representation of time in cortico-basal ganglia circuits

Upload: dan-oshea

Post on 30-May-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    1/30

    Dan OShea

    Neuroscience Journal Club

    27 April 2010

    Neural representation of time in cortico-basal

    ganglia circuitsDezhe Z. Jina,1, Naotaka Fujiib,1, and Ann M. Graybielc,2aDepartment of Physics, Pennsylvania State University, 104 Davey Laboratory, PMB 206, University Park, PA 16802; bLaboratory for Adaptive Intelligence,Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; and cDepartment of Brain and Cognitive Sciences and the McGovern Institutefor Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, 46-6133, Cambridge, MA 02139

    Contributed by Ann M. Graybiel, September 4, 2009 (sent for review July 27, 2009)

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    2/30

    Timing

    What are the neural mechanisms that enable us

    to process the order, interval, and duration ofcomplex sensory and motor events?

    Mauk and Buonomano, 2004

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    3/30

    Timing Centers

    Ivry 1996

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    4/30

    Timing Centers

    Cerebellum: focus on variability for short intervals < 1s

    Lesions lead to impaired timing of coordinated movements [Hore et al. 1991]

    Variability in repetitive nger tapping [Ivry et al. 1988]

    Locus of eyeblink conditioning (100 ms - 3 s) [Thompson 1990]

    Selective impairment on short interval (

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    5/30

    Timing Centers

    Cerebellum: focus on variability for short intervals < 1s

    Lesions lead to impaired timing of coordinated movements [Hore et al. 1991]

    Variability in repetitive nger tapping [Ivry et al. 1988]

    Locus of eyeblink conditioning (100 ms - 3 s) [Thompson 1990]

    Selective impairment on short interval (

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    6/30

    Timing Centers

    Cerebellum: focus on variability for short intervals < 1s

    Lesions lead to impaired timing of coordinated movements [Hore et al. 1991]

    Variability in repetitive nger tapping [Ivry et al. 1988]

    Locus of eyeblink conditioning (100 ms - 3 s) [Thompson 1990]

    Selective impairment on short interval (

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    7/30

    Timing Models

    Centralized or Distributed?

    Clock, Spectral, Network?

    Striatal Beat Frequency Model

    Two mechanisms for representingtemporal information. (a) Clock-countermodels postulate a pacemaker thatproduces output to a counter. Longerintervals are represented b y increasesin the number of pacemaker outputsthat accumulate in the counter.(b) Interval-based models assume thatdifferent intervals are represented b ydistinct elements, each correspondingto a specific duration.

    ( a ) ~ U

    (b) Interval model

    300ms 400ms

    ~ : 4 0 0 m e

    Counter

    5 0 0m s 1996 Current Opinion in Neurobiology

    have conv erged o n a value of approximate ly 49 Hz [33,34] .This value i s of interes t given recent ne urophysio logicalevidence suggest ing that osci l la tory brain act ivi ty near40 Hz migh t serve as a mech anism for integrat ing act ivi tyacross di f ferent neural regions [35,36,37] . By al lowingfor f lexibi li ty in the cal ibrat ion uni t , pa cema ker modelscan accoun t for why the subuni t s of an act ion retainthei r propor t ional t iming when that act ion i s per formed atdifferent overall rates [38,39].Distr ibuted t im ing mechanismsPa c e m a ke r m ode l s a s s i gn t he o r i g in o f t e m por a l i n f o r m a -t ion to a s ingle mechani sm (Figure la) . This n eed no tmean that there i s a s ingle osci l la tor ; a set of s imi lar lyent rained osci l la tors can provide rel iabi l i ty and robustness[21 ] . Al ternat ive t iming models emphasize a dis t r ibutedrepresentat ion in which temporal informat ion i s encodedacross a set of processors tuned wi th di f ferent ia l sensi t ivi tyfunct ions . An analogy can be drawn here to the waycel l s in the visual cor tex are tuned to edges at di f ferentor ientat ions . The dis t r ibut ion of temporal informa t ion,however , may be funct ional ra ther than s t ructural . To date ,physiologis t s have not observed chronotopic maps in anybrain area.N e ur a l ne t w or k m ode l s ha ve be e n us e d t o e xp lo r ethe viabi l i ty of dis t r ibuted mo dels of t iming. Some of

