reliability mechanics and modeling for ic packaging

155
IEEE EPTC 2019 – Singapore December 4 - 6, 2019 Reliability Mechanics and Modeling for IC Packaging – Theory, Implementation and Practices 1 Xuejun Fan, and 2 Ricky Lee 1 Lamar University 2 Hong Kong University of Science and Technology [email protected] , [email protected] EPTC Professional Development Course December 4, 2019

Upload: others

Post on 16-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 - 6, 2019

Reliability Mechanics and Modeling for IC Packaging

– Theory, Implementation and Practices

1Xuejun Fan, and 2Ricky Lee 1Lamar University

2Hong Kong University of Science and Technology

[email protected] , [email protected]

EPTC Professional Development Course

December 4, 2019

Page 2: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

2

Outline

β€’ Introduction

β€’Temperature Loading

β€’ Mechanical Loading

β€’ Moisture Loading

β€’ Electrical Current Loading - Multi-Physics Modeling

β€’ Summary

Page 3: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

3

3

β€’Introduction

β€’Temperature Loading

β€’Mechanical Loading

β€’Moisture Loading

β€’Electrical Current Loading -Multi-Physics

Modeling

β€’Summary

Page 4: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

4

4

Electronic Packaging Evolution

8

16

32

64

128

256

1000

>5000

<1985 1990 1995 2000 2015

Pin Count

QFN

DIP Dual Inline

Package

PGA

Pin Grid Array

PPGA Plastic PGA

MCP Multi-Chip Package

FLIP CHIP

Surface Mount Through Hole Fine Pitch/Thin Modules/System

QF

P

2005

SOP

SOJ Small Outline

J-Lead

(WLP)

Package-in-Package

FC

CSP

BGA

Flip chip BGA

Area Array 3D/integration

QFN w/SMD

Integrated

module

3D

module

Module

w/Embedded

Passives

1-Layer LGA

TSOP Thin SOP

MCM Multi-Chip Module

Stacked chips

PLCC Plastic Leaded

Chip Carrier

Wirebond

ed CSP

Ceramic Module Laminate Module

FEM

Stacked

package

Package-on-

Package

CoWoS (Chip-on-Wafer-on-Substrate)

InFO (Integrated Fan Out)

Page 5: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

5

5

Wafer, Package, and Board Levels

Electronic Packaging Wafer Fabrication &

Backend Process Surface Mounting

β€’ Design of a package must consider the interactions among wafer, package, and board (e.g. CPI – chip-package-interaction).

Package

level

Wafer

level Board

level

Package

level

Wafer

level Board

level

Page 6: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

6

6

Examples of Failures

10 m

Interface delamination

Substrate cracking Pad cratering

Solder brittle failure

Fatigue crack

Thin film delamination

e-

500 nm

Void

Via

e-

Organosilicate

Etch Stop

Liner

500 nm

Void

Via

e-

Organosilicate

Etch Stop

Liner

Electromigration

Film rupture

Page 7: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

7

7

Thermal-mechanical Stress

Stress-free

Cooling-down

Heating-up

Thermal stress in solder

Cooling-down

Package warpage

Page 8: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

8

8

Mechanical Load

β€’ Handheld electronic products are susceptible to drop impact failure.

PDA Handphone

MPEG-4 MP3 Player

Page 9: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

9

9

Stage 1: Moisture absorption

Moisture-induced Failure

Device exposed to reflow temperature,

typically 260Β°C

Stage 2: Initiation of delamination

Stage 3: Delamination propagation Stage 4: Package cracking and vapor release

Page 10: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

10

10

Electrical Current Stressing

e-

Electron wind

Voids

Hillocks

e-

Page 11: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

11

11

Organization of Course

β€’ Four modules

–Temperature loading

Thermal mismatch, temperature gradient, etc.

–Mechanical loading

Drop and impact, bend, etc.

–Moisture loading

Moisture diffusion, vapor pressure, swelling.

–Electrical current loading - combined loading

Electrical-thermal, electrical-thermal-mechanical, and

electromigration (electrical-thermal-mechanical-mass

transport)

β€’ Theory, implementation, and best practices.

Page 12: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

12

12

β€’Introduction

β€’Temperature Loading

β€’Mechanical Loading

β€’Moisture Loading

β€’Electrical Current Loading - Multi-Physics

Modeling

β€’Summary

Page 13: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

13

13

Outline

β€’ Basic concepts and analytical solutions

β€’ Applications –Die-level thermal stress – thermal stress in TSV

–Package-level thermal stress problem – warpage

–Chip-package interaction (CPI) – sub-modeling technique

–Board level thermal stress problems

Solder ball thermal cycling

Creep equations

β€’ Best practices – Initial stress free condition –Full model vs. global/local model

–Volume averaging

–Stress singularity

Page 14: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

14

14

Stress, Strain, and Basic Elastic Material Properties

𝜎 =𝑃

𝐴0

νœ€ =𝛿

𝐿0

𝜐 = βˆ’νœ€latνœ€long

Poisson ratio

𝜎 = πΈνœ€

Hooke’s law

= L – L0

Material Elastic Modulus (GPa) Poisson Ratio

Adhesive 0.01 – 10 0.4 – 0.49

Epoxy 10 –30 0.35 – 0.48

Copper 120 0.35

Silicon 131 0.28

Solder 25 – 51 0.35

Substrate/PCB 11 – 26 various

Page 15: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

15

Coefficient of Thermal Expansion (CTE)

β€’ Material dimensions change with temperature.

β€’ The rate of dimensional change with temperature is called CTE.

β€’ Primary driver of thermo-mechanical stress in electronic packages.

Material a (ppm/Β°C)

Aluminum

Stainless Steel

Silicon

Copper

Underfill Epoxy

FR4 (in plane)

FR4 (z-axis)

23

12

2.6

17

20, 70

15, 10

65, 180

L

T = T0

L+DL

T = T1

L

Lth D

T

th

D

a

T = T0 T > T0

Increase

internal energy

(heat) causes

atomic bond

lengths to

increase

Page 16: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

16

16

Thermal Mismatch – Two-Layer Structure

Superposition : axial loading + bending

Page 17: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

17

17

Thermal-Mismatch – Multi-Layer Structure

Superposition : axial loading + bending

Page 18: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

18

18

Thermal-Mismatch : Analytical Solution

Ana Neves Vieira da Silva. Analytical Modeling of the Stress-Strain Distribution in a Multilayer Structure with Applied Bending. PhD Dissertation. Instituto Superior Tecnico of Universidade Tecnica de Lisboa, Portugal.

(effective CTE)

(warpage)

(stress in each layer)

Multi-layer structure

Page 19: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

19

19

Thermal Mismatch - Shear Stress and Strain on Solder Joint

Cooling to a

lower

temperature

Solder joint

under stress

(PCB shrinks more than package)

h

TL D

)(chipPCB

aa

: shear stress in solder

: solder ball shear strain

G: elastic shear modulus

L: distance of netural point (half-die size, diagnoal)

h: solder ball stand-off

a: CTE

= G

A simplified and approximate solution

Page 20: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

20

20

Thermal Mismatch – TSV Structure

Shrink fit of compound cylinder

Single cylinder under external and internal pressure

Advanced Mechanics of Materials and Applied Elasticity, 5th Edition, by Saul K. Fenster, Ansel C. Ugural.

Page 21: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

21

21

Thermal Stress due to Temperature Gradient

Advanced Mechanics of Materials and Applied Elasticity, 5th Edition, by Saul K. Fenster, Ansel C. Ugural.

Page 22: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

22

Finite Element Analysis (FEA)

β€’ Analytical solutions are usually not applicable to complex problems.

β€’ Based on dividing the problem into discrete elements for which analytical solutions exit.

β€’ Analytical equations are then formed into a matrix and solved simultaneously.

β€’ Method may require multiple iterations to converge and may have to divide β€œtime” steps to reach a solution.

β€’ Used for structural, thermal, EMI, fluid dynamics, diffusion, stock analysis, etc.

Bracket meshed into 11,295

elements.

Individual element

(w/nodes in red)

Page 23: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

23

23

Application – Warpage Analysis

Page 24: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

24

24

Capped-Die Flip Chip Package Design - assembly process

Using an underfill-like encapsulant, a metallic cap is attached to the die.

Application – Warpage Control

Page 25: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

25

25

Comparison for Warpage Control Methods by FEA

a) Bare die on substrate

b) Package with stiffener

c) Package with lid

d) Capped-die package

Page 26: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

26

26

Experimental Verification - Warpage

Shadow MoirΓ© Data

Bare Die w/ U6 Underfill

Bare Die w/ U2 Underfill

Capped-Die w/ U6 Underfill

Capped-Die w/ U2 Underfill

Shen Y, Zhang L. Zhu WH, Zhou J, Fan XJ. Finite-element analysis and experimental test for a capped-die flip-chip package design,

IEEE Transactions on Components, Packaging and Manufacturing Technology. 6(9), 1308 – 1316. 2016.

Page 27: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

27

27

Chip-Package Interaction (CPI)

Page 28: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

28

28

Multilevel Sub-modeling Technique

package level

interconnect level

critical solder level

die-solder interface level

Xuefeng Zhang, Se Hyuk Im, Rui Huang, and Paul S. Ho, Chip-Package Interaction and Reliability Impact on Cu/Low-k Interconnects, Chapter 2, UT Austin 2008/

Page 29: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

29

29

Multilevel Sub-modeling Technique

XH Liu, TM Shaw, G Bonilla - Advanced Metallization Conference, 2010 - sematech.org

Page 30: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

30

30

Temperature Cycling

Board

Page 31: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

31

31

Temperature Cycling

β€’ Temperature cycling – uniform temperature condition assumed

-40

125

Tem

per

atu

re (Β°C

)

Time (Seconds)

Page 32: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

32

32

Power Cycling

β€’ Temperature gradient exists.

