reproductive senescence has negative effects on early egg development and embryonic viability in...

1
n=11 0 20 40 60 80 100 120 140 160 0 10 20 30 40 50 Reproduc)ve senescence nega)vely effects early egg development and embryonic viability in Drosophila Halie Ostberg 1 , Brian Has3ngs 1 , Claudia Fricke 2 , M. C. BlochQazi 1 , 1. Department of Biology, Gustavus Adolphus College, St. Peter, MN 56082 2. Ins3tute for Evolu3on and Biodiversity, WesSälische WilhelmsUniversität, Münster, Germany Conclusion The agerelated decline in fecundity appears to be largely due to a decline in the number of previtellogenic egg chambers and, possibly, the reten3on of mature oocytes. This decline may be due to a decreasing number of ovariole stem cells 6 and the aging female’s ability to maintain a high rate of egg laying. Female age does not appear to alter the number of egg chambers, but has a borderline nega3ve effect on the number of ac3ve ovarioles. These measures do not reflect possible differences in egg chamber quality with increasing age. The agerelated decline in fer3lity appears to largely result from increased abnormal embryonic development during blastoderm development. This phase is influenced by maternal factors sugges3ng that a decline in maternal provisioning may cause these developmental anomalies. The embryos of old females with mul3ple reproduc3ve episodes exhibited a higher percentage of abnormali3es than the old females with one reproduc3ve episode, sugges3ng that reproduc3ve diapause may decrease, but not eliminate, the ageassociated decline in fer3lity. The low percentage of undeveloped embryos in all treatment groups suggests that neither fer3liza3on efficiency nor a lack of ini3al zygo3c development are a major factors in the decline in fer3lity. Together, these results show that agerelated declines in reproduc3on occur at two dis3nct stages of development: oogenesis and embryogenesis. For each, it is early developmental events that appear to be the major determinants of subsequent viability. Acknowledgements: We thank the Gustavus Adolphus College FYRE program for funding and Dr. Jeff Dahlseid for assistance with confocal microscopy Senescence is the many mul3faceted process of degrada3on that occurs with increasing age. In humans and many other organisms, aging is a decrease in physiological func3on at both macroscopic and microscopic levels. This func3onal decline can occur while females are s3ll reproduc3vely ac3ve, a process called reproduc3ve senescence. Reproduc3ve senescence is welldocumented in human and other animal popula3ons 1 . Understanding the underlying causes of it can lead to interven3ons to augment human fer3lity and/or control fer3lity in other animal popula3ons. Drosophila melanogaster is a popular model system used to study reproduc3ve senescence. Agerelated declines in female fecundity (egg laying) and fer3lity (egg hatching) are well documented 2 . However, the underlying causes of reduced fecundity and fer3lity are poorly understood. The goal of the present study is to refine when in the processes of oogenesis and early embryogenesis increasing maternal age has the greatest nega3ve effects. Experimental Ques3ons Why does fecundity decline with increasing age? Fewer ovarioles in older females Decreasing number of egg chambers in older females Decreasing rate of egg chamber development in older females Why does fer3lity decline with increasing age? Decreasing fer3liza3on efficiency Fewer fer3lized eggs ini3ate development Fewer embryos are competent to complete development Results Previtellogenic: ANOVA, fem age F 1,44 =11.080, P< 0.0005 Vitellogenic: F 1,44 =1.512, P=.226 Postvitellogenic: F 1,44 =3.156, P=.084 Literature Cited 1. Finch, C.E. & T.B.L. Kirkwood. 