research article predicted 3d model of the rabies virus...

12
Research Article Predicted 3D Model of the Rabies Virus Glycoprotein Trimer Bastida-González Fernando, 1,2 Celaya-Trejo Yersin, 1 Correa-Basurto José, 3 and Zárate-Segura Paola 1,4 1 Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Polit´ ecnico Nacional, Plan de San Luis y D´ ıaz Mir´ on s/n, Santo Tomas, Miguel Hidalgo, 11340 Ciudad de M´ exico, DF, Mexico 2 Laboratorio de Biolog´ ıa Molecular, Laboratorio Estatal de Salud P´ ublica del Estado de M´ exico, Paseo Tollocan s/n, La moderna de la cruz, 50180 Toluca, MEX, Mexico 3 Laboratorio de Modelado Molecular y Bioinform´ atica, Escuela Superior de Medicina, Instituto Polit´ ecnico Nacional, Plan de San Luis y D´ ıaz Mir´ on s/n, Santo Tomas, Miguel Hidalgo, 11340 Ciudad de M´ exico, DF, Mexico 4 Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnolog´ ıa, Instituto Polit´ ecnico Nacional, Avenida Acueducto de Guadalupe s/n, Ticoman, Gustavo A. Madero, 07340 Ciudad de M´ exico, DF, Mexico Correspondence should be addressed to Z´ arate-Segura Paola; [email protected] Received 8 December 2015; Revised 21 February 2016; Accepted 6 March 2016 Academic Editor: Serdar Kuyucak Copyright © 2016 Bastida-Gonz´ alez Fernando et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e RABVG ectodomain is a homotrimer, and trimers are oſten called spikes. ey are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). is makes them relevant in viral pathogenesis. e antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. is verified its 3D conformation. e molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. e molecular dynamics simulations were carried out on RABVG trimer at 310K. From these theoretical studies, we retrieved the RMSD values from C atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. 1. Introduction Rabies is a 100% fatal disease caused by the rabies virus (RABV) that affects the central nervous system [1]. Rabies virus belongs to the order Mononegavirales, classified in the Rhabdoviridae family, which includes at least three genera Lyssavirus, Ephemerovirus, and Vesiculovirus. e genus Lyssavirus includes rabies virus. e viral genome con- sists in a single and negative-stranded nonsegmented RNA, which encodes five proteins: nucleoprotein, matrix protein, phosphoprotein, glycoprotein, and the viral-dependent RNA polymerase [2, 3]. e glycoprotein (RABVG) rabies virus is comprised of four domains: signal peptide (SP), ectodomain (ED), transmembrane (TM), and a cytoplasmic domain (CD) [4, 5]. e RABVG is 65kDa and has 524 amino acids. is is due to the presence of its signal peptide (SP) that is located on the N-terminal. It spans 19 residues. e SP is responsible for anchoring the protein to the ER-Golgi Apparatus (AP) mem- brane. is promotes subsequent transport of the nascent protein to the membrane before it is cleaved from the N- terminus in the AP [6, 7]. e RABVG in each peak is anchored in the plasma membrane and the lipid envelope by the transmembrane domain of 22 amino acids from 439 to 461 residues [8]. e C-terminal with the final 44 amino acids is the cytoplasmic domain. It extends into the cytoplasm of the infected cell where it interacts with M to complete the viral assembly [9]. On the other hand, the RABVG ectodomain is a homotrimer that contains a transmembrane domain. Each Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 1674580, 11 pages http://dx.doi.org/10.1155/2016/1674580

Upload: others

Post on 12-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

Research ArticlePredicted 3D Model of the Rabies Virus Glycoprotein Trimer

Bastida-González Fernando,1,2 Celaya-Trejo Yersin,1

Correa-Basurto José,3 and Zárate-Segura Paola1,4

1Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politecnico Nacional,Plan de San Luis y Dıaz Miron s/n, Santo Tomas, Miguel Hidalgo, 11340 Ciudad de Mexico, DF, Mexico2Laboratorio de Biologıa Molecular, Laboratorio Estatal de Salud Publica del Estado de Mexico,Paseo Tollocan s/n, La moderna de la cruz, 50180 Toluca, MEX, Mexico3Laboratorio de Modelado Molecular y Bioinformatica, Escuela Superior de Medicina, Instituto Politecnico Nacional,Plan de San Luis y Dıaz Miron s/n, Santo Tomas, Miguel Hidalgo, 11340 Ciudad de Mexico, DF, Mexico4Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnologıa, Instituto Politecnico Nacional,Avenida Acueducto de Guadalupe s/n, Ticoman, Gustavo A. Madero, 07340 Ciudad de Mexico, DF, Mexico