β€’ Much less severe than temperature cycling.

Page 33: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

33

33

Fatigue Life Estimate

π‘Šπ‘ = πœŽπ‘‘νœ€π‘ πœ€π‘

0

𝑁𝑓 = 𝐴 βˆ†π‘Šπ‘βˆ’π‘›

Coffin-Manson Equation

Page 34: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

34

Solder Creep Equations (ANAND Model)

β€’ Anand’s model (rate-dependent visco-plastic model)

π‘‘νœ€π‘π‘‘π‘‘

= 𝐴 sinhπœ‰πœŽ

𝑠

βˆ’1π‘š

exp βˆ’π‘„

𝑅𝑇

𝑑𝑠

𝑑𝑑= β„Ž0 𝐡 𝛼

𝐡

𝐡

π‘‘νœ€π‘π‘‘π‘‘

𝐡 = 1 βˆ’π‘ 

π‘ βˆ—

π‘ βˆ— = 𝑠 π‘‘νœ€π‘/𝑑𝑑

𝐴exp βˆ’

𝑄

𝑅𝑇

𝑛

Variable/Para

meter

Meaning Units

𝑠0 initial value of deformation resistance Stress

𝑄/𝑅 Q = activation energy

R = universal gas constant

Energy/volume

Energy/(volume temp)

𝐴 pre-exponential factor 1/time

πœ‰ multiplier of stress Dimensionless

π‘š strain rate sensitivity of stress Dimensionless

β„Ž0 hardening / softening constant Stress

𝑠 coefficient for deformation resistance

saturation value

Stress

𝑛 strain rate sensitivity of saturation

(deformation resistance) value

Dimensionless

𝛼 strain rate sensitivity of hardening or

softening

Dimensionless

Page 35: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

35

35

Anand Constants for Various Solder Alloys

Parameter SAC105 SAC305 SAC387 SAC405 SnPb SnPbAg SnAg

𝑠0 2.3479 18.07 3.2992 20 12 12.41 39.09

𝑄/𝑅 8076 9096 9883 10561 9200 9400 8900

𝐴 3.773 3484 15.773 325 4.2E6 4E6 2.23E4

πœ‰ 0.9951 4 1.0673 10 1.5 1.5 6

π‘š 0.4454 0.2 0.3686 0.32 0.3 0.303 0.182

β„Ž0 4507.5 144000 1076.9 8E5 1.4E3 1379 3321.15

𝑠 3.5833 26.4 3.1505 42.1 14 13.79 73.81

𝑛 0.012 0.01 0.0352 0.02 0.071 0.07 0.018

𝛼 2.1669 1.9 1.6832 2.57 1.31 1.3 1.82

SAC105 D. Bhate et al., Constitutive Behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu Alloys at Creep and Low Strain Rate Regimes, IEEE Transactions on Components

and Packaging Technologies, Vol. 31, No. 3, September 2008, p. 622.

SAC305 Motalab et al., Determination of Anand Constants for SAC Solders using Stress-Strain or Creep Data, ITherm 2012, pp. 909-921.

SAC387 D. Bhate et al., Constitutive Behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu Alloys at Creep and Low Strain Rate Regimes, IEEE Transactions on Components

and Packaging Technologies, Vol. 31, No. 3, September 2008, p. 622.

SAC405 W. Qiang et al., Experimental determination and modification of Anand model constants for Pb-free material 95.5Sn4.0Ag0.5Cu, in EUROSIME Conf. IEEE,

2007.

SnPb R. Darveaux, β€œEffect of simulation methodology on solder joint crack growth correlation,” in Electronic Components & Technology Conf. IEEE, 2000 .

SnPbAg R. Darveaux, β€œEffect of simulation methodology on solder joint crack growth correlation,” in Electronic Components & Technology Conf. IEEE, 2000.

SnAg Wang, Z. Cheng, K. Becker, and J. Wilde, Applying Anand model to represent the viscoplastic deformation behavior of solder alloys, ASME Journal of

Electronic Packaging, Vol. 123, 2001.

Page 36: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

36

36

Solder Creep Equations

Page 37: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

37

37

Solder Creep Equations (NEW)

Page 38: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

38

Solder Creep Equations

TD

B

B

T

TE

5413exp

sec/11090.8

sec/11070.1

(K)eTemperatur

8856000(MPa)ElasticityofModulus

(MPa)Stress

sec)/1(RateStrainTotal

where

24

2

12

1

SnPb Creep Equation

7

2

3

1

EDB

EDB

E

SnAgCu Creep Equation

12

22

3

11

nn

DADAE

MPa1

)/7348exp(

)/3223exp(

sec/1100.1

sec/1100.4

(K)eTemperatur

667.6659533(MPa)ElasticityofModulus

)(Stress

sec)/1(RateStrainTotal

where

2

1

12

2

7

1

n

TD

TD

A

A

T

TE

MPa

Elastic

Grain Boundary Sliding (GBS)

Matrix Creep (MC)

Page 39: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

39

39

Best Practice (1) - Stress-Free Setting

β€’ Three most commonly used initial stress-free temperatures

– The solidus temperature of solder material (e.g., for SnAgCu, this temperature

is 217Β°C)

– The room temperature as initial stress-free (e.g. 25C)

– The high dwell temperature of thermal cycle or operating conditions (denoted

as Tmax, e.g. =125C for thermal cycling from -25C to 125C)

β€’ Tmax as stress-free condition is recommended.

Fan XJ, Pei M, Bhatti PK. Effect of finite element modeling techniques on solder joint fatigue life prediction of flip-chip BGA packages. Proc. of Electronic

Components and Technology Conference (ECTC), 972-980. 2006.

Page 40: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

40

40

Best Practice (2) – One Global Model (Full Model)

– Coarse element at most of the places

– Refined element at critical solder joints

– No tie element is used

– Refined solder balls consider both SMD and MD pads

Page 41: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

41

41

Best Practice (2) – Sub-modeling (Global/Local)

Substrate/underfill interface

Page 42: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

42

42

Comparison - Global/Local Model and Full Model

– The global/local modeling approach provides satisfactory results for the volumetrically averaged and maximum values

– For some location, the difference in maximum value can be as high as 20% (not shown here)

β€’ β€œFull Model” is recommended.

Page 43: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

43

43

Best Practice (3) - Volume Averaging

ANSYS 11.0SP1

ANSYS 11.0SP1

Critical

Layer

Elements

βˆ†π‘Šπ‘Žπ‘£π‘’= average inelastic strain energy density accumulated per cycle for fixed

thickness layer elements

βˆ†π‘Šπ‘– = strain energy density accumulated per cycle for each element i

Vi = volume of each element i

βˆ†π‘Šave= βˆ†Wi Vi

Vi

β€’ Volume averaging over a fixed thickness of thin layer is

recommended.

Page 44: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

44

44

Best Practice (4) - Worst Case Solder Joint Location

–For FC-BGA package

It’s commonly accepted that the worst case solder joint is located in the

outermost along diagonal direction under the die shadow.

–Metrics

Von Mises stress, creep strain, creep strain energy density, peel stress

Maximum value, averaged value

– Results

Averaged per-cycle creep strain and stress shows the worst-case solder joint

at the middle of die edge

The maximum value of these two parameters show the worst joint at the die

corner

Peel stress finds the maximum tensile stress at the joint one row inside from

the die shadow corner

β€’ Experimental data

– The solder joint one row inside from the corner of die shadow usually has the highest crack

growth rate

– All solder joints along the die edge have comparable crack growth rates

β€’ Correlation with experimental data is recommended. Bhatti PK, Pei M, Fan XJ. Reliability analysis of SnPb and SnAgCu solder joints in FC-BGA packages with thermal enabling preload. Proc. of Electronic Components

and Technology Conference (ECTC), 601-606. 2006.

Page 45: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

45

General Results: SnPb vs. SnAgCu

Maximum Von

Mises Stress (MPa)

Maximum Equiv

Creep Strain

Temperature

range -25 to +100C

0

0.01

0.02

0.03

0.04

0.05

0 30 60 90 120 150

Time (minutes)

Max E

qu

iv C

reep

Str

ain

-50

-25

0

25

50

75

100

125

Sn/Pb Sn/Ag/Cu

Temp

0

10

20

30

40

50

0 30 60 90 120 150

Time (minutes) Max

Vo

n M

ise

s S

tres

s (

MP

a)

-50

-25

0

25

50

75

100

125

Sn/Pb Sn/Ag/Cu

Temp

Page 46: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

46

46

Wafer Level Package (Fan-in WLP) – Worst Location

Page 47: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

47

47

WLP - von Mises Stress Map in Solder Balls

1

MN

MX

X

YZ

1.11

9.6818.251

26.82235.393

43.96452.534

61.10569.676

78.247

ANSYS 11.0SP1

MAR 7 2008

10:04:17

1

ANSYS 11.0SP1

MAR 7 2008

10:03:05

1

MX

ANSYS 11.0SP1

MAR 7 2008

10:02:21

Critical solder ball

Package center

Package corner

1/8th model

Page 48: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

48

48

WLP - Plastic Work Density Map

Fan XJ, Varia B, Han Q. Design and optimization of thermo-mechanical reliability in wafer level packaging, Microelectronics Reliability, 50, 536–546, 2010.