2000. Chance, Development & Aging. New York: Oxford University Press. 2. Miller, P.B., et al. 2014. Fly. 8:3, 113. 3. Cumings, M.R., and R.C. King J. Morph., 128: 427442. 4. Bownes, M. 1975 J. Embryol. Exp. Morph. Vol.33, 3, pp. 789801. 5. Hartenstein, V. 1993 Atlas of Drosophila Development. New York: Cold Spring Harbor Laboratory Press. 6. Pan, L. et al. 2007. Cell Stem Cell 1, 458469. ANOVA, factor female age, F 1, 41 =3.66, P=0.063 24 h 24 h 96 h 96 h young old n=11 n=10 n=11 n=10 Ovariole number does not differ between young and old females Agerelated embryonic abnormali3es peak during the preblastoderm stage Methods Drosophila melanogaster females from the wildtype Dahomey (fecundity expts.) and OregonR (fer3lity expts.) strains were raised and maintained under standard laboratory condi3ons. Females were collected shortly arer eclosion and maintained as virgins un3l used in experiments. Fer)lity Females were aged either 8d (young) or 3538d (old) post eclosion before being used in experiments. One group of old females (3O) were mated to young males weekly during their adult lives. Young females (1Y) and the other group of old females (1O) were mated a single 3me before experiments were conducted. Females from each treatment group were mass mated to young, wildtype males for 24h, then transferred to oviposi3on plates to collect embryos. Embryos were dechorinated and fixed, then stained with DAPI. Stained embryos were examined under epiflourescence illumina3on to determine whether or not they appeared to be developing normally and, if so, staged by the number and arrangement of nuclei 4,5 . Fecundity Females were allowed to age either 4d (young) or 32d (old) post eclosion, then mated with wildtype males. At 24h arer ma3ng, during peak response to ma3ng s3muli, or 96h arer ma3ng, while the response to ma3ng is asenua3ng, females were flashfrozen. Females were dissected and we counted the number of ovarioles, the total number of egg chambers, and staged the egg chambers using phase contrast microscopy 3 . Egg chamber development was grouped into three stages: previtellogenic, vitellogenic, and postvitellogenic. 0 50 100 150 200 250 0 10 20 30 40 50 Approximately 12% of 1Y embryos, 32% of 1O, and 40% of 3O embryos exhibited abnormal development. 65% of the abnormali3es occurred during the preblastoderm stage of development. During this 3me, 75% of embryos of old females with one reproduc3ve episode were abnormal and 84% of embryos of old females with mul3ple reproduc3ve episodes were abnormal. In all treatment groups, <3% of embryos were unfer3lized or failed to ini3ate development. Abnormal Preblastoderm Embryo Normal Preblastoderm Embryo Propor3on of abnormal embryos is higher in old females 0 50 100 150 200 250 n=154 n=225 n=216 Total # Embryos 1Young 1Old 3Old % of embryos at given phase Abnormal embryos Normal embryos 1Y 1O 3O Preblastoderm ovaries n=11 n=10 n=11 n=10 young old 24 h 96 h 24 h 96 h 24 h 24 h 24 h 24 h 24 h 24 h 96 h 96 h 96 h 96 h 96 h 96 h young old old old young young previtellogenic vitellogenic postvitellogenic Total egg chamber number does not differ between young and old females ANOVA, factor female age, F 1,41 =1.91, P=0.174 Young females have more previtellogenic egg chambers than old females There was no significant difference between 24h and 96h postma3ng treatments for any of the variables tested (P>0.05). Total # of Ovarioles (mean +SD) Total # of egg chambers (man +SD) Total # of egg chamber (mean +SD) Introduc)on 1Y 1O 3O 1Y 1O 3O 1Y 1O 3O 1Y 1O 3O 1Y 1O 3O Blastoderm Gastrula3on Segmenta3on Dorsal Closure Cu3cle Specializa3on 13 48 79 12 6 3 67 6 9 2 42 31 58 90 79 23 5 16 Ovaries Egg chambers