Correspondence should be addressed to Zarate-Segura Paola; [email protected]

Received 8 December 2015; Revised 21 February 2016; Accepted 6 March 2016

Academic Editor: Serdar Kuyucak

Copyright © 2016 Bastida-Gonzalez Fernando et al. This is an open access article distributed under the Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work isproperly cited.

The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virusthrough the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophinreceptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between thetrimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminalof the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of theirfunctions was performedwith amolecularmodel of G protein in its trimeric form.This verified its 3D conformation.Themolecularmodeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT programobtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively.Themolecular dynamicssimulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from C𝛼atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained.

1. Introduction

Rabies is a 100% fatal disease caused by the rabies virus(RABV) that affects the central nervous system [1]. Rabiesvirus belongs to the order Mononegavirales, classified inthe Rhabdoviridae family, which includes at least threegenera Lyssavirus, Ephemerovirus, and Vesiculovirus. Thegenus Lyssavirus includes rabies virus.The viral genome con-sists in a single and negative-stranded nonsegmented RNA,which encodes five proteins: nucleoprotein, matrix protein,phosphoprotein, glycoprotein, and the viral-dependent RNApolymerase [2, 3].

The glycoprotein (RABVG) rabies virus is comprisedof four domains: signal peptide (SP), ectodomain (ED),transmembrane (TM), and a cytoplasmic domain (CD) [4, 5].

The RABVG is 65 kDa and has 524 amino acids. This is dueto the presence of its signal peptide (SP) that is located onthe N-terminal. It spans 19 residues. The SP is responsible foranchoring the protein to the ER-Golgi Apparatus (AP) mem-brane. This promotes subsequent transport of the nascentprotein to the membrane before it is cleaved from the N-terminus in the AP [6, 7].

The RABVG in each peak is anchored in the plasmamembrane and the lipid envelope by the transmembranedomain of 22 amino acids from 439 to 461 residues [8]. TheC-terminal with the final 44 amino acids is the cytoplasmicdomain. It extends into the cytoplasm of the infected cellwhere it interacts with M to complete the viral assembly [9].

On the other hand, the RABVG ectodomain is ahomotrimer that contains a transmembrane domain. Each

Hindawi Publishing CorporationBioMed Research InternationalVolume 2016, Article ID 1674580, 11 pageshttp://dx.doi.org/10.1155/2016/1674580

Page 2: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

2 BioMed Research International

monomer has 439 residues, and the trimers are commonlycalled spikes. These spikes are responsible for the attachmentof the virus through the interaction with nicotinic acetyl-choline receptors, neural cell adhesion molecule (NCAM),and the p75 neurotrophin receptor (p75NTR). This makesthem relevant for viral pathogenesis [10–15]. In addition,these receptors are responsible for the fusion of the viralenvelope with the cell membrane as induced by a low pH [16].This promotes the transsynaptic viral spread to the centralnervous system. They can also act as targets for helper andcytotoxic T cells.

The RABVG C-terminal has 44 amino acid cytoplasmicdomains that interact with thematrix protein to complete theviral assembly [9].

The RABVG protein induces an immune response due toits multiple antigenic domains. Hence, RABVG is the majorcontributor to RABV pathogenicity [17]. The antigenic struc-ture differs significantly between the trimers and monomers.It has been reported that surfaces rich in hydrophobic aminoacids are important for the trimer stabilization in which theC-terminal of the ectodomain plays an important role [18].