    these models s t i l l re ta in the basic osci l la tory idea, butenvis ion ei the r a ser ies of harmonical ly related osci l la tors[40] or a populat ion of oscil la tors dis t r ibuted arounda m e a n f r e que nc y [ 41 ] . B y s e l e c t i ng c om bi na t i ons o fthese osci l la tors or exploi t ing b eat f requen cies (pha seinteract ions) such networks can encode intervals over arange of durat ions .A n a l t e rna t i ve m e t a ph or f o r a t i m ing m e c ha n i s m i sgiven by the hour-glass (see Figure lb) . Whi le there i ss t i l l per iodici ty a t a microscopic level (e .g. the fal l inggrains of sand) , the system as a whole represents apar t icular interval . Th e represe ntat ion o f t ime may then bedis t r ibuted across a set of such interval t imers , each wi tha par t icular process ing cycle . In such models , intervals of300 ms and 400 ms are represented by dis t inct mechan isms(Figure lb) ; in c lock-counter models , shor t and longintervals are const ructed f rom the same mechanisms,wi th the counter threshold increased in the la t ter case(Figure la) .I n t e r va l - bas e d m ode l s ha ve b e e n us e d t o e xp l o r e howthe cerebel lar cor tex might encode the precise t imingbe t w e e n t he c ond i t i one d s t i m u lus ( C S) a nd unc ond i t i one ds t i m u l us ( U S) i n e ye b l i nk c ond i t i on i ng . I n c om pu t e rs imulat ions , a populat ion of di f ferent intervals can becreated by incorporat ing neuronal processes that operate

    Liquid State MachineMaas et al. 2002

    Clock-counter vs. IntervalIvry 1996

    Meck et al. 2008

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    8/30

    Timing and Reinforcement Learning

    Reward predicted

    Reward occurs

    No prediction

    Reward occurs

    Reward predicted

    No reward occurs

    (No CS)

    (No R)CS-1 0 1 2 s

    CS

    R

    R

    Do dopamine neurons report an error

    in the prediction of reward?

    Spectral timing theory, complete compound stimulus, and time stamp event encoding

    Shultz et al. 1997

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    9/30

    A

    400 msec

    400 msec

    400 msec

    400 msec

    400-800 msec

    Fixation

    Reward

    1 sec

    Go4

    Go2

    Go3

    Go1

    Task Description

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    10/30

    Peri-event Time Histograms

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

    5

    10

    15

    20

    25

    30

    35

    FiringRate(Hz)

    Time (msec)

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 500010

    5

    0

    5

    10

    Time (msec)

    Residual(Hz)

    A

    B

    C

    -

    Fixation Go 1 Go 2 Go 3 Go 4

    A

    400 msec

    400 msec

    400 msec

    400 msec

    400-800 msec

    Fixation

    Reward

    1 sec

    Go4

    Go2

    Go3

    Go1

    5,699 Single-Units over 3 years!

    Selection Criteria: Maximum Firing Rate > 2 Hz

    Low trial-to-trial drift

    Resembles smoothed PETH

    Not previously recorded

    1613 / 2496 in DLPFC2035 / 3203 in Caudate (CN)

