ 𝛼3𝑓(π‘₯) = (1 βˆ’ 𝛼3) βˆ™ 𝑓(π‘₯) is transferred to 𝑓(𝐼𝑑). (12)

3. Discounting a Neutrosophic Mass due to the Importance of the

Source.

Let 𝛽 ∈ [0, 1] be the importance coefficient of the source. This discounting

can be done in several ways.

a. For any π‘₯ ∈ πΊπœƒ βˆ– {πœ™},

π‘šπ‘›(π‘₯)𝛽1= (𝛽 βˆ™ 𝑑(π‘₯), 𝑖(π‘₯), 𝑓(π‘₯) + (1 βˆ’ 𝛽) βˆ™ 𝑑(π‘₯)), (13)

which means that 𝑑(π‘₯), the believe in π‘₯, is diminished to 𝛽 βˆ™ 𝑑(π‘₯), and the

missing mass, 𝑑(π‘₯) βˆ’ 𝛽 βˆ™ 𝑑(π‘₯) = (1 βˆ’ 𝛽) βˆ™ 𝑑(π‘₯), is transferred to the believe in

π‘Žπ‘›π‘‘π‘–(π‘₯).

b. Another way:

For any π‘₯ ∈ πΊπœƒ βˆ– {πœ™},

π‘šπ‘›(π‘₯)𝛽2= (𝛽 βˆ™ 𝑑(π‘₯), 𝑖(π‘₯) + (1 βˆ’ 𝛽) βˆ™ 𝑑(π‘₯), 𝑓(π‘₯)), (14)

which means that 𝑑(π‘₯), the believe in π‘₯, is similarly diminished to 𝛽 βˆ™ 𝑑(π‘₯),

and the missing mass (1 βˆ’ 𝛽) βˆ™ 𝑑(π‘₯) is now transferred to the believe in

𝑛𝑒𝑒𝑑(π‘₯).

c. The third way is the most general, putting together the first and second

ways.

For any π‘₯ ∈ πΊπœƒ βˆ– {πœ™},

π‘šπ‘›(π‘₯)𝛽3= (𝛽 βˆ™ 𝑑(π‘₯), 𝑖(π‘₯) + (1 βˆ’ 𝛽) βˆ™ 𝑑(π‘₯) βˆ™ 𝛾, 𝑓(π‘₯) + (1 βˆ’ 𝛽) βˆ™ 𝑑(π‘₯) βˆ™

(1 βˆ’ 𝛾)), (15)

5

where 𝛾 ∈ [0, 1] is a parameter that splits the missing mass (1 βˆ’ 𝛽) βˆ™ 𝑑(π‘₯) a

part to 𝑖(π‘₯) and the other part to 𝑓(π‘₯).

For 𝛾 = 0, one gets the first way of distribution, and when 𝛾 = 1, one

gets the second way of distribution.

4. Discounting of Reliability and Importance of Sources in General

Do Not Commute.

a. Reliability first, Importance second.

For any π‘₯ ∈ πΊπœƒ βˆ– {πœ™, 𝐼𝑑}, one has after reliability Ξ± discounting, where

𝛼 = (𝛼1, 𝛼2, 𝛼3):

π‘šπ‘›(π‘₯)𝛼 = (𝛼1 βˆ™ 𝑑(π‘₯), 𝛼2 βˆ™ 𝑑(π‘₯), 𝛼3 βˆ™ 𝑓(π‘₯)), (16)

and

π‘šπ‘›(𝐼𝑑)𝛼 = (𝑑(𝐼𝑑) + (1 βˆ’ 𝛼1) βˆ™ βˆ‘ 𝑑(π‘₯)

π‘₯βˆˆπΊπœƒβˆ–{πœ™,𝐼𝑑}

, 𝑖(𝐼𝑑) + (1 βˆ’ 𝛼2)

βˆ™ βˆ‘ 𝑖(π‘₯)

π‘₯βˆˆπΊπœƒβˆ–{πœ™,𝐼𝑑}

, 𝑓(𝐼𝑑) + (1 βˆ’ 𝛼3) βˆ™ βˆ‘ 𝑓(π‘₯)

π‘₯βˆˆπΊπœƒβˆ–{πœ™,𝐼𝑑}

)

≝ (𝑇𝐼𝑑, 𝐼𝐼𝑑

, 𝐹𝐼𝑑 ).