2. Material and Methods

2.1. Sequence Analysis, Modeling, and Stereochemical Anal-ysis. This study was designed to predict the 3D modelof RABVG protein under an iterative threading assemblyrefinement algorithm implemented in I-TASSER [19]. Thiswas performed because the experimental 3D structure ofRABVG protein was not available at Protein Data Bank(PDB) (http://www.rcsb.org). Various physical and chemicalparameters of primary structure analysis were computedusing the ProtParam online tool [20]. The secondary struc-ture of the protein was computed using J-PRED servers[21]. The DiANNA tool [22] was used to check the systemclassification and disulfide connectivity. This knowledge canbe helpful in understanding the secondary structure of theprotein because the disulfide bond bridges are important inprotein fold stabilization.The transmembrane topology of theRABVG was checked using TMHMM [23], MEMSAT3, andMEMSAT-SVM [24].

Finally, the 3Dmodel of RABVGwas generated using theI-TASSER online server [25].This generated 3Dmodels alongwith their confidence score (𝐶-score). After generating the 3Dmodel, structure and stereochemical analysis were performedusing different evaluations and validation tools. The Psi/PhiRamachandran plot was obtained using PROCHECK [26].This assisted in the evaluation of backbone conformation.TheRamachandran plot was used to check the non-Gly residuesin the disallowed regions. Structural quality of the modelwas assured using𝑍-scores, which indicate the overall modelquality and confirm that the predicted structure is within therange of scores as found in the native proteins.TheProSAwebtool [27] was used to determine the 𝑍-scores. Furthermore,the generated model was submitted in the protein modeldatabase (PMDB) (https://bioinformatics.cineca.it/PMDB/)with PMDB identifier PM0079619.

With the monomer structure in hand, we attemptedto make the trimer interact with protein-protein docking

studies to predict the protein complex formed in a protein-protein interaction. These docking studies used the Clus-Pro server [28–31] that is the first fully automated web-based program for docking proteins. It was one of thetop performers at CAPRI (Critical Assessment of PredictedInteractions) rounds 1–12—a community-wide experimentdevoted to protein docking [28].

We used the PDBsumGenerate server [32] to understandthe interactions between—and assembly of—the five subunitsof CRP.This server helps us analyze the interfaces between thesubunits and summarizes the interactions across any selectedinterface. This server also provides information about theresidues that actually interact across the interface.

2.2. MolecularDynamics Simulations. TheseMDsimulationsemployed NAMD 2.6 (Nanoscale Molecular Dynamics) [33]by applying the CHARMM27 force field for lipids andproteins [34].This first neutralized the model RABVG trimerwith 24 sodium ions alongwith theTIP3Pmodel for thewaterbox containing 58,566 waters molecules. Structural energyminimization was done using 10,000 steps. Multiple time-stepping algorithms were used with an integration time stepof 2 fs. Various interactions were computed in 1, 2, and 4 timesteps for covalent bonds, as well as short-range nonbondedinteractions and long-range electrostatic forces, respectively.For every ten time steps, the nonbonded interactions had apair list distance of 13.5 A. The Van-der-Waals and electro-static interactionswere defined as interactions between short-range nonbonded interactions between particles within 12 A.A smoothing function was employed for 10 A Van-der-Waalsinteractions. Simulations were performed on the equilibratedsystem for 80 ns under constant pressure and a temperatureof 1 atm and 310K, respectively. The structure with the leastenergy and converged root mean square deviation was usedfor subsequent exercises. The final structure was analyzedwith CARMA [35] and visualized with the VMD [36] pro-gram using 100 frames.

3. Results

3.1. Structural Description of the RABVG 3D Model. Thisstudy was initiated to perform structure-based sequenceanalysis studies on RABVG. The protein sequence wasretrieved using accession AGN94258.1 from the NCBI pro-tein. The primary structure analysis showed that the RABVGprotein had amolecular weight of 58487.3Daltons and a theo-retical isoelectric point (pI) of 7.83.The instability index (II) iscomputed to be 38.05.This classifies the protein as stable.Thenegative grand average of hydropathicity (GRAVY) shows avalue of −0.173 indicating that the protein was hydrophilicaccording to other reports [37].

Sequence and secondary structure analyses of RABVGrevealed that it has 6 𝛽-sheets, 7 beta hairpins, 3 beta bulges,21 strands, 5 𝛼-helices, 10 helix-helix interacs, 38 beta turns,and 10 𝛾-turns. Secondary structural features are shown inFigure 1. Disulfide bonds predicted by DiANNA are shownin Table 1.