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    11/30

    66 DLPFC Clusters (609 unclassied)c1 n72 c2 n59 c3 n58 c4 n50 c5 n42 c6 n39 c7 n33 c8 n31

    c9 n30 c10 n29 c11 n23 c12 n22 c13 n19 c14 n18 c15 n17 c16 n17

    c17 n17 c18 n17 c19 n16 c20 n16 c21 n15 c22 n15 c23 n14 c24 n14

    c25 n14 c26 n13 c27 n13 c28 n13 c29 n12 c30 n12 c31 n12 c32 n11

    c33 n10 c34 n10 c35 n10 c36 n9 c37 n8 c38 n8 c39 n8 c40 n8

    c41 n8 c42 n8 c43 n7 c44 n7 c45 n7 c46 n7 c47 n7 c48 n7

    c49 n7 c50 n7 c51 n7 c52 n6 c53 n6 c54 n6 c55 n6 c56 n6

    c57 n6 c58 n5 c59 n5 c60 n5 c61 n4 c62 n4 c63 n4 c64 n3

    c65 n3 c66 n2

    1 sec

    Fixation

    1000 ms

    Go 1

    400 ms

    Go 2

    400 ms

    Go 3

    400 ms

    Go 4

    400 ms

    ExtraPeak

    400 ms

    Reward / Inter-trial Interval

    2000 ms

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    12/30

    35 CN Clusters (965 unclassied)

    c1 n188 c2 n135 c3 n69 c4 n67 c5 n55 c6 n47 c7 n44 c8 n40

    c9 n36 c10 n30 c11 n29 c12 n29 c13 n26 c14 n23 c15 n21 c16 n20

    c17 n20 c18 n19 c19 n16 c20 n16 c21 n16 c22 n14 c23 n13 c24 n11

    c25 n10 c26 n10 c27 n10 c28 n9 c29 n9 c30 n8 c31 n8 c32 n7

    c33 n7 c34 n5 c35 n3

    1 sec

    Fixation

    1000 ms

    Go 1

    400 ms

    Go 2

    400 ms

    Go 3

    400 ms

    Go 4

    400 ms

    ExtraPeak

    400 ms

    Reward / Inter-trial Interval

    2000 ms

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    13/30

    A c1 n72 c2 n59 c4 n50 c7 n33 c11 n23 c14 n18 c24 n14

    DLPFC

    c1 c2 c4 c7 c11 c14 c24

    c26 n13 c28 n13 c35 n10 c36 n9 c43 n7 c45 n7 c46 n7

    c26 c28 c35 c36 c43 c45 c46

    1 sec

    DLPFC/CN Comparison

    B CNc1 n188 c2 n135 c3 n69 c5 n55 c7 n44 c9 n36 c10 n30

    c1 c2 c3 c5 c7 c9 c10

    c13 n26 c14 n23 c15 n21 c19 n16 c27 n10 c32 n7 c35 n3

    c13 c14 c15 c19 c27 c32 c35

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    14/30

    Identifying Visual Neurons

    A

    400 msec

    400 msec

    400 msec

    400 msec

    400-800 msec

    Fixation

    Reward

    1 sec

    Go4

    Go2

    Go3

    Go1

    Saccade Latency (msec)

    Numberof

    Saccades

    4000

    2000

    0100 150 200 250 300 350 400

    Peak in ring rate related to visual signal (sensory) or saccade (motor)?

    Null hypothesis: PETH peak height for trials aligned to actual saccade times is drawn from same

    distribution as peak heights for trials aligned to shuffled saccade times. Expected for visual neuron.

    Reject null hypothesis: neuron is saccade aligned, actual peak height is signicantly higher.

    : ::

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    15/30

    Identifying Visual NeuronsPeak in ring rate related to visual signal (sensory) or saccade (motor)?

    Null hypothesis: PETH peak height for trials aligned to actual saccade times is drawn from same

    distribution as peak heights for trials aligned to shuffled saccade times. Expected for visual neuron.

    Reject null hypothesis: neuron is saccade aligned, actual peak height is signicantly higher.

    0 200 400 600

    Time (msec)

    TrialNumber

    Spikes: Go Align

    200 0 200

    Time (msec)

    TrialNumber

    Spikes: Saccade Align

    0 100 200 300 400 5000

    5

    10

    Time (msec)

    Rate

    (Hz)

    PETH: Go Align

    200 100 0 100 2000

    5

    10

    Time (msec)

    Rate

    (Hz)

    PETH: Saccade Align

    A B

    C D

    : :

    : :

    300 200 100 0 100 200 3000

    5

    10

    Time (msec)

    Rate(Hz)

    .

    F Comparison Fitted Curves

    -

    :

    4 5 6 7 80

    5

    10

    15

    20

    P=0.87004

    Peak Height (Hz)

    Numb

    er

    G

    -

    Visual neuron: null hypothesis not rejected

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    16/30

    Identifying Visual NeuronsPeak in ring rate related to visual signal (sensory) or saccade (motor)?

    Null hypothesis: PETH peak height for trials aligned to actual saccade times is drawn from same

    distribution as peak heights for trials aligned to shuffled saccade times. Expected for visual neuron.

    Reject null hypothesis: neuron is saccade aligned, actual peak height is signicantly higher.