1/8th model

Page 49: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

49

49

Stress Singularities in Material Joints

Fan XJ, Wang HB, Lim TB. Investigation of the underfill delamination and cracking for flip chip modules under temperature cyclic loading. IEEE Transactions on

Components, Manufacturing and Packaging Technologies, 24(1), 84-91. 2001.

Page 50: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

50

50

Summary

β€’ Thermal mismatch vs. temperature gradient

β€’ Analytical solution –Layered structure (stress, warpage, effective CTE)

–Cylindrical structure (TSV)

β€’ Die-level thermal stress – thermal stress in TSV

β€’ Package-level thermal stress problem – warpage

β€’ Chip-package interaction (CPI) – submodeling technique

β€’ Board level thermal stress problem –Solder ball thermal cycling (Flip chip BGA, WLP)

–Creep equations

–Best method for practice

Initial stress free condition; full model vs. global/local model; worst solder ball location, volume averaging

β€’ Stress singularity of joint materials

Page 51: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

51

51

β€’Introduction

β€’Temperature Loading

β€’Mechanical Loading

β€’Moisture Loading

β€’Electrical Current Loading - Multi-Physics

Modeling

β€’Summary

Page 52: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

52

52

Outline

β€’ JEDEC drop test standard (old and new)

β€’ Simulation method – Input G

–Large mass

– Input D

–Direct acceleration

–Global/local method

β€’ 4-point bending test

Page 53: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

53

53

JEDEC Drop Test Set-Up

Drop

table

Base

plate

Rigid

base

Strike

surface

Guide

Rods

Test

board

6

4

2

11

9

7

5

3

1

12

10

8Drop

table

Base

plate

Rigid

base

Strike

surface

Guide

Rods

Test

board

6

4

2

11

9

7

5

3

1

12

10

8

6

4

2

11

9

7

5

3

1

12

10

8

β€’ Peak acceleration: 1500g

β€’ Impulse time: 0.5ms with half-sine shape

Page 54: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

54

JEDEC Test Standard JESD22-B111 (Old)

Group Number Components

Component Location

A 4 U1, U5, U11, & U15

B 4 U2, U4, U12, & U14

C 2 U6 & U10

D 2 U7 & U9

E 2 U3 & U13

F 1 U8

Page 55: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

55

JEDEC Test Standard JESD22-B111A (New, 11/2016)

Page 56: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

56

FEA Modeling: Input-G Method

G G

G G

PCB

M u 1 = C u 1 + K u1 = 0 (1)

with initial conditions

u1 t=0 = 0, u 1 t=0 = 2gH (2)

and boundary condition

a = 1500g sin

Ο€t

tw for t ≀ tw , tw = 0.5

0 for t β‰₯ tw

(3)

Page 57: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

57

FEA Modeling: Input-G Method

G G

G G

PCB

Large Mass Method

Large mass 108 times mass of structure

coupled (1mm away from PCB bottom)

Acceleration = 1500 Γ— g Γ— sin (pi Γ— t/0.5)

Force = 108Γ— Acceleration

Page 58: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

58

58

FEA Modeling: Input-D Method

u1 at hole =

βˆ’

tw

Ο€

2

1500g sinΟ€t

tw

+ tw

Ο€ 1500g + 2gH t , t ≀ tw

2tw

Ο€ 1500g + 2gH t βˆ’

tw

Ο€

2

1500g , t β‰₯ tw

M u 1 = C u 1 + K u1 = 0 (1)

with initial conditions

u1 t=0 = 0, u 1 t=0 = 2gH (2)

and boundary condition

a = 1500g sin

Ο€t

tw for t ≀ tw , tw = 0.5

0 for t β‰₯ tw

(3)

G G

G G

PCB

Page 59: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

59

59

FEA Modeling: Direct Acceleration Method

M u 2 + C u 2 + K u2 =

βˆ’ M 1500g sin

Ο€t

tw t ≀ tw , tw = 0.5

0 t β‰₯ tw

(5)

with initial conditions

u1 t=0 = 0, u 1 t=0 = 2gH (6)

and boundary conditions u2 at hole = 0 (7)

G G

G G

PCB

Fan XJ, Ranouta AS, Dhiman HS. Effects of package level structure and material properties on solder joint reliability under impact loading. IEEE

Transactions on Components, Packaging and Manufacturing Technology. 3(1), 52-60. 2013.

Page 60: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

60

60

Input-G Method – Board Vibration

β€’ Since acceleration impulse is given on the screw locations, the displacements

are not fixed and the board is moving in one direction.

Page 61: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

61

61

Direct Acceleration Method – Board Vibration

β€’ Since the displacement is fixed at the screw locations, the board is vibrating as

expected.

Page 62: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

62

62

Input-G vs. Direct Acceleration Method

-1500

-1000

-500

0

500

1000

1500

2000

0 2 4 6 8

Acce

lera

tion

(G

)

Time(ms)

Acceleration Method

Large Mass Method

Distribution of Board Strain in x direction along

line AB at t = 1.5 ms

Comparison of acceleration time history

β€’ Direct Acceleration method is recommended, but all methods

provide identical results.

Page 63: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

63

FEA Global Model

PCB

Solder Bump

Arrays

Solder Layer

Solder Bump

Model Solder Layer

Model

Page 64: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

64

FEA Local Model 1

X

Y

Z

OCT 21 2008

00:49:47

ELEMENTS

MAT NUM

1

11XY

Z

OCT 21 2008

00:29:37

ELEMENTS

MAT NUM

Cut Boundary

Distance at

2mm Γ— 2mm

Cut Boundary DOF Constraints

at 2mm Γ— 2mm

Cut Boundary

DOF Constraint

Global

Model

Local Model

Local Model 1 Local Model 2

Page 65: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

65

FEA Local Model – Solder Joint

Page 66: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

66

Effect of Cut Boundaries in Sub-modeling

0

100

200

300

400

500

600

1mm x 1mm 1.5mm x 1.5mm 2mm x 2mm 2.5mm x 2mm

Max.

Peelin

g s

tress (

Mpa)

Cut Boundary Distance(mm)

Page 67: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

67

Mode 1: 212 Hz

Mode 2: 551 Hz

Mode 3: 915 Hz

Mode 4: 1257 Hz

Mode 5: 2193 Hz

Global Model Results – Frequency and Mode Shape

Page 68: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

68

Experimental Validation S

train

(M

icro

-

str

ain

, Ξ΅ x

)

Time (ms)

Str

ain

(M

icro

-

str

ain

, Ξ΅ x

)

Time (ms)

Time (ms)

Time (ms)

Str

ain

(M

icro

-

str

ain

, Ξ΅ y

)

Str

ain

(M

icro

-

str

ain

, Ξ΅ y

)

Page 69: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

69

Board Strain Analysis: Package Corner Strain(Ξ΅x )

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0 2 4 6 8

Str

ain

(M

icro

-str

ain

, Ξ΅ x

)

Time(ms)

U1

U2

U3

U6

U7

U8

Strain History in x

Direction

β€’U1>U3>U8>U2>U7>U6.

β€’U8 bends in opposite direction to U1.

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 2 4 6 8

Str

ain

(M

icro

-str

ain

, Ξ΅ y

)

U1

U2

U3

U6

U7

U8

Strain History in y

Direction

Page 70: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

70

Ball Stress Contour Plot on ΒΌth JEDEC Board

513 MPa

U1 U2 U3

U6 U7 U8

367 MPa

299 MPa

464 MPa

346 MPa 486 MPa

Page 71: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

71

Maximum Peel Stress

0

100

200

300

400

500

600

U1 U2 U3 U6 U7 U8

Ma

x.

Pe

elin

g s

tress (

Mp

a)

Component

Overall, the stress

developed in components

can be ranked as:

U1>U8>U3>U2>U7>U6

Failure rank:

β€’ Group A ( U1, U5, U11 and U15)> Group F (U8) > Group E (U3, U13).

A B E B A

U15 U14 U13 U12 U11

C D F D C

U10 U9 U8 U7 U6

A B E B A

U5 U4 U3 U2 U1

1-2

-3-4

-5-1

0-9

-8-7

-6-G

-15-1

4-1

3-1

2-1

1

Page 72: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

72

Correlation of Solder Joint Stress and Board Strain

Board Strain Ranking: U1>U3>U8>U2>U7>U6

Solder Joint Stress Ranking:U1>U8>U3>U2>U7>U6

β€’ Exact correlation does not exist for strain and stress values. Fan XJ, Ranouta AS. Finite element modeling of system design and testing conditions for component solder ball reliability under impact. IEEE

Transactions on Components, Packaging and Manufacturing Technology. 2(11), 1802-1810, 2012.

Page 73: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

73

73

4-Point Bending Test

aLa

hx

43

3

x

L

hx 3

12

Segment CD

Cβ€² C

D

Segment CC’

Page 74: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

74

74

β€’ 4PT bending test to take advantage of uniform strain BC for each component.

β€’ JEDEC board + 9 components with electric monitoring for each one of them.

β€’ Cyclic testing of freq 3Hz @ 1.5mm, 2mm and 2.5mm deflections to DC failure.

4-Point Bending Test

Page 75: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

75

Cyclic Bending: Modeling Methodology

Global/local modeling methodology

β€’ Elastic global model.

β€’ Local models use EPP SAC405 solder material properties.

M Xie, Solder Reliability Models in 4 Point Bend, Intel, 2006.