Disulfide connectivity was predicted to be within 1–8, 2–7, 3–12, 5–11, 6–10, 9–19, 13–17, 14–18, and 15-16. The

Page 3: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

BioMed Research International 3

LLAQPVM

S E LKVGY I IKV V Y YV V VN NG G GF T T T T T T TTE AE F FKR HFRP T A AAYNWKCRPDKCS AYM

M DPR YE E S NPY T S PV I SP VD R SYH L K E L VADTT K I LDP DK S LH V CGKCSGF PSRYWLHAG

I S S TYC S T DYT R I GL S KI TW P RMP N G D F RASTS C N KGS TCGF V R YKS LKGGLDEKENHTV

A L KLCGVL R LM Q W LT D VD PG M QTW A S K C NL HDE T P DFR DE I EH V LVKKREE EL VSVGLCK

E DALE S IM K S V L F IR Y FS KF H TRR S K G G NKTL VP A LME DAHYK R NE I I P STWS VALTTCL

K L RVGGRC HVN I V QL E SG IV I MF F G G H L S L LPDG P QQH EL L E S I MHP LADPLS VMNHPGC

P VFKDGDE DF V H D WK PE GV V NHL D Q V LVSG LPAES T

LL L L L L LC C CNN NTG G G GK K HHF F FFS S SS Sp

p

pSV VVVP P P P PPW E E FD D DI I I IYT

S

pS pS pS

pS

pS pS

pS pS

pSpSpSpS

pS pS

pS

H1

H2

H3

H4

H5

A𝛽

𝛽 𝛽

𝛽𝛽

𝛽𝛽𝛽

𝛽 𝛽 𝛽 𝛽𝛽𝛽𝛾

𝛽𝛽𝛾

𝛾𝛽𝛽 𝛽𝛽

𝛽𝛽𝛽

𝛾𝛽𝛽𝛽

𝛽

𝛽𝛽𝛽

𝛽𝛽

𝛽

𝛽

𝛽 𝛽 𝛽 𝛽C

C

F

F

C C C

B

ABB

D D

D

DD

D D

EE

𝛾

𝛾

𝛾 𝛾

𝛾

1 5 10 15 20 25 30 35 40 45 50 55 60

61 65 70 75 80 85 90 95 100 105 110 115 120

121 125 130 135 140 145 150 155 160 165 170 175 180

181 185 190 195 200 205 210 215 220 225 230 235 240

241 245 250 255 260 265 270 275 280 285 290 295 300

301 305 310 315 320 325 330 335 340 345 350 355 360

361 365 370 375 380 385 390 395 400 405 410 415 420

421 425 430 435 440 445 450 455

Figure 1: Predicted secondary structure of RABVG using the J-prep pserver.

0 100 200 300 400 500

TransmembraneInside

Outside

TMHMM posterior probabilities for consensus/

0

0.2

0.4

0.6

0.8

1

1.2

Prob

abili

ty

1–524

Figure 2: A transmembrane motif is revealed along with a 23-amino acid signal peptide at the extracellular N-terminus.

TMHMM, MEMSAT3, and MEMSAT-SVM programs iden-tify a transmembrane region between amino acids 460 and480. The C-terminal is possibly located in the cytoplasm.TheN-terminal—including 19 amino acids from the signalingpeptide—is located in the extracellular region (Figure 2).

Knowing the 3D structure of RABVG is very impor-tant to understanding the proteins interactions, functions,and their important site localization. The model was notobtained by homology because the identities were low level(23%) whit 2J6J and 2CMZ crystals; for closely related

Page 4: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

4 BioMed Research International

DI

DII

DIII

DIV

(a)

DI

DII

DIII

DIV

(b)

(c) (d)

DI DII

DIII

DIV

(e)

DI

DII

DIII

DIV

(f)