(17)

Now we do the importance Ξ² discounting method, the third importance

discounting way which is the most general:

π‘šπ‘›(π‘₯)𝛼𝛽3= (𝛽𝛼1𝑑(π‘₯), 𝛼2𝑖(π‘₯) + (1 βˆ’ 𝛽)𝛼1𝑑(π‘₯)𝛾, 𝛼3𝑓(π‘₯)

+ (1 βˆ’ 𝛽)𝛼1𝑑(π‘₯)(1 βˆ’ 𝛾))

6

(18)

and

π‘šπ‘›(𝐼𝑑)𝛼𝛽3= (𝛽 βˆ™ 𝑇𝐼𝑑

, 𝐼𝐼𝑑+ (1 βˆ’ 𝛽)𝑇𝐼𝑑

βˆ™ 𝛾, 𝐹𝐼𝑑+ (1 βˆ’ 𝛽)𝑇𝐼𝑑

(1 βˆ’ 𝛾)). (19)

b. Importance first, Reliability second.

For any π‘₯ ∈ πΊπœƒ βˆ– {πœ™, 𝐼𝑑}, one has after importance Ξ² discounting (third

way):

π‘šπ‘›(π‘₯)𝛽3= (𝛽 βˆ™ 𝑑(π‘₯), 𝑖(π‘₯) + (1 βˆ’ 𝛽)𝑑(π‘₯)𝛾, 𝑓(π‘₯) + (1 βˆ’ 𝛽)𝑑(π‘₯)(1 βˆ’ 𝛾)) (20)

and

π‘šπ‘›(𝐼𝑑)𝛽3= (𝛽 βˆ™ 𝑑(𝐼𝐼𝑑

), 𝑖(𝐼𝐼𝑑) + (1 βˆ’ 𝛽)𝑑(𝐼𝑑)𝛾, 𝑓(𝐼𝑑) + (1 βˆ’ 𝛽)𝑑(𝐼𝑑)(1 βˆ’ 𝛾)).

(21)

Now we do the reliability 𝛼 = (𝛼1, 𝛼2, 𝛼3) discounting, and one gets:

π‘šπ‘›(π‘₯)𝛽3𝛼 = (𝛼1 βˆ™ 𝛽 βˆ™ 𝑑(π‘₯), 𝛼2 βˆ™ 𝑖(π‘₯) + 𝛼2(1 βˆ’ 𝛽)𝑑(π‘₯)𝛾, 𝛼3 βˆ™ 𝑓(π‘₯) + 𝛼3 βˆ™

(1 βˆ’ 𝛽)𝑑(π‘₯)(1 βˆ’ 𝛾)) (22)

and

π‘šπ‘›(𝐼𝑑)𝛽3𝛼 = (𝛼1 βˆ™ 𝛽 βˆ™ 𝑑(𝐼𝑑), 𝛼2 βˆ™ 𝑖(𝐼𝑑) + 𝛼2(1 βˆ’ 𝛽)𝑑(𝐼𝑑)𝛾, 𝛼3 βˆ™ 𝑓(𝐼𝑑) +

𝛼3(1 βˆ’ 𝛽)𝑑(𝐼𝑑)(1 βˆ’ 𝛾)). (23)

Remark.

We see that (a) and (b) are in general different, so reliability of sources

does not commute with the importance of sources.

7

5. Particular Case when Reliability and Importance Discounting of

Masses Commute.

Let’s consider a classical mass

π‘š: πΊπœƒ β†’ [0, 1] (24)

and the focal set 𝐹 βŠ‚ πΊπœƒ ,

𝐹 = {𝐴1, 𝐴2, … , π΄π‘š}, π‘š β‰₯ 1, (25)

and of course π‘š(𝐴𝑖) > 0, for 1 ≀ 𝑖 ≀ π‘š.

Suppose π‘š(𝐴𝑖) = π‘Žπ‘– ∈ (0,1]. (26)

a. Reliability first, Importance second.

Let 𝛼 ∈ [0, 1] be the reliability coefficient of π‘š (βˆ™).

For π‘₯ ∈ πΊπœƒ βˆ– {πœ™, 𝐼𝑑}, one has

π‘š(π‘₯)𝛼 = 𝛼 βˆ™ π‘š(π‘₯), (27)

and π‘š(𝐼𝑑) = 𝛼 βˆ™ π‘š(𝐼𝑑) + 1 βˆ’ 𝛼. (28)

Let 𝛽 ∈ [0, 1] be the importance coefficient of π‘š (βˆ™).