Page 76: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

76

76

Strain Distribution

-2500.00

-2000.00

-1500.00

-1000.00

-500.00

0.00

0 10 20 30 40 50

Distance from the center

Mic

rost

rain

, LE

11

d=1.5mm

d=2.0mm

d=2.5mm

Linear moment

Constant moment

Package inside

Package edge

Page 77: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

77

77

Board Side or Package Side?

Consistency with failure propagation in terms of peeling stress

β€’ Package side: inside-out

β€’ Board side: outside-in

Failure happens more likely at the package side: higher failure

parameter value.

Page 78: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

78

78

Failure Pattern

Solder joint crack propagation direction:

β€’Package side: inside-out

β€’Board side: outside-in Sequential Failure (1.5mm deflection)

Simultaneous Failure (2.5mm deflection)

Zhou T and Fan XJ. Effect of system design and test conditions on wafer level package drop test reliability. SMTA International. October 2013.

Page 79: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

79

Summary

β€’ JEDEC drop test standard –JESD22-B111, old one, with 15 components

–JESD22-B111A, new one, with 4 components or 1 component

β€’ Finite element modeling – Input G method, large mass method, input displacement method, direct

acceleration method

–Global/local modeling

–Peel stress used as indicator for failure

β€’ Four-point bending test and modeling –Global/local modeling

–Global with linear elastic but nonlinear geometry analysis

–Local model with elastic-plastic modeling

Page 80: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

80

80

β€’Introduction

β€’Temperature Loading

β€’Mechanical Loading

β€’Moisture Loading

β€’Electrical Current Loading - Multi-Physics

Modeling

β€’Summary

Page 81: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

81

81

Outline

β€’ Introduction

β€’ Moisture related reliability testing

β€’ Moisture diffusion modeling

β€’ Vapor pressure theory

β€’ Hygroscopic swelling

Page 82: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

82

82

Moisture Absorption of Electronic Packages

β€’ Electronic packages absorb moisture in uncontrolled humid conditions prior to the surface mount on board.

storage shipment

Individual component Surface mount to board

Fan XJ, Suhir, E. (eds.). Moisture Sensitivity of Plastic Packages of IC Devices. Springer, New York, 2010.

Page 83: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

83

83

Polymer Materials in Electronic Packaging

β€’ Bulk-form – encapsulation (e.g. mold compound)

– substrate …

β€’ Adhesives – die-attach, underfill

– thermal adhesives …

β€’ Thick- or thin- film – solder mask

– passivation

Solder mask

Passivation

Die

Substrate

Solder

bump

A leadframe package

Mold compound

A ball grid array (BGA) package

Die attach

Carrier

Underfill

Thermal adhesive

β€’ Polymeric materials are susceptible to moisture absorption.

Page 84: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

84

– Under 85Β°C/85%RH condition, w= Csat = 2.47e-2 g/cm3 = 81.2 a (Csat:

saturated moisture concentration)

β€’ Moisture is condensed into liquid state.

β€’ Moisture exists in micro-pores or free volumes (in bulk or at interface).

β€’ Moisture vaporizes at reflow, possibly still at mixed liquid/vapor phases.

Moisture Absorption in Polymeric Materials

85Β°C/85RH

a

w

Moisture condensation in a typical underfill

w: moisture density in polymeric material a: ambient moisture density under 85Β°C/85%RH

w= 81.2 a

Fan XJ, Lee SWR, Han Q. Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectronics Reliability 49, 861–871. 2009.

Page 85: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

85

85

Moisture Related Testing

β€’ Moisture sensitivity test

Stage 1: Moisture absorption Stage 2: Soldering reflow

β€’ Highly accelerated stress test (HAST)

β€’ Biased HAST

Fan XJ, Suhir, E. (eds.). Moisture Sensitivity of Plastic Packages of IC Devices. Springer, New York, 2010.

Page 86: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

86

Basic Concepts of Moisture Diffusion

%100airtheofpressurevaporSaturated

airtheofpressurevaporActualRH

β€’ What is the Relative Humidity (RH)? – Defined as vapor pressure ratio associated with temperature T

β€’ Moisture concentration, C (x, t; T, RH) – Mass of moisture per unit volume of substance.

β€’ Diffusion Coefficient / Diffusivity, D(T) – Measures the rate of mass diffusion

– Defined as the amount of mass flux per unit concentration gradient (m2/s)

– A function of material and temperature

β€’ Saturated Moisture Concentration, Csat(RH, T) – The maximum mass of moisture per unit volume of the substance kg/m3.

β€’ Solubility, S(T) – Henry’s law – The ability of the substance to absorb moisture

– Defined as the maximum mass of moisture per unit volume of the substance per unit

pressure (kg/(m3Pa)).

– A function of material and temperature

P

CS sat

where P = ambient pressure in given RH

Page 87: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

87

87

Moisture Diffusion Modeling

C: Concentration, kg/m3; D0: diffusivity, m2/s

β€’ Fickian diffusion theory

CDt

C

0

β€’ Discontinuity at interface

Concentration discontinuity

CA

CB

After normalization

Page 88: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

88

88

An Overview of Moisture Diffusion Modeling

Normalized

field variable

Csat: temperature-

dependent

RH: time-

dependent

Non-Henry’s

law

ANSYS ABAQUS

Galloway et al.

(1997) C/S

Wong et al.

(1998) C/Csat

Jang et al.

(1993) C/M

Wong et al.

(2016) C/Csat

Markus et al.

(2016) C

Chen et al.

(2017) aw

Ma et al.

(2019) C/K

Ma L, Joshi R, Newman K, X.J. Fan, Improved Finite Element Modeling of Moisture Diffusion Considering Discontinuity at Material

Interfaces in Electronic Packages, ECTC 2019

Page 89: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

89

89

Water Activity Theory

β€’ Water activity aw is a continuous field variable derived from chemical potential.

β€’ Moisture flux in terms of water activity gradient.

β€’ Moisture concentration is given as

β€’ Moisture diffusion equation

β€’ Water activity is continuous and no normalization is required for multi-material system.

wii aDK ,0mJ

C = K aw

K: generalized solubility, kg/m3

wiiwi aDK

t

aK

,0

Chen LB, Zhou J, Chu HW, Zhang GQ, Fan XJ. Modeling Nonlinear Moisture Diffusion in Inhomogeneous Media. Microelectronics Reliability. 75 (2017) 162–170. 2017.

Page 90: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

90

90

Current Moisture Diffusion Theory in ANSYS

β€’ 𝐢 = 𝐢

𝐢sat is used as field variable.

where – 𝐷 ∢ diffusivity matrix

– C (x,y,z,t) : concentration

– G: diffusing substance generation rate per unit volume

– 𝛻: gradient operator=πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§ , 𝛻 βˆ™βˆΆ divergence operator

πΆπ‘ π‘Žπ‘‘πœ•πΆ

πœ•π‘‘+ 𝐢

πœ•πΆπ‘ π‘Žπ‘‘πœ•π‘‡

πœ•π‘‡

πœ•π‘‘= 𝛻 βˆ™ 𝐷 πΆπ‘ π‘Žπ‘‘π›»C + 𝐢

πœ•πΆπ‘ π‘Žπ‘‘ πœ•π‘‡

𝛻𝑇 + 𝐺

πœ• πΆπ‘ π‘Žπ‘‘πΆ

πœ•π‘‘= 𝛻 βˆ™ 𝐷𝛻 πΆπ‘ π‘Žπ‘‘πΆ + 𝐺

β€’ In the above formulation, π‚π¬πšπ­ is considered as temperature-dependent only.

β€’ However, π‚π¬πšπ­ is both time- and temperature- dependent in general.

Page 91: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

91

91

Henry’s Law in Moisture Diffusion

β€’ 𝐢sat = 𝑝amb𝑆

pamb: ambient partial vapor pressure 𝑝amb = RH pg T = RH p0eβˆ’Ep

RT pg is saturated vapor pressure)

S : solubility 𝑆 𝑇 = 𝑆0 𝑒𝐸𝑠𝑅𝑇

𝐾0 = 𝑝0𝑆0, πΈπ‘˜ = 𝐸𝑝 βˆ’ 𝐸𝑠

β€’ In general, Csat (RH (t), T(t)) is both time- and temperature-dependent.

β€’ Therefore, ANSYS cannot solve the problem with varying RH as function of time.

πΆπ‘ π‘Žπ‘‘ = 𝑅𝐻 𝑝0𝑆0 π‘’πΈπ‘ βˆ’πΈπ‘π‘…π‘‡ = 𝑅𝐻 𝐾0𝑒

βˆ’πΈπ‘˜π‘…π‘‡ = 𝑅𝐻 𝑑 𝐾 𝑇

𝐾 = 𝐾 𝑇 = 𝐾0 exp βˆ’πΈπ‘˜π‘…π‘‡

Ep = 4.01 Γ— 104J

mol= 0.415 ev

p0 = 3.82 Γ— 1010 Pa .

Page 92: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

92

92

New Normalization Theory - 𝐢 𝐾 Approach

β€’ The governing equation is exactly identical to the diffusion equation in ANSYS.

β€’ 𝐢 K turns out to be the water activity aw (Chen et al.), which has been proved to be continuous at interface.

β€’ 𝐢 𝐾 = 𝐢

𝐾 is used as field variable.

β€’ K(T): generalized solubility (kg/m3)

πœ• 𝐾𝐢 π‘˜

πœ•π‘‘= 𝛻 βˆ™ 𝐷𝛻 𝐾𝐢 π‘˜

β‡’ π‘˜πœ•πΆ π‘˜πœ•π‘‘

+ 𝐢 π‘˜πœ•πΎ

πœ•π‘‡

πœ•π‘‡

πœ•π‘‘= 𝛻 βˆ™ 𝐷 𝐾𝛻𝐢 π‘˜ + 𝐢 π‘˜

πœ•πΎ

πœ•π‘‡π›»π‘‡

Page 93: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

93

93

Analogy using ANSYS

β€’ In using ANSYS, – C is replaced by C 𝐾.

