remote sensing and image processing: 4 dr. hassan j. eghbali

27
Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Upload: marylou-cook

Post on 17-Jan-2016

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Remote Sensing and Image Processing: 4

Dr. Hassan J. Eghbali

Page 2: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Image display and enhancement

Purpose

• visual enhancement to aid interpretation

• enhancement for improvement of information extraction techniques

• Today we’ll look at image arithmetic and spectral indices

Dr. Hassan J. Eghbali

Page 3: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Basic image characteristics

• pixel - DN

• pixels - 2D grid (array)

• rows / columns (or lines / samples)

• dynamic range

– difference between lowest / highest DN

Dr. Hassan J. Eghbali

Page 4: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

• Size of digital image data easy (ish) to calculate– size = (nRows * nColumns * nBands * nBitsPerPixel) bits

– in bytes = size / nBitsPerByte

– typical file has header information (giving rows, cols, bands, date etc.)

Aside: data volume?

(0,0)nColumns

nRow

s

(r,c)

nBands(0,0)

nColumns

nRow

s

(r,c)

nBands

Time

Dr. Hassan J. Eghbali

Page 5: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

• Several ways to arrange data in binary image file– Band sequential (BSQ)

– Band interleaved by line (BIL)

– Band interleaved by pixel (BIP)

Aside

Dr. Hassan J. Eghbali

Page 6: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

• Landsat ETM+ image? Bands 1-5, 7 (vis/NIR)– size of raw binary data (no header info) in bytes?

– 6000 rows (or lines) * 6600 cols (or samples) * 6 bands * 1 byte per pixel = 237600000 bytes ~ 237MB

• actually 226.59 MB as 1 MB 1x106 bytes, 1MB actually 220 bytes = 1048576 bytes

• see http://www.matisse.net/mcgi-bin/bits.cgi

– Landsat 7 has 375GB on-board storage (~1500 images)

Data volume: examples

Dr. Hassan J. Eghbali

Page 7: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

• MODIS reflectance 500m tile (not raw swath....)?– 2400 rows (or lines) * 2400 cols (or samples) * 7 bands * 2 bytes per

pixel (i.e. 16-bit data) = 80640000 bytes = 77MB

– Actual file also contains 1 32-bit QC (quality control) band & 2 8-bit bands containing other info.

• BUT 44 MODIS products, raw radiance in 36 bands at 250m

• Roughly 4800 * 4800 * 36 * 2 ~ 1.6GB per tile, so 100s GB data volume per day!

Data volume: examples

Dr. Hassan J. Eghbali

Page 8: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Image Arithmetic• Combine multiple

channels of information to enhance features

• e.g. NDVI

(NIR-R)/(NIR+R)

Dr. Hassan J. Eghbali

Page 9: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Image Arithmetic

• Combine multiple channels of information to enhance features

• e.g. Normalised Difference Vegetation Index (NDVI)– (NIR-R)/(NIR+R) ranges between -1 and 1– Vegetation MUCH brighter in NIR than R so NDVI for veg. close to 1

Dr. Hassan J. Eghbali

Page 10: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Image Arithmetic

• Common operators: Ratio

topographic effects

visible in all bands

FCC

Dr. Hassan J. Eghbali

Page 11: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Image Arithmetic

• Common operators: Ratio (cha/chb)

apply band ratio

= NIR/red

what effect has it had?

Dr. Hassan J. Eghbali

Page 12: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Image Arithmetic

• Common operators: Ratio (cha/chb)

• Reduces topographic effects

• Enhance/reduce spectral features

• e.g. ratio vegetation indices (SAVI, NDVI++) Dr. Hassan J. Eghbali

Page 13: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Image Arithmetic

• Common operators: Subtraction

• examine CHANGE e.g. in land cover

An active burn near the Okavango Delta, Botswana

NOAA-11 AVHRR LAC data (1.1km pixels)

September 1989.

Red indicates the positions of active fires

NDVI provides poor burned/unburned discrimination

Smoke plumes >500km long

Dr. Hassan J. Eghbali

Page 14: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Top left AVHRR Ch3 day 235

Top Right AVHRR Ch3 day 236

Bottom difference

pseudocolur scale:

black - none

blue - low

red - high

Botswana (approximately 300 * 300km)

Dr. Hassan J. Eghbali

Page 15: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Image Arithmetic• Common operators: Addition

– Reduce noise (increase SNR) • averaging, smoothing ...

– Normalisation (as in NDVI)

+

=

Dr. Hassan J. Eghbali

Page 16: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Image Arithmetic

• Common operators: Multiplication

• rarely used per se: logical operations?– land/sea mask

Dr. Hassan J. Eghbali

Page 17: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Monitoring usingVegetation Indices (VIs)

• Basis:

Dr. Hassan J. Eghbali

Page 18: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Why VIs?• empirical relationships with range of vegetation /

climatological parameters fAPAR – fraction of absorbed photosynthetically active

radiation (the bit of solar EM spectrum plants use) NPP – net primary productivity (net gain of biomass by

growing plants)

simple (understand/implement) fast (ratio, difference etc.)

Dr. Hassan J. Eghbali

Page 19: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Why VIs?

tracking of temporal characteristics / seasonality

cancan reduce sensitivity to: topographic effects (soil background) (view/sun angle (?)) (atmosphere)

whilst maintaining sensitivity to vegetation

Dr. Hassan J. Eghbali

Page 20: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Some VIs

• RVI (ratio)

• DVI (difference)

• NDVI

RVI nir

red

DVI nir red

NDVI nir red

nir red

NDVI = Normalised Difference Vegetation Index i.e. combine RVI and DVI

Dr. Hassan J. Eghbali

Page 21: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Properties of NDVI? Normalised, so ranges between -1 and +1

If NIR >> red NDVI 1

If NIR << red NDVI -1

In practice, NDVI > 0.7 almost certainly vegetation

NDVI close to 0 or slightly –ve definitelyy NOT vegetation!

Dr. Hassan J. Eghbali

Page 22: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

why NDVI?

continuity (17 years of AVHRR NDVI)

Dr. Hassan J. Eghbali

Page 23: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

limitations of NDVI NDVI is empirical i.e. no physical meaning atmospheric effects:

esp. aerosols (turbid - decrease) direct means - atmospheric correction indirect means: atmos.-resistant VI

(ARVI/GEMI) sun-target-sensor effects (BRDF):

MVC ? - ok on cloud, not so effective on BRDF saturation problems:

saturates at LAI of 2-3

Dr. Hassan J. Eghbali

Page 24: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Dr. Hassan J. Eghbali

Page 25: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

saturated

Dr. Hassan J. Eghbali

Page 26: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

Practical 2: image arithmetic

Calculate band ratios What does this show us?

NDVI Can we map vegetation? How/why?

Dr. Hassan J. Eghbali

Page 27: Remote Sensing and Image Processing: 4 Dr. Hassan J. Eghbali

MODIS NDVI Product: 1/1/04 and 5/3/04

Dr. Hassan J. Eghbali