Figure 3: Domains of glycoprotein. The top lateral domain (DI) contains about 90 residues in two segments (1 to 17 and 312 to 383).Trimerization domain (DII) is made of three segments (18 to 35, 259 to 311, and 384 to 409), PH domain (DIII) is inserted within domain II.It is made of two segments (36 to 50 and 181 to 258) and has the fold of a pH domain. Fusion (DIV) (51 to 180) is inserted in a loop of the pHdomain and is made of an extended sheet structure at the tip of which two loops are located that constitute themembrane-interactingmotif ofthe G ectodomain. (a) Glycoprotein monomeric divided into 4 domains: DI (red) is lateral domain, DII (blue) is trimerization domain, DIII(orange) is domain of pH, and DIV (yellow) is fusion domain. (b) Surface representation of glycoprotein monomeric colored by domains. (c)Top view of the trimer, colored by domain, shows the formation of 6 alpha helices (blue) which contribute to the stability of the structure. (d)Top view of the trimer surface representation. (e) Glycoprotein trimer (divided into different domains) does not show a significant change inthe organization of the domains. (f) Surface representation of the glycoprotein trimer, showing the cavity inside the molecule.

protein sequences with identity higher than 40%, thealignment is almost always correct. Regions of low localsequence similarity become common when the overallsequence identity is below 40% [38, 39]. In this sense,

the 3D structure of RABVG was predicted using the I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/)online server and the best predicted structure with the maxi-mum confidence score (𝐶-score −2.18) was selected (Figure 3

Page 5: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

BioMed Research International 5

Table 1: Predicted disulfide bonds.

Region Predicted bonds17–479 LVFSLCFGKFP–IFLMTCCRRVN43–271 IHHLSCPNNLV–DETKWCPPDQL54–226 VEDEGCTNLSG–KGSKTCGFVDE80–188 VNGFTCTGVVT–VSSTYCSTNHD113–480 PTPDACRAAYN–FLMTCCRRVNR178–208 FPSGKCSGITV–RLGTSCDIFTN242–370 SLKGACKLKLC–RVGGRCHPHVN247–363 CKLKLCGVLGL–IPSKGCLRVGG

monomer) to achieve protein-protein docking studies usingthe Cluspro (http://cluspro.bu.edu/)server to get a trimercomplex for visualizing the protein interactions (Figure 3).

The central trimerization domain has a significant con-tribution to the structural stability of the G protein trimer,due to the formation of 6 alpha helices. The differentconformations (monomer, dimer, and trimer) of G proteinare pH-dependent, several acidic residues (Glu286, Glu293,Glu294, Glu405, and Glu408) are brought close together inthe postfusion bundle of six helices, suggesting that the acidresidues play molecular switches role in their deprotonatedforms, and this should destabilize the central six-helix bundleand thus allow the refolding of G back toward its prefusionconformation similar to VSV G protein [40].

These residues ensure a correct activation of G and ensurethat the stability of the 6 chain helices has to be tightlyregulated since both its destabilization and overstabilizationare detrimental to the virus.

The glycoprotein of rhabdovirus is the target of neu-tralizing antibodies; its antigenicity and antigenic sites of Ghave been extensively studied in VSV and RABV [41]. Theantigenic site II of RABVG is located between positions 34and 42 and positions 198 and 200.These peptides are probablylinked by a disulfide bridge and held together in the tertiarystructure of G antigenic site III which extends from aminoacids 330 to 338.This site is associatedwith the virulence [42].

They have described various regions of the protein Gwhich have an important role in membrane fusion forthe internalization of the virus; the region between aminoacids 118 and 139 was generally considered to represent aninternal fusion peptide for VSV G. However, other studiesdemonstrated that amino acids 395–418 have a significantinfluence on fusion, and additional studies identified region145–164, termed p2-like peptide, as being a pivotal domain infacilitating glycoprotein G-mediated membrane fusion [43].The stability and the preservation of these areas are importantin the structure of G protein for viral internalization.

The structural organization of G is very similar to that ofVSV G. This similarity extends from the N-terminal part toat least the end of helix G of domain II. It includes both thePH domain and the fusion domain (109 residues of the fusiondomain), as well as the trimerization domain, and reveals aclear structural homology between the two proteins.

G has an altogether different structural organizationfrom those of both class I and class II viral fusion proteins

described so far. The polypeptide chain of G folds into fourdistinct domains (Figure 3): a lateral domain rich in 𝛽 sheetat the top of the molecule (domain I), a central, mostly 𝛼-helical domain that is involved in the trimerization of thetop of the molecule (domain II), a neck domain that hasthe characteristic fold of pleckstrin homology (PH) domains(domain III), and the elongated fusion domain thatmakes thetrimeric stem of the molecule (domain IV). The C-terminalpart of G corresponds to AA 411 to 422 in VSV and 410 to 455in RAVBG [44].