– Temperature-dependent material property Csat is replaced by general solubility K.

– Boundary condition is now changed to C 𝐾= RH.

Field Variable Material Property

C Csat

C k K

C C k

Absorption 1 RH

Desorption 0 0

C C k

Absorption 0 0

Desorption 1 (if fully saturated initially)

1 (if fully saturated initially)

β€’ Field variable and material property input

β€’ Boundary condition β€’ Initial condition

πΆπ‘ π‘Žπ‘‘πΎ

= 𝑅𝐻 𝑑

𝐾 =πΆπ‘ π‘Žπ‘‘π‘…π»

Page 94: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

94

94

Element Options in ANSYS

β€’ Since the general diffusion equation in ANSYS involves with temperature derivative with respect to time when K is temperature-dependent, the coupled element (thermal diffusion, or thermal-structural-diffusion) must be used.

β€’ Two different types of element option – Diffusion element

Plane 238 (2D, Quadratic)

Solid 239 (3D, Quadratic)

Degree of Freedom (DOF) label; CONC

– Coupled element

Plane 223(2D , Quadratic)

Solid 226(3D , Quadratic)

o Thermal-diffusion (100010)

DOF label: TEMP,CONC

o Thermal-structural-diffusion (100011)

DOF label: TEMP, UX, UY, UZ , CONC

o Structural-diffusion (100001)

DOF label: UX,UY,UZ, CONC

Page 95: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

95

95

Case Study – Varying RH and Temperature

β€’ A 1-D bi-material absorption problem with varying RH and Temperature – Initial condition: dry at 300C – Ambient temperature profile is given below to simulate a

absorption process

T t 0C = 30 +50t

200 0 < t ≀ 200 min

– Relative humidity profile is given below to simulate a absorption process

RH t = 0.3 +0.7t

200 0 < t ≀ 200 min

β€’ Material properties

Properties Mat A Mat B

D0 m2 s 5.0 Γ— 10βˆ’3 4.0 Γ— 10βˆ’3

ED ev 0.518 0.518

S0(Kg/m/Pa) 6.0 Γ— 10βˆ’10 2.0 Γ— 10βˆ’10

Es ev 0.383 0.362

β€’ For this problem, Csat is both time and temperature-dependent.

MAT A MAT B

-1 1(mm) 0

RH(t)

T(t) β‰ˆ

β‰ˆ

RH(t)

T(t) β‰ˆ

β‰ˆ

T(t)

300C t(min)

200

800C

RH(t)

30% t(min)

200

100%

Page 96: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

96

96

C𝐬𝐚𝐭 as a Function of Temperature

β€’ For the given material properties (Csat at 30%RH)

Page 97: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

97

97

Finite Element Model and Results

L𝐴 = 1 mm The starting point

of the path L𝐡 = 1 mm The end point of

the path

h=5 Γ—10βˆ’5m

β€’ Coupled thermal-diffusion element presents correct results.

β€’ 1-D problem is constructed by a 2-D element strip model.

β€’ Finite difference method (FDM) is used for verification.

Page 98: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

98

98

C vs. 𝐂 𝐀 Approach

β€’ Since Csat is temperature-dependent and time-dependent, the results

obtained by 𝐢 are incorrect.

πΎπœ•πΆ π‘˜πœ•π‘‘

+ 𝐢 π‘˜πœ•πΎ

πœ•π‘‡

πœ•π‘‡

πœ•π‘‘= 𝛻 βˆ™ 𝐷 𝐾𝛻𝐢 π‘˜ + 𝐢 π‘˜

πœ•πΎ

πœ•π‘‡π›»π‘‡

πΆπ‘ π‘Žπ‘‘πœ•πΆ

πœ•π‘‘+ 𝐢

πœ•πΆπ‘ π‘Žπ‘‘πœ•π‘‡

πœ•π‘‡

πœ•π‘‘+ 𝐢

πœ•πΆπ‘ π‘Žπ‘‘πœ•π‘‘

= 𝛻. 𝐷 πΆπ‘ π‘Žπ‘‘π›»C + 𝐢 πœ•πΆπ‘ π‘Žπ‘‘ πœ•π‘‡

𝛻𝑇

β€’ 𝐢 (coupled element with thermal-diffusion)

β€’ 𝐢 π‘˜ (coupled element with thermal-diffusion)

Not included in

ANSYS

Page 99: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

99

99

Comparison Among Different Elements in ANSYS

β€’ The Diffusion element only and the coupled element with structural-diffusion option present the same incorrect results.

πΎπœ•πΆ π‘˜πœ•π‘‘

+ 𝐢 π‘˜πœ•πΎ

πœ•π‘‡

πœ•π‘‡

πœ•π‘‘= 𝛻 βˆ™ 𝐷 𝐾𝛻𝐢 π‘˜ + 𝐢 π‘˜

πœ•πΎ

πœ•π‘‡π›»π‘‡

πΎπœ•πΆ π‘˜πœ•π‘‘

= 𝛻 βˆ™ 𝐷 𝐾𝛻𝐢 π‘˜

β€’ Diffusion element only

β€’ Coupled element with thermal-diffusion

πΎπœ•πΆ π‘˜πœ•π‘‘

= 𝛻 βˆ™ 𝐷 𝐾𝛻𝐢 π‘˜

β€’ Coupled element with structural-diffusion

Page 100: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

100

100

Vapor Pressure Model - Example: Pressure Cooker

β€’ Vapor phase

Single vapor phase

T1 T2

p1 p2

– Moisture in single vapor phase;

– < g(T), : moisture density over the total volume of cooker; g(T): saturated

moisture vapor density.

– Ideal gas law can be used: p2=p1T2/T1

β€’ Liquid/vapor phase

Mixed liquid/vapor phase

T1 T2

– Moisture in two-phases – water/vapor mixed;

– > g(T) - liquid-vapor phase , : moisture density over the total volume

of cooker; g(T): saturated moisture vapor density

– Saturated vapor pressure remains regardless of water level

Page 101: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

101

101

Vapor Pressure Model

β€’ Moisture in free-volumes β€˜free’ to vaporize

β€’ Two distinct states – Single vapor phase

– Mixed liquid/vapor phase

β€’ Saturated moisture density g(T)

Mixed liquid/vapor phase Single vapor phase

Page 102: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

102

102

Vapor Pressure Model

CfMM

RTTp

OH

2

)( when C(T) / f < g(T)

p(T) = pg(T), when C(T) / f β‰₯ g(T)

fCV

V

V

m

V

m

ff

/d

d

d

d

d

d

dVf : void volume in a REV (representative elementary volume)

dV : total volume of a REV

dm : total moisture mass

f : void volume fraction dVf/dV

: apaprent moisture density

REV

Fan XJ, Zhou J, Zhang GQ, Ernst LJ. A micromechanics based vapor pressure model in electronic packages. ASME Journal of Electronic Packaging 127 (3), 262-267.

2005.

Xie B, Fan XJ, Shi XQ, Ding H. Direct concentration approach of moisture diffusion and whole field vapor pressure modeling for reflow process: part I – theory and

numerical implementation. ASME Journal of Electronic Packaging 131(3), 031010. 2009.

Page 103: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

103

Steam Table - pg

T(C) 20 30 40 50 60 70 80

g(g/cm210

-3) 0.017 0.03 0.05 0.08 0.13 0.2 0.29

pg(MPa) 0.002 0.004 0.007 0.01 0.02 0.03 0.05

T(C) 90 100 110 120 130 140 150

g(g/cm210

-3) 0.42 0.6 0.83 1.12 1.5 1.97 2.55

pg(MPa) 0.07 0.1 0.14 0.2 0.27 0.36 0.48

T(C) 160 170 180 190 200 210 220

g(g/cm210

-3) 3.26 4.12 5.16 6.4 7.86 9.59 11.62

pg(MPa) 0.62 0.79 1 1.26 1.55 1.91 2.32

T(C) 230 240 250 260 270 280 290

g(g/cm210

-3) 14 16.76 19.99 23.73 28.1 33.19 39.16

pg(MPa) 2.8 3.35 3.98 4.69 5.51 6.42 7.45

Page 104: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

104

104

Vapor Pressure: Effect of Reflow Profiles

Moisture diffusion modeling: a) SH, b) FM Vapor pressue modeling: a) SH, b) FM

Page 105: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

105

CSP with thinner substrate

CSP with thicker substrate

– About 50% reduction on vapor pressure at 250˚C in the bottom DA film

between two thicknesses of substrate

Vapor Pressure Modeling

Xie B, Fan XJ, Shi XQ, Ding H. Direct concentration approach of moisture diffusion and whole field vapor pressure modeling for reflow process: part II –

application to 3-D ultra-thin stacked-die chip scale packages. ASME Journal of Electronic Packaging 131(3), 031011. 2009.

Page 106: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

106

106

Hygroscopic Swelling

85Β°C/85%RH

~0.29%

Expansion strain

due to hygroscopic

swelling

Expansion strain

due to temperature

change of 100C

~0.25%

hygrob*C thermala*DT

b– the coefficient of

hygroscopic swelling

C – moisture concentration

Hygroscopic mismatch is comparable to thermal mismatch in causing mechanical

stresses

Page 107: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

107

107

Temperature-Moisture-Deformation Problems

β€’ How to perform integrated modeling to accurately capture stress developments in each stage?

