removal of rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y e m = 0.06 mev br = 81 %...

22
Page: 1 Jagiellonian University LRT 2017 Seoul Removal of 222 Rn daughters from metal surfaces K. Pelczar, M. Wójcik, G. Zuzel Jagiellonian University, Kraków

Upload: others

Post on 16-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 1 Jagiellonian University LRT 2017 Seoul

Removal of 222Rn daughters from metal surfaces

K. Pelczar, M. Wójcik, G. Zuzel

Jagiellonian University, Kraków

Page 2: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 2 Jagiellonian University LRT 2017 Seoul

Outline

• Motivation • Etching/electropolishing of artificially contaminated samples • Tests of naturally contaminated samples • Bulk 210Po assay • Conclusions

Page 3: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 3 Jagiellonian University LRT 2017 Seoul

Motivation • Disequilibrium in the chain

ARn ≠ Apb

• In fresh material usually APb ≠ APo

• Each isotope should be investigated separately

• Pb may be plated out or implemented into the surface thus Rn-free atmosphere is needed

• 210Bi:

– pure β-emitter

• 210Po:

– degraded αs

– source of ns (α,n) important for DM searches

– difficult to remove from surfaces

210Pb

210Bi

210Po

206Pb

T1/2 = 22.3 y

Em = 0.06 MeV

Br = 81 %

T1/2 = 5.0 d

Em = 1.2 MeV

T1/2 = 138.4 d

E = 5.3 MeV

Stable

Page 4: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 4 Jagiellonian University LRT 2017 Seoul

Artificially contaminated samples

• Samples in form of discs with 50 mm diameter

• To increase the sensitivity samples were artificially loaded with 210Pb, 210Bi and 210Po: – placed in a strong 222Rn source for several months (210Po specific

activities of ≈100 Bq/m2)

• Screening of 210Po with an alpha spectrometer: – 50 mm Si-detector, bkg ≈2 α/d (1 – 10 MeV)

– sensitivity ≈20 mBq/m2 (100 mBq/kg, 210Po)

• Screening of 210Bi with a beta spectrometer: – 2 × 50 mm Si(Li)-detectors, bkg ≈0.18/0.40 cpm

– sensitivity ≈10 Bq/kg (210Bi)

• Screening of 210Pb (46.6 keV line) with a gamma spectrometer: – 16 % HPGe detector with an active and a passive shield

Page 5: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 5 Jagiellonian University LRT 2017 Seoul

Artificially contaminated samples

• Copper – etching: 5 min in (1% H2SO4 + 3% H2O2) and 5 min in 1% citric acid – electro-polishing (electrolyte): 85 % H3PO4 + 5 % 1-butanol (C4H10O)

• Stainless steel – etching: (20 % HNO3 + 1.7 % HF) and 15 % HNO3

– electro-polishing (electrolyte): 40 % H3PO4 + 40 % H2SO4 + 3 % CrO3

• Germanium – etching: CP4 solution (45.45 ml HNO3 + 27.27 ml HF + 27.27 ml CH3COOH

+ 0.5 ml Br for 100 ml solvent) done by Canberra-France in Lingolsheim in cooperation with MPP Munich

Isotope

Activity reduction factors after etching / electropolishing

Copper Stainless steel

Germanium

NPGe HPGe

210Pb 50 / 300 100 / 400 100 / – 700 / –

210Bi 50 / 300 100 / 800 400 / – 800 / –

210Po 1 / 400 20 / 700 1000 / – 100 / –

NIM A 676 (2012) 140

NIM A 676 (2012) 149

Page 6: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 6 Jagiellonian University LRT 2017 Seoul

XIA Large Surface Detector

• Only 210Po studied • Low background, large surface (LBS) alpha spectrometer • Ar as counting gas (3.5 L/min) • Sample size: 43 × 43 cm or 30 cm diameter disc, 1 mm thick • PSD + veto guard (alphas, mid-airs, ceiling, rounds)

Page 7: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 7 Jagiellonian University LRT 2017 Seoul

Copper sheet with surface 210Po (air-born)

E0 = 5.3 MeV

FWHM = 0.6 MeV (11%)

210Po ROI: 4.5 – 6 MeV

Csf ~ 170 mBq/m2

Page 8: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 8 Jagiellonian University LRT 2017 Seoul

XIA Large Surface Detector – background

• Low background ORTEC α detector (40 mm diameter) at LNGS (Appl. Rad. Isot. 81 (2013) 146) vs. XIA Ultra-Low 1800 on the surface: factor 200 improvement

RROI = (45 4) cts/d/m2

Csf ~ single mBq/m2

RROI = (9270 780) cts/d/m2

Appl. Rad. Isot. 81 (2013) 146

Page 9: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 9 Jagiellonian University LRT 2017 Seoul

Etching of clean Cu (ETP)

• Etching procedure: 5 min in a mixture of: 1% H2SO4 + 3% H2O2

• Washing in high-purity deionized water (18 MΩ × cm)

• No effect observed for surface 210Po (at the level of ~1 mBq/m2)

before etching after etching

Page 10: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 10 Jagiellonian University LRT 2017 Seoul

Dynamic etching

• Etching procedure: 4 × 1 min in a mixture of 1% H2SO4 + 3% H2O2

• Passivation with 1% citric acid at the end

• Washing in high-purity deionized water (18 MΩ × cm)

RROI = (10466 ± 120) cts/d/m2

RROI = (458 ± 20) cts/d/m2

Rf = 22.9 ± 1.2

Page 11: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 11 Jagiellonian University LRT 2017 Seoul

Dynamic etching – 3, 7, 12 cumulative steps

0,1

1

10

100

1000

1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5

Co

un

t ra

te [

d-1

× m

-2 ×

50

ke

V-1

]