The top lateral domain I contains about 90 residues in twosegments (1 to 17 and 310 to 383 for VSV and 1 to 17 and 311 to383 for RABV).Domain II ismade of three segments (18 to 35,259 to 309, and 384 to 405 for VSV and 18–35, 269 to 310, and384 to 409 for RABV). Domain III is inserted within domainII. It is made of two segments (36 to 50 and 181 to 258 for VSVand RABV) and has the fold of a PH domain. Domain IV (51to 180 for VSV and RABV) is inserted in a loop of the PHdomain [44].

These residues ensure a correct activation of G and showthat the stability of the 6 chain helices is tightly regulatedbecause both its destabilization and overstabilization aredetrimental to the virus.

The number of residues involved in residue-residueinteractions and a model of the interactions between eachmonomer denominated A-B, B-C, and C-A are shownin Figure 4. The model depicted in Figure 4 shows thatthe hydrogen bonds and other nonbonded interactions areresponsible for the interactions among the monomers tobuild the trimer complex.

This trimer model shows the number of interactionsacross two interfaces as well as details of the individualresidue-residue interactions across these interfaces (Fig-ure 5).

The interactions analysis in the 3D structure was obtainedby a PDBsum server; for these hydrogen bonds and othernonbonded, disulfide bridges of CYS between two side chainsor the formation of an amide bond (–CO–NH–) betweenside chains of Lys and a dicarboxylic aminoacid (Glu orAsp) were considered.The 3D structure presents electrostaticinteractions betweenGlu 293 in chain Awith Lys 297 in chainB, Glu 300 of chain Awith Lys 313 of chain C, Lys 297 of chainA with Glu 300 of chain C, Lys 148 on chain B with Glu129 onchain C, and Lys298 on 25 chain C with Glu 286 and 293 onchain B. These stabilize the structure (Figure 6).

Quality and reliability of the RABVG structure werechecked using 𝑍-score and Ramachandran plot. The stere-ochemical quality of the RABVG 3D structure was checkedwith a Ramachandran plot by analyzing the backbone dihe-dral angles residue by residue. The result showed that 89.9%of the residues were in the favorable region (Figure 7).

The overall model quality can be checked with ProsA 𝑍-score that is used to check whether the input structure iswithin the range of scores typically found for native proteinsof similar size [27].The𝑍-score of the protein was −5.54.Themodel reliability was further checked by ERRAT [45] thatanalyzes the statistics of nonbonded interactions betweendifferent atom types and plots the value of the error functionversus position of a 9-residue sliding window as calculated by

Page 6: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

6 BioMed Research International

A

B

C

Salt bridgesDisulphide bondsHydrogen bondsNonbonded contacts

Figure 4: Schematic diagram showing the interactions between the subunits.

Chain A Chain B

Met121Asp111 Asp387Ala116Ala115

His39Trp119His139 Asn118

Lys444Glu231 Arg114

Tyr117Met198His403Phe282

Ile210Asp209Pro202Glu293 Lys297

Asn76Lys74

Lys145 Glu129Thr146 Phe78Arg114 Glu200Trp140 Glu128Asn118Arg232 Leu400Asn213Glu288 Met404