T

Time t

Stress-free

Cooling

down

Thermal stress

Hygroscopic stress

Thermal

mismatch

Hygroscopic

shrinkage

Expansion by

vapor pressure Preconditioning at 85C85%RH

Reflow

Page 108: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

108

108

Material Properties to be Needed

ijijkkijij pE

CTEE

ba

)21

(1

D

a: coefficient of thermal expansion (CTE)

b: coefficient of hygroscopic swelling (CHS)

C: moisture concentration

T: temperature, p: vapor pressure

Page 109: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

109

109

Implementation in ANSYS

pE

CT

ba21volu

D

))21(

(volu

E

pCT

b

ba

D

BF,,TEMP,n_temp BF,,FLUE, b1+b2

Page 110: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

110

110

Body Forces in ANSYS: Temp and Flue

β€’ Total volume strain

= a (T-Tref )+ bC

BF,,TEMP,n_temp BF,,FLUE,n_C

nsw CD b

sw :swelling strain

b :swelling coefficient

C :a fluence

TB,SWELL,1

! C72=10 FOR ACTIVATION OF USERSW

! EPS=C67*(FLUENCE)Λ†C68 WHERE C67=SWELLING COEFFICIENT

TBDATA,72,10

TBDATA,67,b,1

ANSYS built-in swelling function

Page 111: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

111

111

Implementation in ANSYS

TB,SWELL,MAT

TBDATA,72,10

TBDATA,67,b,1

ldread,temp,,,,,moisture,rth

*do,i,1,total_node

*get,C,node,i,ntemp

BF,i,FLUE,C

*enddo

BF,,Temp,T_reflow

solve

β€’ Moisture diffusion (including desorption) modeling needs to be solved first and separately. – ANSYS 17.2 or later provides coupled element

Plane 223(2D , Quadratic) Solid 226(3D , Quadratic)

o Thermal-structural-diffusion (100011) DOF label: TEMP, UX, UY, UZ , CONC

Page 112: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

112

112

Example: Bi-Material Configuration

Moisture

concentration

contours

Deformed

shape

contours

von Mises

stress

Contours in MC

Time = 1hour @85C/85%RH Time = 18hour @85C/85%RH

Max stress =4.96MPa Max stress =20.99MPa

Fan XJ, Zhao JH. Moisture diffusion and integrated stress analysis in encapsulated microelectronics devices. Proc. 12th. Int. Conf. on Thermal, Mechanical and

Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE 2011). pp8. Linz, Austria. April 18-20, 2011.

Page 113: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

113

113

Example: Reflow Profile Setting

T

Time t

85C

0.5C/s

200C

260C

2C/s

230s 30s 30s

Page 114: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

114

114

Moisture Concentration and Vapor Pressure Contours

Moisture concentration contours

Vapor pressure contours

Max p = 1.55MPa

T=200C

Max p = 5.84MPa

T=260C Max p = 0.5e-3MPa

T=265C

Max C = 3.54mg/mm3

T=200C

Max C = 2.11mg/mm3

T=260C

Max C = 1.05mg/mm3

T=265C

Cu

MC

Page 115: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

115

115

Results of Integrated Stress Modeling

Von Mises Stress in

Epoxy (MPa)

Von Mises Stress in

Cu (Mpa)

T 2.4 8.7

T + H 4.9 17.3

T + H + V 6.3 22.9

Von Mises Stress in

Epoxy (MPa)

Von Mises Stress in

Cu (Mpa)

T 6.0 21.9

T + H 7.2 27.5

T + H + V 11.2 38.9

Von Mises Stress in

Epoxy (MPa)

Von Mises Stress in

Cu (Mpa)

T 6.0 21.9

T + H 6.3 24.7

T + H + V 6.3 24.7

260C

260C after

30sec hold

200C

Page 116: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

116

116

Summary

β€’ For a general moisture diffusion problem with temperature-dependent Csat and varying ambient RH and temperature with time – C k must be used and the coupled element with thermal-diffusion or thermal-

structural-diffusion option must be applied at the same time.

β€’ ANSYS built-in π‘ͺ approach cannot solve the problem with varying RH correctly. – ANSYS diffusion element only

Csat must be temperature-independent. Temperature gradient is not considered.

– ANSYS coupled element with structural-diffusion option.

Csat must be temperature-independent. Temperature gradient is not considered.

– ANSYS coupled element with thermal-diffusion option (or thermal-structural-diffusion) option

If 𝐢 is used, RH must be constant.

If C k is used, no restriction for any diffusion problems.

β€’ Vapor pressure model

β€’ Thermal-hygro-mechanical modeling

Page 117: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

117

117

β€’Introduction

β€’Temperature Loading

β€’Mechanical Loading

β€’Moisture and Humidity

β€’Electrical Current - Multi-Physics

Modeling

β€’Summary

Page 118: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

118

118

Outline

β€’ Electrical-Thermal-Mechanical Modeling

β€’ Electromigration

Page 119: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

119

119

Electrical-Thermal Modeling

β€’ Governing equations

β€’ Current flow generates joule heating at any location.

β€’ Joule heat is applied as heat source in heat diffusion in solids.

β€’ Joule heat term:

β€’ We solve this multi-physics problem one step at a time – Both problems are diffusion-type

– Two problems are sequentially coupled if electric conductivity does not vary with temperature

02

2

2

2

2

2

z

V

y

V

x

V02 V

21VVj

0

1 22 VTkT

2

0

1Vq

Current flow:

Heat conduction: Joule heating

(electrostatics)

(steady-state)

Page 120: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

120

120

Example: A Microresistor Beam in MEMS

β€’ Current flow modeling

COMSOL Multi-Physics Modeling Tutorial.

Page 121: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

121

121

Thermal Modeling

Page 122: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

122

122

Thermal-Mechanical Modeling

β€’ Governing equations

β€’ Temperature load is applied in the form of β€˜body force’ in mechanical analysis

t

TcTk p

][

0]21

[,)( ,

2

ijii XTE

eGuG a

ui : the component of displacement vector

e : the total volumetric strain e=ui,i

Xi : the component of body force vector.

Page 123: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

123

123

Electrical-Thermal-Mechanical Modeling

β€’ MEMS: microresistor beam modeling

Page 124: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

124

124

Mechanical Modeling

β€’ Results, Deformation

Page 125: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

125

125

What is Electromigration (EM)?

β€’ Electromigration is the most persistent reliability problem in interconnect technology in semiconductor device.

Void Hillock

K.N. Tu: EPTC 2008 short course

Very high current density flows through

β€’ Electromigration is a process of mass transport in the current-carrying metal

under the driving forces generated by electric field.

Page 126: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

126

126

Similar to River Flow…

Page 127: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

127

Driving Forces

β€’ The atomic transport is caused by a combination of interacting

driving forces that can generate voids at different locations.

Atomic

Transport

Electron

Wind

Temperature

Gradient

Co

ncen

tratio

n

Gra

die

nt S

tress

Gra

die

nt

Electromigration

Thermomigration

Se

lf-diffu

sio

n Str

es

s-m

igra

tio

n

Page 128: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

128

Blech’s Theory (1976)

Atomic

Transport

Electron

wind

Str

ess

gra

die

nt

Electromigration

Thermomigration

Str

es

s-m

igra

tio

n

Self-d

iffusio

n

I. Blech and C. Herring, APL, 29, 131,

1976.

β€’ EM flux is entirely balanced by the stress-induced counter flux.

β€’ Blech Product, jL, provides a threshold condition of maximum stress, below which, electromigration failure will not occur - mechanical failure.

π‘βˆ—π‘’πœŒπ‘— + Ξ©πœ•πœŽ

πœ•π‘₯= 0 𝑗𝐿 =

πœŽπ‘šπ‘Žπ‘₯βˆ’πœŽπ‘šπ‘–π‘› Ξ©

π‘βˆ—π‘’πœŒ

Page 129: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

129

Electromigration – a Coupled, Multi-Physics Problem

β€’ EM is a multiphysics coupled field problem involved with electron

wind, chemical potential, stress gradient and temperature gradient.

𝑱v = π·π‘£πΆπ‘£π‘˜π΅π‘‡

π‘βˆ—π‘’πœŒπ’‹ βˆ’π‘˜π΅π‘‡

𝐢𝑣𝛻𝐢𝑣 βˆ’ 𝑓Ω𝛻σ +

π‘„βˆ—

𝑇𝛻𝑇

Total flux in terms of Cv (vacancy concentration)

Cv vacancy concentration (m-3), Ξ© volume of per atom (m3)

Dv diffusivity j current density (A/m2)

kB Boltzmann’s constant (J/K), e elementary charge (C)

Z* effective charge number(>0) , Q* heat of transport (kJ/mol)

f volume relaxation ratio

Page 130: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

130

An Overview in Literature

Flux by self-

diffusion

Flux by

stress

Source/sin

k term

Constraint

condition

Stress

equilibrium

EM strain in

stress/strain

Shatzkes and

Lloyd (1986) N/A N/A N/A

Kirchheim (1992)

Korhonen et al.

(1993)

Clement and

Thompson (1995)

Sarychev et al.

(2000) N/A

Suo et al. (2003,

2011, 2014)

Sukharev et al.

(2004, 2007) N/A

Maniatty et al.

(2016)

β€’ Inconsistent and incomplete solutions appear in literature.