Then, for π‘₯ ∈ πΊπœƒ βˆ– {πœ™, 𝐼𝑑},

π‘š(π‘₯)𝛼𝛽 = (π›½π›Όπ‘š(π‘₯), π›Όπ‘š(π‘₯) βˆ’ π›½π›Όπ‘š(π‘₯)) = 𝛼 βˆ™ π‘š(π‘₯) βˆ™ (𝛽, 1 βˆ’ 𝛽), (29)

considering only two components: believe that π‘₯ occurs and, respectively,

believe that π‘₯ does not occur.

Further on,

8

π‘š(𝐼𝑑)𝛼𝛽 = (π›½π›Όπ‘š(𝐼𝑑) + 𝛽 βˆ’ 𝛽𝛼, π›Όπ‘š(𝐼𝑑) + 1 βˆ’ 𝛼 βˆ’ π›½π›Όπ‘š(𝐼𝑑) βˆ’ 𝛽 + 𝛽𝛼) =

[π›Όπ‘š(𝐼𝑑) + 1 βˆ’ 𝛼] βˆ™ (𝛽, 1 βˆ’ 𝛽). (30)

b. Importance first, Reliability second.

For π‘₯ ∈ πΊπœƒ βˆ– {πœ™, 𝐼𝑑}, one has

π‘š(π‘₯)𝛽 = (𝛽 βˆ™ π‘š(π‘₯), π‘š(π‘₯) βˆ’ 𝛽 βˆ™ π‘š(π‘₯)) = π‘š(π‘₯) βˆ™ (𝛽, 1 βˆ’ 𝛽), (31)

and π‘š(𝐼𝑑)𝛽 = (π›½π‘š(𝐼𝑑), π‘š(𝐼𝑑) βˆ’ π›½π‘š(𝐼𝑑)) = π‘š(𝐼𝑑) βˆ™ (𝛽, 1 βˆ’ 𝛽). (32)

Then, for the reliability discounting scaler Ξ± one has:

π‘š(π‘₯)𝛽𝛼 = π›Όπ‘š(π‘₯)(𝛽, 1 βˆ’ 𝛽) = (π›Όπ‘š(π‘₯)𝛽, π›Όπ‘š(π‘₯) βˆ’ π›Όπ›½π‘š(π‘š)) (33)

and π‘š(𝐼𝑑)𝛽𝛼 = 𝛼 βˆ™ π‘š(𝐼𝑑)(𝛽, 1 βˆ’ 𝛽) + (1 βˆ’ 𝛼)(𝛽, 1 βˆ’ 𝛽) = [π›Όπ‘š(𝐼𝑑) + 1 βˆ’ 𝛼] βˆ™

(𝛽, 1 βˆ’ 𝛽) = (π›Όπ‘š(𝐼𝑑)𝛽, π›Όπ‘š(𝐼𝑑) βˆ’ π›Όπ‘š(𝐼𝑑)𝛽) + (𝛽 βˆ’ 𝛼𝛽, 1 βˆ’ 𝛼 βˆ’ 𝛽 + 𝛼𝛽) =

(π›Όπ›½π‘š(𝐼𝑑) + 𝛽 βˆ’ 𝛼𝛽, π›Όπ‘š(𝐼𝑑) βˆ’ π›Όπ›½π‘š(𝐼𝑑) + 1 βˆ’ 𝛼 βˆ’ 𝛽 βˆ’ 𝛼𝛽). (34)

Hence (a) and (b) are equal in this case.

9

6. Examples.

1. Classical mass.

The following classical is given on πœƒ = {𝐴, 𝐡} ∢

A B AUB

m 0.4 0.5 0.1

(35)

Let 𝛼 = 0.8 be the reliability coefficient and 𝛽 = 0.7 be the importance

coefficient.

a. Reliability first, Importance second.

A B AUB

π‘šπ›Ό 0.32 0.40 0.28

π‘šπ›Όπ›½ (0.224, 0.096) (0.280, 0.120) (0.196, 0.084)

(36)

We have computed in the following way:

π‘šπ›Ό(𝐴) = 0.8π‘š(𝐴) = 0.8(0.4) = 0.32, (37)

π‘šπ›Ό(𝐡) = 0.8π‘š(𝐡) = 0.8(0.5) = 0.40, (38)

π‘šπ›Ό(π΄π‘ˆπ΅) = 0.8(AUB) + 1 βˆ’ 0.8 = 0.8(0.1) + 0.2 = 0.28, (39)

and

π‘šπ›Όπ›½(𝐡) = (0.7π‘šπ›Ό(𝐴), π‘šπ›Ό(𝐴) βˆ’ 0.7π‘šπ›Ό(𝐴)) = (0.7(0.32), 0.32 βˆ’