Upload: brian-hastings

Post on 22-Jan-2018

33 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Reproductive senescence has negative effects on early egg development and embryonic viability in Drosophila-5

n-­‐=11  

0

20

40

60

80

100

120

140

160

0

10

20

30

40

50

Reproduc)ve  senescence  nega)vely  effects  early  egg  development  and  embryonic  viability  in  Drosophila      Halie  Ostberg1,  Brian  Has3ngs1,  Claudia  Fricke2,  M.  C.  Bloch-­‐Qazi1,    

1.  Department  of  Biology,  Gustavus  Adolphus  College,  St.  Peter,  MN  56082  2.  Ins3tute  for  Evolu3on  and  Biodiversity,  WesSälische  Wilhelms-­‐Universität,  Münster,  Germany  

 

Conclusion    The  age-­‐related  decline  in  fecundity  appears  to  be  largely  due  to  a  decline  in  the  number  of   pre-­‐vitellogenic   egg   chambers   and,   possibly,   the   reten3on   of   mature   oocytes.   This  decline  may  be  due  to  a  decreasing  number  of  ovariole  stem  cells6  and  the  aging  female’s  ability   to   maintain   a   high   rate   of   egg   laying.   Female   age   does   not   appear   to   alter   the  number  of   egg   chambers,   but   has   a   borderline  nega3ve  effect   on   the  number  of   ac3ve  ovarioles.  These  measures  do  not  reflect  possible  differences  in  egg  chamber  quality  with  increasing  age.       The   age-­‐related   decline   in   fer3lity   appears   to   largely   result   from   increased   abnormal  embryonic   development   during   blastoderm   development.   This   phase   is   influenced   by  maternal   factors   sugges3ng   that   a   decline   in   maternal   provisioning   may   cause   these  developmental   anomalies.   The   embryos   of   old   females   with   mul3ple   reproduc3ve  episodes   exhibited   a   higher   percentage   of   abnormali3es   than   the   old   females  with   one  reproduc3ve   episode,   sugges3ng   that   reproduc3ve   diapause   may   decrease,   but   not  eliminate,   the   age-­‐associated   decline   in   fer3lity.   The   low   percentage   of   undeveloped  embryos  in  all  treatment  groups  suggests  that  neither  fer3liza3on  efficiency  nor  a  lack  of  ini3al  zygo3c  development  are  a  major  factors  in  the  decline  in  fer3lity.      Together,   these   results   show   that   age-­‐related   declines   in   reproduc3on   occur   at   two  dis3nct   stages   of   development:   oogenesis   and   embryogenesis.   For   each,   it   is   early  developmental  events  that  appear  to  be  the  major  determinants  of  subsequent  viability.  

 Acknowledgements:  We  thank  the  Gustavus  Adolphus  College  FYRE  program  for  funding  and  Dr.  Jeff  Dahlseid  for  assistance  with  confocal  microscopy  

 Senescence   is   the  many  mul3faceted   process   of   degrada3on   that   occurs   with   increasing  age.  In  humans  and  many  other  organisms,  aging  is  a  decrease  in  physiological  func3on  at  both  macroscopic   and  microscopic   levels.   This   func3onal   decline   can  occur  while   females  are   s3ll   reproduc3vely   ac3ve,   a   process   called   reproduc3ve   senescence.   Reproduc3ve  senescence   is   well-­‐documented   in   human   and   other   animal   popula3ons1.   Understanding  the   underlying   causes   of   it   can   lead   to   interven3ons   to   augment   human   fer3lity   and/or  control  fer3lity  in  other  animal  popula3ons.      Drosophila  melanogaster  is  a  popular  model  system  used  to  study  reproduc3ve  senescence.  Age-­‐related   declines   in   female   fecundity   (egg   laying)   and   fer3lity   (egg   hatching)   are   well  documented2.  However,  the  underlying  causes  of  reduced  fecundity  and  fer3lity  are  poorly  understood.  The  goal  of  the  present  study   is  to  refine  when  in  the  processes  of  oogenesis  and  early  embryogenesis  increasing  maternal  age  has  the  greatest  nega3ve  effects.      Experimental  Ques3ons  Why  does  fecundity  decline  with  increasing  age?    •  Fewer  ovarioles  in  older  females  •  Decreasing  number  of  egg  chambers  in  older  females  •  Decreasing  rate  of  egg  chamber  development  in  older  females    Why  does  fer3lity  decline  with  increasing  age?  •  Decreasing  fer3liza3on  efficiency  •  Fewer  fer3lized  eggs  ini3ate  development  •  Fewer  embryos  are  competent  to  complete  development  

Results  

Pre-­‐vitellogenic:    ANOVA,  fem  age              F1,44=11.080,  P<  0.0005    Vitellogenic:  F1,44=1.512,  P=.226  Post-­‐vitellogenic:    F1,44=3.156,  P=.084  

Literature  Cited  1.    Finch,  C.E.  &  T.B.L.  Kirkwood.  2000.  Chance,  Development  &  Aging.  New  York:  Oxford  University  Press.  2.  Miller,  P.B.,  et  al.  2014.  Fly.  8:3,  1-­‐13.  3.  Cumings,  M.R.,  and  R.C.  King  J.  Morph.,  128:  427-­‐442.  4.  Bownes,  M.  1975  J.  Embryol.  Exp.  Morph.  Vol.33,  3,  pp.  789-­‐801.  5.  Hartenstein,  V.  1993  Atlas  of  Drosophila  Development.  New  York:  Cold  Spring  Harbor  Laboratory  Press.  6.  Pan,  L.  et  al.  2007.  Cell  Stem  Cell  1,  458-­‐469.  

ANOVA,  factor  female  age,  F1,  41=3.66,  P=0.063  

24  h  24  h   96  h   96  h  

young   old  

n-­‐=11   n-­‐=10  n-­‐=11   n-­‐=10  

Ovariole  number  does  not  differ  between  young  and  old  females  

Age-­‐related  embryonic  abnormali3es  peak  during  the  preblastoderm  stage  

Methods      

Drosophila   melanogaster   females   from   the   wild-­‐type   Dahomey   (fecundity   expts.)   and  Oregon-­‐R   (fer3lity   expts.)   strains   were   raised   and   maintained   under   standard   laboratory  condi3ons.   Females   were   collected   shortly   arer   eclosion   and  maintained   as   virgins   un3l  used  in  experiments.    