Glu286Gly59 Leu290

His289Arg126Asp285 Asp124

Arg283Arg215 Val315Glu300 Asp450Arg299 Ser316Val292 Arg319

Ser61Phe60 Pro440

Gln396Leu451Arg318

Ser207 Ser397Asp304

Ser71Ser314

Salt bridgesDisulphide bonds

Hydrogen bondsNonbonded contacts

Chain A Chain C

Asp441 Arg215Asp304Arg203

Glu408 Glu300Pro202

Glu286 Leu204Met121 Glu231

Arg299Val390 Glu307His438 His39Lys297 Thr55Ala122Lys444Asn76

Gly53Asp209

Gln396 Ile38Phe211

Glu432 Arg218Ser157 Met310Pro393

Ile210Pro156 Ser207Glu300 Met63Val158 Thr206Val172

Phe60Lys313Asn213

Tyr117Leu400Arg171Ser397 Leu306

Chain B Chain CAsn118Tyr135

Arg142 Pro136Asp137Asp124

Arg126 Gly448Ala72

Arg218 Asp450Trp119 Arg283Phe211Thr206 Ser71

Ser397His443

Val292Asp209 Gly123Lys148 Glu129Cys208

Ser15Asn213

Ser61 Pro125Met63 Tyr69

Ser314 Leu16Arg319 Lys313Thr264 Lys444

Gln445Val249Gln263 Val446

Val442Met404

Arg114 Glu200Asn76Gly19

Arg215Leu57 Glu356

Glu405His289 Glu294

Thr212 Phe21Asn201

Asn118 Glu293Ser58

Arg299Glu286 Ser398Glu293

Asn355Gln401

Val296 Val315Lys298

Lys297 Arg318Glu300 Ser316

Leu320Phe317

Ala115 Met121Pro393Arg319

Figure 5: A model showing the number of interactions across the interfaces and the individual residue-residue interactions acrossthe interfaces along with involved residues. Residue colors: positive (H,K,R) (blue); negative (D,E) (red); S,T,N,Q = neutral (green);A,V, L, I,M = aliphatic (gray); F,Y,W = aromatic (purple); P,G = Pro&Gly (orange); and C = cysteine (yellow). These include interactionsbetween A and B interface, interaction between A and C interface, and interaction between B and C.

Page 7: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

BioMed Research International 7

Figure 6: Glycoprotein trimer interactions (snapshot 80 ns): chain A (red), chain B (blue), and chain C (green); the interactions are shownbetween the chains, Glu 293 chain A with Lys 297 chain B, Glu 300 of chain A with Lys 313 of chain C, Lys 297 of chain A with Glu 300 ofchain C, Lys 148 chain B with Glu 129 chain C, and Lys 298 chain C with Glu 286 and 293 B chain.

0

A2 VAL

A36 ILE

A162 ASP

A163 PRO

A181 ILE

A183 VALA185 SERA190 THRA208 CYSA210 ILE

A266 ASP

A270 TRP

A274 ASP

A427 ASP

B20 LYS

B28 ASPB43 CYS

B44 PRO

B47 LEU

B54 CYS

B69 TYRB82 GLY B95 GLY

B126 ARG

B142 ARG

B162 ASP

B181 ILE

B210 ILE

B218 ARG

B234 LEU

B248 GLY

B270 TRP

B273 PRO

B359 PRO

B391 LEU

B428 GLY

B434 PHE

B447 SER

C19 GLY

C28 ASPC43 CYS

C47 LEU

C53 GLYC82 GLY C95 GLY

C126 ARG

C142 ARG

C162 ASP

C206 THR C210 ILE

C212 THR

C213 ASN

C218 ARG

C235 TYR

C248 GLY

C266 ASP

C268 THR

C270 TRPC273 PRO

C274 ASP

C359 PRO

C434 PHEC436 GLU

C447 SER

C448 GLY

General/pre-pro/proline favored General/pre-pro/proline allowedGlycine favored Glycine allowed

Number of residues in favored region (~98.0% expected): 408 (89.9%)Number of residues in allowed region (~2.0% expected): 30 (6.6%)

𝜙

𝜓

180

180

0

−180−180

Number of residues in outlier region: 16 (3.5%)

Figure 7: Ramachandran plot showing residues in the most favorable region and disallowed regions (RAMPAGE by Paul de Bakker andSimon Lovell available at http://mordred.bioc.cam.ac.uk/∼rapper/rampage.php) [46].

Page 8: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

8 BioMed Research International

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300Residue # (window center) Residue # (window center)

Erro

r val

ue∗

(%)

9599

320 340 360 380 400 420 440

Erro

r val

ue∗

(%)

9599

Program: ERRAT2File: /var/www/html/Services/ERRAT/DATA/3501960.pdbChain #: 3Overall quality factor∗∗ : 84.648

(a)

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Erro

r val

ue∗

(%)

9599

Erro

r val

ue∗

(%)

320 340 360 380 400 420 440

9599

Residue # (window center) Residue # (window center)

