remote-sensing and biodiversity in a changing climate catherine graham suny-stony brook robert...

24
Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan Saatchi, JPL/UCLA Tom Smith, UCLA

Upload: osborn-owen

Post on 21-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Remote-sensing and biodiversity in a changing

climate

Catherine GrahamSUNY-Stony Brook

Robert Hijmans, UC-BerkeleyLianrong Zhai, SUNY-Stony Brook

Sassan Saatchi, JPL/UCLATom Smith, UCLA

Page 2: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Research Program (NIP)

• Integrate remote-sensing data into species distributional modeling

• Determine remote-sensing correlates of species richness across multiple taxonomic groups and spatial scales

• Integrate remote-sensing data with patterns of evolutionary diversification

• Predict future species distributions• Train Latin America and US scientists and

conservationists

Page 3: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Research Program (NIP)

• Integrate remote-sensing data into species distributional modeling

• Determine remote-sensing correlates of species richness across multiple taxonomic groups and spatial scales

• Integrate remote-sensing data with patterns of evolutionary diversification

• Predict future species distributions• Train Latin America and US scientists and

conservationists

Page 4: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

1) Extract environmental data for point localities;

Annual Temperature

Annual Rainfall

2) Make statistical model describing distribution in envirnomental space;

Species Distributional Models

3) Project this model in geographic space to create a map.

Page 5: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Possible environmental datasets

Remote sensing•Indirect measurements•High resolution •Global coverage•Recent coverage

Climate•Direct measurements•Low resolution•Extrapolations•Global coverage•Long term coverage

Page 6: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Remote-sensing data: issues for species

distributional modeling

• Age of point locality data • Spatial accuracy of point locality

data

Page 7: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

!

!

!

!

!

!

!

!

!!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!!!

!

!

!

ObservationsSPECIES

! Accurate

! Museum

Modis TreeValue

0 - 10

10.1 - 20.2

20.2- 30.3

30.3 - 40.4

40.4 - 50.5

50.5 - 60.6

60.6 - 70.7

70.7 - 80.8

80.8 - 90.9

90.9 - 100

0 6 12 18 243Kilometers

mtree_n = 46*10*normal(x, 57, 20.6053)

-50 -30 -10 10 30 50 70 90

mtree_n

0%

4%

9%

13%

17%

22%

26%

30%

Per

cent

of

obs

bio16 = 46*100*normal(x, 876.8478, 310.297)

100 300 500 700 900 1100 1300 1500 1700

bio16

0%

4%

9%

13%

17%

22%

26%

Per

cent

of

obs

Remote-sensing data: issues for species distributional modeling

Climate

Remote-sensing

Page 8: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

A solution• Use all point locality data with

climate surfaces (museum and accurate recent survey data)

• Use only “accurate” point locality data with remote-sensing layers (modis tree)

Page 9: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

!

!

!

!

!

!

!!

!

! !

!!!

!

!!!!!

!!

!

!

!

!!!!!

!

!

!

!!

!

!!

!

!! !! !!

!

!

! !! !

!

!

!

!

!!

!! !

!

!

!

!

!!

!

!

!

!!

!

!

! !

!

!!!!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!!

!

!!

!

!

!

!!

!

! ! !!!!

!!

!!!!!!

!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!

!!!

!

!

!

!

!

!

!

!

!

!!!

!!

!

!

!!!

!!!

!!!

!!

!

!!!

!

!

!

!! !

!

!

!

!!! !

!

<Double-click here to enter title>

ObservationsSPECIES

! Accurate

! Museum

SRTM_HeightValue

0 - 500

500 - 1,000

1,000 - 1,500

1,500 - 2,000

2,000- 2,500

2,500 - 3,000

3,000 - 3,500

3,500 - 4,000

4,000 - 4,500

4,500 - 5,000

0 400 800 1,200 1,600200Kilometers

Page 10: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

!

!

!

!

!

!

!!

!

! !

!!!

!!!!

!!

!!

!

!

!

!!!!!

!

!

!

!!

!

!!!

!! !! !!

!

!! !! !

!

!

!

!

!!!!!

!

!

!

!!

!!!

!

!!

!

!

! !

!

!!!!

!

!

!

!

!!

!

!

!

!

!

!!

!!

!

!

!!

!

!!

!

!

!

!!

!

!!!!!!

!!

!!!!!!

!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!

!!!!

!

!

!!

!

!

!

!

!!!

!!

!

!!!!

!!!

!!!

!!!

!!!

!

!

!

!! !

!

!

!

!!! !

!