Energy [MeV]

Initial

3 Steps

7 Steps

12 Steps

Page 12: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 12 Jagiellonian University LRT 2017 Seoul

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14

Surf

ace

Po

-21

0 r

ed

uct

ion

fac

tor

Cumulative etching steps

Cu sample No. 2

Cu sample No. 3

Logistic function "model"

Dynamic etching

• Energetic washing n-times always with fresh reagents

Page 13: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 13 Jagiellonian University LRT 2017 Seoul

Electropolishing of copper

• Polishing solution: 95% H3PO4 + 1% 1-butanol • Polishing conditions: 2.5 A/dm2, 3 V, 20 min, 2 cm plate distance,

room temperature

RROI = (6583 ± 90) cts/d/m2

RROI = (284 ± 25) cts/d/m2

Rf = 23 ± 3

Page 14: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 14 Jagiellonian University LRT 2017 Seoul

Electropolishing of copper

• Polishing solution: 95% H3PO4 + 1% 1-butanol • Polishing conditions: 2.5 A/dm2, 3 V, 20 min, 2 cm plate distance,

room temperature

RROI = (284 ± 25) cts/d/m2

AROI ~ 7 mBq/m2

Page 15: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 15 Jagiellonian University LRT 2017 Seoul

Electropolishing of clean stainless steel (SS 1.4301 (304), sheet No. 1)

• Polishing mixture: 1:1 of 95% H2SO4 and 85% H3PO4

• Washing: 5 min in 15% HNO3 and later in HP water

• Polishing conditions: 2.5 A/dm2, 2 V, 25 min, 2 cm plate distance, T ≈ 50 °C

RROI = (71± 7) cts/d/m2

RROI = (98 ± 9) cts/d/m2

Rf = 0.7 ± 0.1

Page 16: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 16 Jagiellonian University LRT 2017 Seoul

Electropolishing of stainless steel (SS 1.4301 (304), sheet No. 2)

• Polishing mixture: 1:1 of 95% H2SO4 and 85% H3PO4

• Washing: 5 min in 15% HNO3 and later in HP water

• Polishing conditions: 2.5 A/dm2, 2 V, 25 min, 2 cm plate distance, T ≈ 50 °C

RROI = (2716 ± 62) cts/d/m2

RROI = (116 ± 8) cts/d/m2

Rf = 23.5 ± 0.1

Page 17: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 17 Jagiellonian University LRT 2017 Seoul

Electropolishing of stainless steel (sheet No. 1 and 2 after electropolishing)

RTOT = (391 ± 18) cts/d/m2

RTOT = (424 ± 16) cts/d/m2

Rf = 1.1 ± 0.1

• No effect observed for surface 210Po (at the level of ~1 mBq/m2)

Page 18: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 18 Jagiellonian University LRT 2017 Seoul

Bulk 210Po assay

First results for bulk 210Po in various metals reported during the ICRM–LLRMT conference in Seattle (Sept. 2016)

https://doi.org/10.1016/j.apradiso.2017.01.030

Page 19: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 19 Jagiellonian University LRT 2017 Seoul

Bulk 210Po assay

Material Bulk 210Po [mBq/kg]

Surface 210Po [mBq/m2]

Remarks

OF Copper 54 3 z4 (half hard)

ETP Copper 75 3 z4 (half hard)

„Old” ETP Copper 280 170 z4 (half hard)

Stainless Steel 80 3 Type 304

Titanium 1500 68 GR2

Teflon 46 – High purity, ATP

https://doi.org/10.1016/j.apradiso.2017.01.030

Page 20: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 20 Jagiellonian University LRT 2017 Seoul

Bulk 210Po assay

https://doi.org/10.1016/j.apradiso.2017.01.030

ROI: (1 – 6) MeV RTi = 2700 cts/(dm2) RSS = 700 cts/(dm2) RCu = 460 cts/(dm2)

Commercially pure Ti, Gr2 304 Stainless Steel ETP Cu, z4 (half-hard)

Page 21: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 21 Jagiellonian University LRT 2017 Seoul

210Po in/on Titanium after surface treatment (etching)

• The detection efficiencies precisely fixed (spectrum deconvolution)

• CBULK = (1.0 ± 0.1) Bq/kg

• Csf = (18.7 ± 1.0) mBq/m2

0

20

40

60

80

100

1000 2000 3000 4000 5000 6000

Co

un

t ra

te [

d-1

× m

-2 ×

50

ke

V-1

]

Energy [keV]

DataSumSurfaceBulk

Page 22: Removal of Rn daughters from metal surfaces · 2018-03-05 · 1/2 = 22.3 y E m = 0.06 MeV Br = 81 % T 1/2 E m = 1.2 MeV 1/2 = 138.4 d E = 5.3 MeV Stable. LRT 2017 Seoul Page: 4 Jagiellonian

Page: 22 Jagiellonian University LRT 2017 Seoul

Conclusions

• Copper/stainless steel surfaces protected against air (222Rn) did not show indications of 210Po.

• Etching/electropolishing removes 210Pb, 210Bi and 210Po from metal surfaces, the effect seems to be material- and surface finish dependent. „Static” etching did not affect 210Po on copper.

• At the level of mBq/m2 proper etching/electropolishing does not contaminate surfaces with 210Po.

• For the first time an effect of 210Po activity reduction on copper surface after („dynamic”) etching has been observed. High activity reduction factor obtained (~300).

• Applied electropolishing procedures reduce the natural 210Po surface activity on copper/steel by a factor up to 25. There is still room for improvements.

• High-sensitivity alpha spectrometers allow for 210Po surface and bulk activity measurements.