Page 131: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

131

New Theory – General Coupling Model

Flux by self-

diffusion

Flux by

stress

Source/sin

k term

Constraint

condition

Stress

equilibrium

EM strain in

stress/strain

Cui et al. (2019)

Page 132: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

132

Puzzle One

β€’ Equilibrium (ππˆπ’™

𝒅𝒙= 𝟎) is violated in the existing literature theory and

solutions.

πœƒ = 0 (volume strain equals to zero)

anywhere.

𝑒 𝐿 = 𝑒 0 = 0 β†’ νœ€π‘₯𝑑π‘₯𝐿

0

= 0 β†’ πœƒπ‘‘π‘₯𝐿

0

= 0

Literature Present solution

Confined conductor configuration

ππˆπ’™

𝒅𝒙 𝟎

β€’ Volume Strain in Confinement

Page 133: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

133

Puzzle Two

β€’ With the exact -Cv equation, the stress level is significantly lower.

Literature Present solution

𝜎 =π‘˜π΅π‘‡

Ξ©ln

𝐢𝑣𝐢𝑣0

𝜎 =2𝐸𝐴

9 1 βˆ’ 𝑣

1 + 𝑣

2 1 βˆ’ 2𝑣 𝐿 ln

𝐢𝑣𝐢𝑣0

𝐿

0

𝑑π‘₯ + ln𝐢𝑣𝐢𝑣0

Confined configuration

C. Herring, J. Appl. Phys. 21, 437 (1950)

β€’ Hydrostatic Stress vs. Vacancy Concentration Cv

Page 134: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

134

Puzzle Three

β€’ When concentration gradient is considered, the stress becomes

further lower.

Literature Present solution

𝑗𝑣 = βˆ’π·π‘£πΆπ‘£π‘˜π΅π‘‡

π‘“Ξ©πœ•πœŽ

πœ•π‘₯+ π‘βˆ—π‘’πœŒπ‘— 𝑗𝑣 = βˆ’

π·π‘£πΆπ‘£π‘˜π΅π‘‡

π‘˜π΅π‘‡

𝐢𝑣

πœ•πΆπ‘£πœ•π‘₯

+ π‘“Ξ©πœ•πœŽ

πœ•π‘₯+ π‘βˆ—π‘’πœŒπ‘—

𝑱v = π·π‘£πΆπ‘£π‘˜π΅π‘‡

π‘βˆ—π‘’πœŒπ’‹ βˆ’π‘˜π΅π‘‡

𝐢𝑣𝛻𝐢𝑣 βˆ’ 𝑓Ω𝛻σ

+ π‘„βˆ—

𝑇𝛻𝑇

β€’ Effect of Self-Diffusion

Page 135: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

135

Puzzle Four

Present solution

β€’ Stress-Strain Relation (Constitutive Equation)

𝜺 = πœΊπ‘€ + πœΊπ‘‡ + πœΊπΈπ‘€ = 0

Literature

Electromigration-induced volume strain

νœ€π‘˜π‘˜πΈπ‘€ = βˆ’

𝜎

𝐡

𝝈 = 2𝐺𝜺 + Ξ»tr 𝜺 𝐈 βˆ’ 𝐡tr πœΊπ‘‡ 𝐈 𝑔 𝐢𝑣 = βˆ’π΄ ln𝐢𝑣

𝐢𝑣0 𝐴 =

π‘˜π΅π‘‡

𝐡Ω

νœ€π‘˜π‘˜πΈπ‘€ = 𝑔 𝐢𝑣

𝜺 = πœΊπ‘€ + πœΊπ‘‡ + πœΊπΈπ‘€

πœΊπ‘‡ = π›Όβˆ†π‘‡πˆ, πœΊπΈπ‘€ =𝑔 𝐢𝑣

3𝐈, 𝑔 𝐢𝒗 =

βˆ’ 𝐴 ln 𝐢𝑣

𝐢𝑣0

𝝈 = 2𝐺𝜺 + Ξ»tr 𝜺 𝐈 βˆ’ 𝐡tr πœΊπ‘‡ 𝐈 βˆ’ 𝐡tr πœΊπΈπ‘€ 𝐈

β€’ A 3-D, general and self-consistent stress-strain constitutive

equation is obtained.

Page 136: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

136

Puzzle Five

Literature Present solution

πœ•πœƒ

πœ•π‘‘= Ξ© 𝛻 βˆ™ 𝑱𝑣

πœƒ = νœ€π‘˜π‘˜

𝑀 + νœ€π‘˜π‘˜

𝑇 + νœ€π‘˜π‘˜

𝐸𝑀

πœ•νœ€π‘˜π‘˜π‘€

πœ•π‘‘+πœ•νœ€π‘˜π‘˜

𝑇

πœ•π‘‘+πœ•νœ€π‘˜π‘˜

𝐸𝑀

πœ•π‘‘= Ω𝛻 βˆ™ 𝑱𝑣 πœ•νœ€π‘˜π‘˜

𝐸𝑀

πœ•π‘‘= Ω𝛻 βˆ™ 𝑱𝑣

β€’ Atomic Transport Equation

πœ•πΆπ‘£πœ•π‘‘

+ 𝛻 βˆ™ 𝑱𝑣 = G

G = πœ•πΆ

πœ•π‘‘

πœ•πΆπ‘£πœ•π‘‘

β‰ͺπœ•πΆ

πœ•π‘‘

πœ•πΆ

𝐢= π‘‘νœ€

π‘˜π‘˜

𝐸𝑀

with

approximation

without any approximation

(sink/source

term)

β€’ Mass conservation equation is used to describe the atomic

transport. Thus, the sink/source term is considered naturally.

Page 137: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

137

New Theory – General Coupling Model

πœ•πœƒ

πœ•π‘‘= Ξ© 𝛻 βˆ™ 𝑱𝑣

𝑱𝑣 = βˆ’π·π‘£π›»πΆπ‘£ + π·π‘£πΆπ‘£π‘βˆ—π‘’πœŒπ’‹

π‘˜π΅π‘‡ βˆ’ 𝐷𝑣𝐢𝑣

Ξ©

π‘˜π΅π‘‡π›»πœŽ + 𝐷𝑣𝐢𝑣

π‘„βˆ—

π‘˜π΅π‘‡π›»π‘‡

πœƒ = tr 𝜺 , 𝜺 = πœΊπ‘€ + πœΊπ‘‡ + πœΊπΈπ‘€

πœΊπ‘‡ = π›Όβˆ†π‘‡πˆ, πœΊπΈπ‘€ =𝑔 𝐢𝑣

3𝐈, 𝑔 𝐢𝒗 = βˆ’π΄ ln

𝐢𝑣

𝐢𝑣0

𝝈 = 2𝐺𝜺 + Ξ»tr 𝜺 𝐈 βˆ’ 𝐡tr πœΊπ‘‡ 𝐈 βˆ’ 𝐡tr πœΊπΈπ‘€ 𝐈

𝜎 = tr 𝝈

3

𝛻 βˆ™ 𝝈 + 𝑭 = 0 𝜺 =1

2 𝛻𝒖 + 𝒖𝛻

𝛻 βˆ™ 𝒋 = 0, 𝒋 =𝑬

𝜌= βˆ’

𝛻V

𝜌

π‘˜π›»2𝑇 + 𝒋 βˆ™ 𝑬 = 0

Mass conservation equation:

Constitutive equation:

Field equations:

Cui Z, et al., JAP, 125,

2019

Page 138: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

138

138

Totally fixed configuration – 1-D problem

β€’ Assumptions

–1-D problem: νœ€π‘¦ = νœ€π‘§ = νœ€π‘₯𝑦= νœ€π‘¦π‘§= νœ€π‘₯𝑧= 0

–Current density j is constant and in negative x-axis direction.

–Temperature is constant – no temperature gradient.

–Perfectly blocking condition for Cv: Jv (0,t)= Jv (L,t)= 0.

–Mechanically totally fixed:

𝑒 𝐿, 𝑑 = 𝑒 0, 𝑑 = 0

Page 139: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

139

139

1-D Governing Equations

πœ•πΆπ‘£πœ•π‘‘

βˆ’1

𝐿

πœ•πΆπ‘£πœ•π‘‘

𝐿

0

𝑑π‘₯ =3 1 βˆ’ 𝑣 𝐷𝑣𝐢𝑣Ω

1 + 𝑣 𝐴1 +

2𝐸𝐴Ω

9 1 βˆ’ 𝑣 π‘˜π΅π‘‡

πœ•2πΆπ‘£πœ•π‘₯2

+π‘βˆ—π‘’πœŒπ‘—

π‘˜π΅π‘‡

πœ•πΆπ‘£πœ•π‘₯

𝜎 =2𝐸𝐴

9 1 βˆ’ 𝑣

1 + 𝑣

2 1 βˆ’ 2𝑣 𝐿 ln

𝐢𝑣𝐢𝑣0

𝑑π‘₯𝐿

0

+ ln 𝐢𝑣𝐢𝑣0

πœ•πœƒ

πœ•π‘‘+ 𝐷𝑣Ω

πœ•πœ•πΆπ‘£πœ•π‘₯

+π‘“Ξ©πΆπ‘£π‘˜π΅π‘‡

πœ•πœŽπœ•π‘₯

+π‘βˆ—π‘’πœŒπ‘—πΆπ‘£π‘˜π΅π‘‡

πœ•π‘₯ = 0

πœƒ = βˆ’π΄ ln 𝐢𝑣𝐢𝑣0

+3 1 βˆ’ 2𝑣 𝜎

𝐸

𝜎 =2𝐸𝐴

9 1 βˆ’ 𝑣 ln

𝐢𝑣𝐢𝑣0

+1 + 𝑣

3 1 βˆ’ 𝑣 𝜎π‘₯

𝜎π‘₯ = 1 βˆ’ 𝑣 𝐸

1 + 𝑣 1 βˆ’ 2𝑣 νœ€π‘₯ +

𝐸𝐴

3 1 βˆ’ 2𝑣 ln

𝐢𝑣𝐢𝑣0

π‘‘πœŽπ‘₯𝑑π‘₯

= 0

νœ€π‘₯𝑑π‘₯𝐿

0

= 0 𝑒 𝐿, 𝑑 = 𝑒 0, 𝑑 = 0 β†’ νœ€π‘₯𝑑π‘₯𝐿

0

= 0 β†’ πœƒπ‘‘π‘₯𝐿

0

= 0

Page 140: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

140

140

Parameters and Physical Properties

Length of interconnect (L) 50 mm Temperature (T) 500K

Young’s modulus (E) 70109 Pa Poisson ratio (Ξ½) 0.3

Atomic diffusivity (Da) 310-16 m2/s Vacancy diffusivity (Dv) 310-9 m2/s

Atomic volume (Ξ©) 1.6610-29 m3 Initial vacancy

concentration (Cv0)