0.7(0.32)) = (0.224, 0.096), (40)

10

π‘šπ›Όπ›½(𝐡) = (0.7π‘šπ›Ό(𝐡), π‘šπ›Ό(𝐡) βˆ’ 0.7π‘šπ›Ό(𝐡)) = (0.7(0.40), 0.40 βˆ’

0.7(0.40)) = (0.280, 0.120), (41)

π‘šπ›Όπ›½(π΄π‘ˆπ΅) = (0.7π‘šπ›Ό(π΄π‘ˆπ΅), π‘šπ›Ό(π΄π‘ˆπ΅) βˆ’ 0.7π‘šπ›Ό(π΄π‘ˆπ΅)) =

(0.7(0.28), 0.28 βˆ’ 0.7(0.28)) = (0.196, 0.084). (42)

b. Importance first, Reliability second.

A B AUB

m 0.4 0.5 0.1

π‘šπ›½ (0.28, 0.12) (0.35, 0.15) (0.07, 0.03)

π‘šπ›½π›Ό (0.224, 0.096 (0.280, 0.120) (0.196, 0.084)

(43)

We computed in the following way:

π‘šπ›½(𝐴) = (π›½π‘š(𝐴), (1 βˆ’ 𝛽)π‘š(𝐴)) = (0.7(0.4), (1 βˆ’ 0.7)(0.4)) =

(0.280, 0.120), (44)

π‘šπ›½(𝐡) = (π›½π‘š(𝐡), (1 βˆ’ 𝛽)π‘š(𝐡)) = (0.7(0.5), (1 βˆ’ 0.7)(0.5)) =

(0.35, 0.15), (45)

π‘šπ›½(π΄π‘ˆπ΅) = (π›½π‘š(π΄π‘ˆπ΅), (1 βˆ’ 𝛽)π‘š(π΄π‘ˆπ΅)) = (0.7(0.1), (1 βˆ’ 0.1)(0.1)) =

(0.07, 0.03), (46)

and π‘šπ›½π›Ό(𝐴) = π›Όπ‘šπ›½(𝐴) = 0.8(0.28, 0.12) = (0.8(0.28), 0.8(0.12)) =

(0.224, 0.096), (47)

π‘šπ›½π›Ό(𝐡) = π›Όπ‘šπ›½(𝐡) = 0.8(0.35, 0.15) = (0.8(0.35), 0.8(0.15)) =

(0.280, 0.120), (48)

11

π‘šπ›½π›Ό(π΄π‘ˆπ΅) = π›Όπ‘š(π΄π‘ˆπ΅)(𝛽, 1 βˆ’ 𝛽) + (1 βˆ’ 𝛼)(𝛽, 1 βˆ’ 𝛽) = 0.8(0.1)(0.7, 1 βˆ’

0.7) + (1 βˆ’ 0.8)(0.7, 1 βˆ’ 0.7) = 0.08(0.7, 0.3) + 0.2(0.7, 0.3) =

(0.056, 0.024) + (0.140, 0.060) = (0.056 + 0.140, 0.024 + 0.060) =

(0.196, 0.084). (49)

Therefore reliability discount commutes with importance discount of

sources when one has classical masses.

The result is interpreted this way: believe in 𝐴 is 0.224 and believe in

π‘›π‘œπ‘›π΄ is 0.096, believe in 𝐡 is 0.280 and believe in π‘›π‘œπ‘›π΅ is 0.120, and believe

in total ignorance π΄π‘ˆπ΅ is 0.196, and believe in non-ignorance is 0.084.

7. Same Example with Different Redistribution of Masses Related to

Importance of Sources.

Let’s consider the third way of redistribution of masses related to

importance coefficient of sources. 𝛽 = 0.7, but 𝛾 = 0.4, which means that

40% of 𝛽 is redistributed to 𝑖(π‘₯) and 60% of 𝛽 is redistributed to 𝑓(π‘₯) for

each π‘₯ ∈ πΊπœƒ βˆ– {πœ™}; and 𝛼 = 0.8.

a. Reliability first, Importance second.

A B AUB

m 0.4 0.5 0.1

π‘šπ›Ό 0.32 0.40 0.28

π‘šπ›Όπ›½ (0.2240, 0.0384,

0.0576)

(0.2800, 0.0480,

0.0720)

(0.1960, 0.0336,

0.0504).

(50)

12

We computed π‘šπ›Ό in the same way.