ObservationsSPECIES

! Accurate

! Museum

Value

High : 100

Low : 0

0 250 500 750 1,000125Kilometers

CLIMATE ONLY

Page 11: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

!

!

!

!

!

!

!!

!

! !

!!!

!!!!

!!

!!

!

!

!

!!!!!

!

!

!

!!

!

!!!

!! !! !!

!

!! !! !

!

!

!

!

!!!!!

!

!

!

!!

!!!

!

!!

!

!

! !

!

!!!!

!

!

!

!

!!

!

!

!

!

!

!!

!!

!

!

!!

!

!!

!

!

!

!!

!

!!!!!!

!!

!!!!!!

!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!

!!!!

!

!

!!

!

!

!

!

!!!

!!

!

!!!!

!!!

!!!

!!!

!!!

!

!

!

!! !

!

!

!

!!! !

!

ObservationsSPECIES

! Accurate

! Museum

Non_ModifiedValue

High : 100

Low : 0

0 250 500 750 1,000125Kilometers

CLIMATE & REMOTE-SENSING

Page 12: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

!

!

!

!

!

!

!!

!

! !

!!!

!!!!

!!

!!

!

!

!

!!!!!

!

!

!

!!

!

!!!

!! !! !!

!

!! !! !

!

!

!

!

!!!!!

!

!

!

!!

!!!

!

!!

!

!

! !

!

!!!!

!

!

!

!

!!

!

!

!

!

!

!!

!!

!

!

!!

!

!!

!

!

!

!!

!

!!!!!!

!!

!!!!!!

!!!!!!!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!

!!!!

!

!

!!

!

!

!

!

!!!

!!

!

!!!!

!!!

!!!

!!!

!!!

!

!

!

!! !

!

!

!

!!! !

!

ObservationsSPECIES

! Accurate

! Museum

With RSValue

High : 100

Low : 0

0 250 500 750 1,000125Kilometers

CLIMATE & REMOTE-SENSINGWITH ACCURATE POINTS

Page 13: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Research program

• Integrating remote-sensing data into species distributional modeling

• Determining remote-sensing correlates of species richness across multiple taxonomic groups and spatial scales

• Integrating remote-sensing data with patterns of evolutionary diversification

• Predicting future species distributions• Training programs in Latin America and the

US

Page 14: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Extinction Risk from Climate Change (Thomas et al. 2004; Nature)

• Predict 18 to 35% of species ’committed to extinction’ by 2050

• Global warming major threat to biodiversity

Page 15: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Potential Problem with Niche Modeling and Climate

Change

Future climates will not be completely analogous to current.

=> Will models predict lower probabilities (model artifact)?

=> Validity of models should be tested using experimental approaches, historical evidence, physiological models and internal consistency.

Page 16: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Environmental space and climate change

Current

Future

Species environmentalrequirements

Page 17: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Approach

Compare results from physiology-based models (mechanistic models) with species distribution models

Assume mechanistic models are “correct”

Page 18: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Currentclimate

Future climate

Physiological Model Niche Model

Extracted points

A

B

C D

E

Experimental Design

Compare

Page 19: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Species distribution (niche models) used

• BIOCLIM – envelop (boxcar) method

• DOMAIN – based on similarity statistics

• GAM – Non-linear regression

• MAXENT – machine learning/maximum entropy

Page 20: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

BIOCLIM DOMAIN GAMS MAXENT

Ove

rlap

inde

x0.0

0.2

0.4

0.6

0.8

1.0

BIOCLIM DOMAIN GAMS MAXENT

Rel

ativ

e ra

nge

size

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

PastCurrentFuture

Variation in range size and location predicted by models

Page 21: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

BIOCLIM DOMAIN GAMS MAXENT

Fal

se n

egat

ive

rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

BIOCLIM DOMAIN GAMS MAXENT

Fal

se p

ositi

ve r

ate

0.00

0.05

0.10

0.15

0.20

0.25

CurrentFuturePast

Errors

Page 22: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Environmental space and climate change

Current

Future

Species environmentalrequirements

BIOCLIM

GAMSMAXENT

DOMAIN

Page 23: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan

Modeling species distributions across climates

• Species distributional modeling can provide similar results to mechanistic models.

• Performance of species distributional models varies

• Next? Incorporate climate change with land use patterns to evaluate extinction risk for a suite of species

Page 24: Remote-sensing and biodiversity in a changing climate Catherine Graham SUNY-Stony Brook Robert Hijmans, UC-Berkeley Lianrong Zhai, SUNY-Stony Brook Sassan