Fer)lity  Females  were  aged  either  8d   (young)  or  35-­‐38d   (old)  post-­‐eclosion  before  being  used  in  experiments.  One  group  of  old  females   (3-­‐O)   were   mated   to   young   males   weekly   during  their  adult  lives.  Young  females  (1-­‐Y)  and  the  other  group  of  old   females   (1-­‐O)   were   mated   a   single   3me   before  experiments  were  conducted.  Females  from  each  treatment  group  were  mass  mated  to  young,  wild-­‐type  males  for  24h,  then   transferred   to   oviposi3on   plates   to   collect   embryos.  Embryos   were   dechorinated   and     fixed,   then   stained   with  DAPI .   S ta ined   embryos   were   examined   under  epiflourescence   illumina3on   to   determine   whether   or   not  they  appeared  to  be  developing  normally  and,   if   so,  staged  by  the  number  and  arrangement  of  nuclei4,5.    

Fecundity  Females   were   allowed   to   age   either   4d   (young)   or   32d   (old)   post-­‐eclosion,  then  mated  with  wild-­‐type  males.  At  24h  arer  ma3ng,  during  peak   response   to   ma3ng   s3muli,   or   96h   arer   ma3ng,   while   the  response  to  ma3ng  is  asenua3ng,  females  were  flash-­‐frozen.  Females  were   dissected   and   we   counted   the   number   of   ovarioles,   the   total  number  of  egg  chambers,  and  staged  the  egg  chambers  using  phase-­‐contrast   microscopy3.   Egg   chamber   development   was   grouped   into  three  stages:  pre-­‐vitellogenic,  vitellogenic,  and  post-­‐vitellogenic.      

0

50

100

150

200

250

0

10

20

30

40

50

Approximately   12%   of   1-­‐Y   embryos,   32%   of   1-­‐O,   and   40%   of   3-­‐O   embryos   exhibited   abnormal  development.  65%  of  the  abnormali3es  occurred  during  the  preblastoderm  stage  of  development.  During  this   3me,   75%   of   embryos   of   old   females   with   one   reproduc3ve   episode  were   abnormal   and   84%   of  embryos  of  old  females  with  mul3ple  reproduc3ve  episodes  were  abnormal.  In  all  treatment  groups,  <3%  of  embryos  were  unfer3lized  or  failed  to  ini3ate  development.    

Abnormal  Preblastoderm  Embryo  

Normal  Preblastoderm  Embryo  

Propor3on  of  abnormal  embryos  is  higher  in  old  females  

0

50

100

150

200

250

n-­‐=154  

n-­‐=225  n-­‐=216  

Total  #  Embryos  

1-­‐Young   1-­‐Old   3-­‐Old  

%  of  e

mbryos  a

t  given

 phase  

             Abnormal  embryos                Normal  embryos  

1-­‐Y    1-­‐O    3-­‐O  

Preblastoderm  

ovaries  

n-­‐=11   n-­‐=10  n-­‐=11  

n-­‐=10  

young   old  24  h   96  h  24  h   96  h  

24  h   24  h   24  h   24  h  24  h  24  h   96  h  96  h  96  h   96  h  96  h  96  h  

young   old   old  old   young   young  

pre-­‐vitellogenic   vitellogenic   post-­‐vitellogenic  

Total  egg  chamber  number  does  not  differ  between  young  and  old  females    

ANOVA,  factor  female  age,  F1,41=1.91,  P=0.174  

Young  females  have  more  pre-­‐vitellogenic    egg  chambers  than  old  females  

There  was  no  significant  difference  between  24h  and  96h  post-­‐ma3ng  treatments  for  any  of  the  variables  tested  (P>0.05).    

Total  #  of  O

vario

les  (mean  +SD)  

Total  #  of  e

gg  chambe

rs  (m

an  +SD

)  To

tal  #  of  e

gg  chambe

r  (mean  +SD)  

Introduc)on  

1-­‐Y    1-­‐O    3-­‐O   1-­‐Y    1-­‐O    3-­‐O   1-­‐Y    1-­‐O    3-­‐O   1-­‐Y    1-­‐O    3-­‐O   1-­‐Y    1-­‐O    3-­‐O  

Blastoderm   Gastrula3on   Segmenta3on   Dorsal  Closure   Cu3cle  Specializa3on  

13  

48  

79  

12  

6   3  

67  

6   9  

2  

42  

31  

58  90  

79  

23  

5  

16  

Ovaries  

Egg  chambers