But:

π‘šπ›Όπ›½(𝐴) = (𝛽 βˆ™ π‘šπ›Ό(𝐴), 𝑖𝛼(𝐴) + (1 βˆ’ 𝛽)π‘šπ›Ό(𝐴) βˆ™ 𝛾, 𝑓𝛼(𝐴) +

(1 βˆ’ 𝛽)π‘šπ›Ό(𝐴)(1 βˆ’ 𝛾)) = (0.7(0.32), 0 + (1 βˆ’ 0.7)(0.32)(0.4), 0 +

(1 βˆ’ 0.7)(0.32)(1 βˆ’ 0.4)) = (0.2240, 0.0384, 0.0576). (51)

Similarly for π‘šπ›Όπ›½(𝐡) and π‘šπ›Όπ›½(π΄π‘ˆπ΅).

b. Importance first, Reliability second.

A B AUB

m 0.4 0.5 0.1

π‘šπ›½ (0.280, 0.048,

0.072)

(0.350, 0.060,

0.090)

(0.070, 0.012,

0.018)

π‘šπ›½π›Ό (0.2240, 0.0384,

0.0576)

(0.2800, 0.0480,

0.0720)

(0.1960, 0.0336,

0.0504).

(52)

We computed π‘šπ›½(βˆ™) in the following way:

π‘šπ›½(𝐴) = (𝛽 βˆ™ 𝑑(𝐴), 𝑖(𝐴) + (1 βˆ’ 𝛽)𝑑(𝐴) βˆ™ 𝛾, 𝑓(𝐴) + (1 βˆ’ 𝛽)𝑑(𝐴)(1 βˆ’

𝛾)) = (0.7(0.4), 0 + (1 βˆ’ 0.7)(0.4)(0.4), 0 + (1 βˆ’ 0.7)0.4(1 βˆ’ 0.4)) =

(0.280, 0.048, 0.072). (53)

Similarly for π‘šπ›½(𝐡) and π‘šπ›½(π΄π‘ˆπ΅).

To compute π‘šπ›½π›Ό(βˆ™), we take 𝛼1 = 𝛼2 = 𝛼3 = 0.8, (54)

in formulas (8) and (9).

13

π‘šπ›½π›Ό(𝐴) = 𝛼 βˆ™ π‘šπ›½(𝐴) = 0.8(0.280, 0.048, 0.072)

= (0.8(0.280), 0.8(0.048), 0.8(0.072))

= (0.2240, 0.0384, 0.0576). (55)

Similarly π‘šπ›½π›Ό(𝐡) = 0.8(0.350, 0.060, 0.090) =

(0.2800, 0.0480, 0.0720). (56)

For π‘šπ›½π›Ό(π΄π‘ˆπ΅) we use formula (9):

π‘šπ›½π›Ό(π΄π‘ˆπ΅) = (𝑑𝛽(π΄π‘ˆπ΅) + (1 βˆ’ 𝛼)[𝑑𝛽(𝐴) + 𝑑𝛽(𝐡)], 𝑖𝛽(π΄π‘ˆπ΅)

+ (1 βˆ’ 𝛼)[𝑖𝛽(𝐴) + 𝑖𝛽(𝐡)],

𝑓𝛽(π΄π‘ˆπ΅) + (1 βˆ’ 𝛼)[𝑓𝛽(𝐴) + 𝑓𝛽(𝐡)])

= (0.070 + (1 βˆ’ 0.8)[0.280 + 0.350], 0.012

+ (1 βˆ’ 0.8)[0.048 + 0.060], 0.018 + (1 βˆ’ 0.8)[0.072 + 0.090])

= (0.1960, 0.0336, 0.0504).

Again, the reliability discount and importance discount commute.

8. Conclusion.

In this paper we have defined a new way of discounting a classical and

neutrosophic mass with respect to its importance. We have also defined the

discounting of a neutrosophic source with respect to its reliability.

In general, the reliability discount and importance discount do not

commute. But if one uses classical masses, they commute (as in Examples 1

and 2).

14

Acknowledgement.

The author would like to thank Dr. Jean Dezert for his opinions about

this paper.

References.

1. F. Smarandache, J. Dezert, J.-M. Tacnet, Fusion of Sources of

Evidence with Different Importances and Reliabilities, Fusion 2010

International Conference, Edinburgh, Scotland, 26-29 July, 2010.

2. Florentin Smarandache, Neutrosophic Masses & Indeterminate

Models. Applications to Information Fusion, Proceedings of the International

Conference on Advanced Mechatronic Systems [ICAMechS 2012], Tokyo,

Japan, 18-21 September 2012.