6.021021 m-3

𝐷𝑣𝐢𝑣 = π·π‘ŽπΆπ‘Ž, πΆπ‘Ž = 1/Ξ© Electrical resistivity () 4.8810-8 OhmΒ·m

Current density (j) 1010 A/m2 Elementary charge (e) 1.6010-19 C

Effective charge number (Z*) 3.5 Boltzmann constant (kB) 1.38 Γ— 10βˆ’23J/K

Coefficient of

electromigration strain (A) 0.0071

Cui Z, et al., JAP, 125, 2019

Page 141: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

141

Numerical Results ()

β€’ The present results show significant differences with the previous

results, particularly in the magnitude of hydrostatic stress. (113

MPa vs. 350 MPa: 30% of the stress value obtained).

350 MPa

113 MPa

Page 142: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

142

Numerical Results (Cv)

β€’ Vacancy concentration is comparable with the previous results, even

though stress is significantly lower.

2.4

2.1

Page 143: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

143

Effect of Self-Diffusion

β€’ Self-diffusion plays more important role than stress in electromigration.

β€’ Normalized flux term,

𝛽1 =𝐹𝐸 π‘₯, 𝑑

π‘βˆ—π‘’πœŒπ‘—, 𝛽2=

𝐹𝑠 π‘₯, 𝑑

π‘βˆ—π‘’πœŒπ‘—, 𝛽3=

𝐹𝑐 π‘₯, 𝑑

π‘βˆ—π‘’πœŒπ‘—

where

𝐹𝐸 = π‘βˆ—π‘’πœŒπ‘—, 𝐹𝑠= βˆ’Ξ©πœ•πœŽ

πœ•π‘₯, 𝐹𝑐 =

βˆ’π‘˜π΅π‘‡

𝐢𝑣

πœ•πΆπ‘£

πœ•π‘₯

Page 144: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

144

Numerical Results: Stress-Free Condition

β€’ Electromigration happens on the same time-scale.

β€’ Electromigration is resisted by the counter force due to concentration

gradient.

πœ•πΆπ‘£πœ•π‘‘

=𝐷𝑣𝐢𝑣Ω

𝐴

πœ•2πΆπ‘£πœ•π‘₯2 +

π‘βˆ—π‘’πœŒπ‘—

π‘˜π΅π‘‡

πœ•πΆπ‘£πœ•π‘₯

β€’ Governing equations,

𝜎 = 0

Page 145: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

145

Stress-Free Condition (Lloyd’s Results)

β€’ Electromigration happens in miliseconds.

β€’ 107 orders difference compared to the confined configuration.

β€’ Governing

equations

M. Shatzkes and J. Lloyd, JAP, 59, 3890, 1986.

πœ•πΆπ‘£πœ•π‘‘

= 𝐷𝑣

πœ•2πΆπ‘£πœ•π‘₯2 +

π‘βˆ—π‘’πœŒπ‘—

π‘˜π΅π‘‡

πœ•πΆπ‘£πœ•π‘₯

Page 146: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

146

Revisit – Blech’s Theory

β€’ The effect of thermomigration is not taken into the consideration for

the purpose of comparison.

Blech’s theory (1976) Cui, Fan, Zhang (2019)

Page 147: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

147

Blech Theory’s Extension

β€’ The product of jL, is obtained for both confined and stress-free conditions.

β€’ The vacancy concentration is used as threshold condition for failure

criterion.

𝑗𝐿𝐡 =2𝐸𝐴𝑓Ω + 9 1 βˆ’ 𝑣 π‘˜π΅π‘‡

9 1 βˆ’ 𝑣 π‘βˆ—π‘’πœŒln

𝐢𝑣,π‘šπ‘Žπ‘₯

𝐢𝑣,π‘šπ‘–π‘›

1 +2𝐸𝐴𝑓Ω

9 1 βˆ’ 𝑣 π‘˜π΅π‘‡ πœ•2πΆπ‘£πœ•π‘₯2 +

π‘βˆ—π‘’πœŒπ‘—

π‘˜π΅π‘‡

πœ•πΆπ‘£πœ•π‘₯

= 0

β€’ Confined Configuration

πœ•2𝐢𝑣

πœ•π‘₯2+

π‘βˆ—π‘’πœŒπ‘—

π‘˜π΅π‘‡

πœ•πΆπ‘£

πœ•π‘₯= 0

𝑗𝐿𝐡 =π‘˜π΅π‘‡

π‘βˆ—π‘’πœŒln

𝐢𝑣,π‘šπ‘Žπ‘₯

𝐢𝑣,π‘šπ‘–π‘›

β€’ Stress-free Configuration

Page 148: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

148

Threshold Product Curve

β€’ The confined metal line can sustain the higher current density than

that of stress-free condition.

β€’ The experimental results are consistent with the present theoretical

predictions. – In Blech’s experiment, the measured threshold product for the uncovered metal line is lower

than that for the confined metal line. I. A. Blech, JAP. 47, 1203,1976.

Page 149: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

149

149

Summary

β€’ Electrical-thermal-mechanical modeling – sequential approach

β€’ Electromigration – A 3-D general coupling model for electromigration is developed.

– 1D solution for the confined configuration is obtained.

– Mechanical stress-based failure criterion may not be valid anymore.

– Blech’s theory is revisited and reanalyzed.

– Vacancy concentration, instead of hydrostatic stress, used for failure criterion – a departure from the original view.

– The new predictions are consistent with experimental observations.

Page 150: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

150

150

β€’Introduction

β€’Temperature Loading

β€’Mechanical Loading

β€’Moisture Loading

β€’Electrical Current Loading - Multi-Physics

Modeling

β€’Summary

Page 151: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

151

151

Module 1 – Temperature Loading

β€’ Thermal mismatch vs. temperature gradient

β€’ Analytical solution –Layered structure (stress, warpage, effective CTE)

–Cylindrical structure (TSV)

β€’ Die-level thermal stress – thermal stress in TSV

β€’ Package-level thermal stress problem – warpage

β€’ Chip-package interaction (CPI) – submodeling technique

β€’ Board level thermal stress problem –Solder ball thermal cycling (Flip chip BGA, WLP)

–Creep equations

–Best method for practice

Initial stress free condition; full model vs. global/local model; worst solder ball location, volume averaging

β€’ Stress singularity of joint materials

Page 152: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

152

Module 2 – Mechanical Loading

β€’ JEDEC drop test standard –JESD22-B111, old one, with 15 components

–JESD22-B111A, new one, with 4 components or 1 component

β€’ Finite element modeling – Input G method, large mass method, input displacement method, direct

acceleration method

–Global/local modeling

–Peel stress used as indicator for failure

β€’ Four-point bending test and modeling –Global/local modeling

–Global with linear elastic but nonlinear geometry analysis

–Local model with elastic-plastic modeling

Page 153: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

153

153

Module 3 – Moisture Diffusion and Vapor Pressure

β€’ For a general moisture diffusion problem with temperature-dependent Csat and varying ambient RH and temperature with time – C k must be used and the coupled element with thermal-diffusion or thermal-

structural-diffusion option must be applied at the same time.

β€’ ANSYS built-in π‘ͺ approach cannot solve the problem with varying RH correctly. – ANSYS diffusion element only

Csat must be temperature-independent. Temperature gradient is not considered.

– ANSYS coupled element with structural-diffusion option.

Csat must be temperature-independent. Temperature gradient is not considered.

– ANSYS coupled element with thermal-diffusion option (or thermal-structural-diffusion) option

If 𝐢 is used, RH must be constant.

If C k is used, no restriction for any diffusion problems.

β€’ Vapor pressure model.

β€’ Thermal-hygro-mechanical modeling.

Page 154: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 – 6, 2019 Xuejun Fan and Ricky Lee

154

154

Module 4 – Electrical Current Loading

β€’ Electrical-thermal-mechanical modeling – sequential approach

β€’ Electromigration –A 3-D general coupling model for electromigration is developed.

–1D solution for the confined configuration is obtained.

–Mechanical stress-based failure criterion may not be valid anymore.

–Blech’s theory is revisited and reanalyzed.

–Vacancy concentration, instead of hydrostatic stress, used for failure criterion – a departure from the original view.

–The new predictions are consistent with experimental observations.

Page 155: Reliability Mechanics and Modeling for IC Packaging

IEEE EPTC 2019 – Singapore December 4 - 6, 2019

Questions?

Thank you for your attention.