    Saccade associated neuron: null hypothesis rejected

    0 200 400 600

    Time (msec)

    TrialNumber

    Spikes: Go Align

    200 0 200 400

    Time (msec)

    TrialNumber

    Spikes: Saccade Align

    0 100 200 300 400 500 6000

    1

    2

    3

    4

    Time (msec)

    Rate

    (Hz)

    PETH: Go Align

    200 0 200 4000

    1

    2

    3

    4

    Time (msec)

    Rate

    (Hz)

    PETH: Saccade Align

    A B

    C D

    300 200 100 0 100 200 3000

    1

    2

    3

    4

    Time (msec)

    Rate(Hz)

    Comparison Fitted Curves

    F

    -

    -

    2 2.5 3 3.5 40

    5

    10

    15

    20

    P=0.0001866

    Number

    G

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    17/30

    Time-Stamp Responses in DLPFC

    Fixation

    1000 msGo 1

    400 ms

    Go 2

    400 ms

    Go 3

    400 ms

    Go 4

    400 ms

    ExtraPeak

    400 msReward / Inter-trial Interval

    2000 ms

    Task Start First Go Target Off

    165 msec 185 msec 205 msec 265 msec 305 msec 415 msec

    145 msec 175 msec 195 msec 235 msec 275 msec 355 msec

    145 msec 245 msec 275 msec 295 msec 325 msec 415 msec

    A DLPFC

    FirstGo

    TaskStart

    TargetOff

    0

    100

    200

    300

    Time (msec)

    0

    10

    20

    30

    Time (msec)

    Count

    100 300 500

    100 300 500

    FirstPeak

    HalfWidth(msec)

    16.7Hz 8.3Hz 5.1Hz 3.4Hz 6.3Hz 5.6Hz

    1.4Hz 5.2Hz 4.1Hz 6.1Hz 3.7Hz 9.2Hz

    10.5Hz 8.8Hz 6.4Hz 4.6Hz 1.6Hz 1.6Hz

    B

    500 msec

    500 msec

    500 msec

    55

    (145-435 ms)

    37

    (145-355 ms)

    33

    (145-415 ms)

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    18/30

    Time-Stamp Responses in CN

    Fixation

    1000 msGo 1

    400 ms

    Go 2

    400 ms

    Go 3

    400 ms

    Go 4

    400 ms

    ExtraPeak

    400 msReward / Inter-trial Interval

    2000 ms

    Task Start First Go Target Off

    10

    (165-485 ms)

    3

    (315-335 ms)

    14

    (235-415 ms)

    165 msec 195 msec 205 msec 265 msec 335 msec 485 msec

    315 msec 335 msec

    235 msec 245 msec 285 msec 325 msec 385 msec 395 msec

    C CN

    FirstGo

    TaskStart

    TargetOff

    0

    100

    200

    Time (msec)100 300 500

    100 300 500

    2

    0

    4

    6

    Time (msec)

    Count

    FirstPeak

    HalfWidth(msec)

    16.3Hz 10.2Hz 12.6Hz 4.5Hz 5.3Hz 6.1Hz

    19.8Hz

    325 msec

    11.8Hz 19.8Hz

    61.9Hz 16.4Hz 21.5Hz 13.8Hz 6.4Hz 12.1Hz

    D

    500 msec

    500 msec

    500 msec

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    19/30

    Decoding Time from Population Activity

    w1n1(t)

    w2n2(t)

    b

    + Time Stamp OutputFiring Rate Inputs

    Parameters

    .

    .

    .

    .

    .

    .

    wMnM(t)

    Perceptron Model:

    Simple and entirely plausible for a neural circuit

    Tests for linear separability

    Time stamp encoding:

    Can we generate a perceptron that responds only at one point

    in time from the instantaneous ring rate of many neurons?

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    20/30

    Perceptron Decoding Example

    0 50 100 150 200 250 300 350 400 450 500

    Time (ms)

    Activity

    Individual Neuron Activity

    Neuron 1

    Neuron 2

    Neuron 1 Activity

    Ne

    uron2Activity

    Population Activity Vector

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    21/30

    Perceptron Decoding Example

    0 50 100 150 200 250 300 350 400 450 500

    Time (ms)

    Activity

    Individual Neuron Activity

    Neuron 1

    Neuron 2

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    22/30

    Perceptron Decoding Example

    0 50 100 150 200 250 300 350 400 450 500

    Time (ms)

    Activity

    Individual Neuron Activity

    Neuron 1

    Neuron 2

    Neuron 1 Activity

    N

    euron2

    Activity

    Population Activity Vector

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    23/30

    Perceptron Decoding Example

    0 50 100 150 200 250 300 350 400 450 500

    Time (ms)

    Activity

    Individual Neuron Activity

    Neuron 1

    Neuron 2

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    24/30

    Perceptron Decoding Example

    0 50 100 150 200 250 300 350 400 450 500Time (ms)

    Activity

    Individual Neuron Activity

    Neuron 1

    Neuron 2

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    25/30

    Decoding Time from Population Activity

    A DLPFC B

    E CN F

    0 2000 40000

    10

    5

    20

    15

    30

    25

    35Res=50msec

    Res=50msec

    MaximumMar

    gin

    Decoded Time (msec) 1 sec

    0 2000 40000

    5

    10

    15

    20

    Decoded Time (msec)

    M

    aximumMargin

    1 sec

    Selected Input Proles

    Fixation

    1000 msGo 1

    400 ms

    Go 2

    400 ms

    Go 3

    400 ms

    Go 4

    400 ms

    ExtraPeak

    400 ms

    Reward / Inter-trial Interval

    2000 ms

    50 ms Resolution

    DLPFC

    CN

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    26/30

    Dependence on Resolution and Cell Count

    0 20 40 60 80 100 120

    0

    5

    10

    15

    20

    25

    30

    35

    40

    Resolution (msec)

    Max.

    Margin

    Prefrontal

    0 20 40 60 80 100 120

    0

    5

    10

    15

    20

    25

    30

    35

    40

    Resolution (msec)

    Max.

    Margin

    CaudateC D

    200 300 400 500 600 700

    Number of Neurons

    Prefrontal

    250200 300 350 400 450 5000

    5

    10

    15

    20

    25

    30

    35

    Number of Neurons

    Max.

    Margin

    0

    5

    10

    15

    20

    25

    30

    35

    Max.

    Margin

    CaudateE F

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    27/30

    Online vs. Offline DecodingOffline Decoding:

    Train: trial-averagedring rates for each neuron recorded

    Test: same

    Online Decoding with articial spiking neurons drawn from a distribution:

    Train: trial-averagedring rates for each neuron recorded

    Test: articial spike rasters generated from trial-averaged rates

    C D

    G H

    0 50002500

    D1

    D2

    D3

    Time (msec)

    Freq 15 Freq 12 Freq 12

    Freq 4 Freq 7 Freq 4

    1 sec

    0 2500 5000

    D1

    D2

    D3

    Time (msec)

    Freq 19 Freq 16 Freq 7

    Freq 5Freq 7 Freq 6

    1 sec

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    28/30

    Online vs. Offline DecodingOffline Decoding:

    Train: trial-averagedring rates for each neuron recorded

    Test: same

    Online Decoding with articial spiking neurons drawn from a distribution:

    Train: trial-averagedring rates for each neuron recorded

    Test: articial spike rasters generated from trial-averaged rates

    Online Decoding with actual recorded spikes

    Train: cluster averaged

    ring rates for clusters with >10 neuronsTest: single trial spike rasters from all neurons in those clusters

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    29/30

    Online vs. Offline Decoding

    0 20001000 40003000 50000

    1

    2

    3

    4

    5

    6

    Resolution=50msec

    0 2000 4000 5000300010000

    0.5

    1

    1.5

    2

    Decoded Time (msec) Time (msec)

    Time (msec)0 20001000 4000 50003000

    D1

    D2

    D3

    0 20001000 40003000 5000

    D1

    D2

    D3

    BA C

    D E F

    1 sec

    1 sec

    MaximumM

    argin

    MaximumM

    a

    rgin

  • 8/9/2019 Representation of Time in Cortico-Basal Ganglia Circuits

    30/30

    Conclusions and Issues

    Neurons in CN and DLPFC show phasic responses to external

    events that form a time-stamp representation of short-time

    Measured during a behavioral paradigm that did not

    demand precise timing.

    TD learning, spectral timing theory, complete compound

    stimulus, and temporal credit assignment problem?

    Times longer than 500 ms? Do timing representations require

    external triggers?

    Mechanisms? Cortical interactions? Striatal beat frequency

    model?