Program: ERRAT2File: /var/www/html/Services/ERRAT/DATA/3501960.pdbChain #: 2Overall quality factor∗∗ : 84.648

(b)

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Erro

r val

ue∗

(%)

9599

Erro

r val

ue∗

(%)

320 340 360 380 400 420 440

9599

Residue # (window center) Residue # (window center)

Program: ERRAT2File: /var/www/html/Services/ERRAT/DATA/3501960.pdbChain #: 1Overall quality factor∗∗ : 84.648

(c)

Figure 8:The ERRATmodel had good overall quality. (a) Graphic of ERRAT program for Amonomer. (b) Graphic of ERRAT program for Bmonomer. (c) Graphic of ERRAT program for the C monomer. ∗On the error axis, two lines are drawn to indicate the confidence with whichit is possible to reject regions that exceed that error value. ∗∗Expressed as the percentage of the protein for which the calculated error valuefalls below the 95% rejection limit. Good high resolution structures generally produce values around 95% or higher. For lower resolutions(2.5 to 3A) the average overall quality factor is around 91% [45].

a comparison with statistics from highly refined structures.The ERRAT results showed 84.648 overall model quality(Figure 8). The 𝑍-scores, Ramachandran plot, and ERRATresults confirmed that the quality of the RABVG trimermodel is suitable for future theoretical studies.

Molecular dynamics (MD) simulations were carried onRABVG trimer at 310 K. From these theoretical studies weretrieved the RMSD values from C𝛼 atoms. This suggeststhat the system reached structural stability and simulationintegrity. The magnitude of the RMSD (7 A) indicates thatthe RABVG trimer is stabilized at 12 ns and remains constantuntil the end of the simulation (Figure 9).

On the other hand, the residues we used in the root meansquare fluctuations (RMSF) identify the regions responsiblefor the fluctuations during the MD simulations. The areaswith higher fluctuations correspond to beta-loop-beta chainsresidues and turn regions. Those with lower fluctuations are

regions of𝛼-helices. During theMDsimulation, no structuraluncoiling was observed. At 310 K, the RMSF values go from3 to 15 A obtained from 12000 to 7500 frames; RMSF aresimilar for all chains exceptAla87 toThr100, Pro136 toThr147,Phe173 to Asn201, and Ser422 to Val435 residues of chain C(Figure 9).

The regions with the most fluctuations have not beendescribed as important areas to maintain the structuralstability of the G protein trimer. This does not generatesignificant changes within the main trimer binding regions.

In the residues 125 to 131 conformational change of chainC after 10 ns was detected and is stable from 40 ns to 80 nswhen molecular dynamic end (Figure 10).

During molecular dynamic simulations, the structure ofthe G protein remained stable after 12 ns. It maintained thetrimer bound and conserved key interactions to maintain thestability of the structure.

Page 9: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

BioMed Research International 9

10 20 30 40 50 60 70 800Time (ns)

RMSD

(Å)

0123456789

(a)

02468

10121416

0 100 200 300 400Residue number

Chain AChain B

Chain C

RMSF

(Å)

(b)

Figure 9: (a) RMSD of RABVG trimer at 310 K. (b)The RMSF (root mean square fluctuations) per residue per chain of RABVG trimer from12000 to 8000 frames.

10ns40ns

80ns

Figure 10: Chain C conformational chance during moleculardynamics. Residues 125 to 131 (PRYSEEL). Red 10 ns, beige 40 ns, andgreen 80 ns.

4. Conclusions

The molecular modeling of G protein was performed by aI-TASSER server and was evaluated via a Rachamandranplot and ERRAT program obtained 84.64% and 89.9% of theresidues in the favorable regions and overall quality factor,respectively.

The interactions between residues, 274 to 293, are directlylinked to the structure of the prefusion and postfusion ofGlycoprotein. These interactions are important to maintainthese structures.

This is important for structural stability of the G proteintrimer. It might be a good target for antiviral compounds

because such modifications would change the helical confor-mation and be detrimental to the virus.

The fluctuations that occurred during the moleculardynamics do not affect the stability of the structure of Gprotein trimer. Protein G structural stability was obtained bymolecular dynamics analysis at 12 ns.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to thank COFAA-IPN.

References

[1] G. M. Baer, “Rabies—an historical perspective,” InfectiousAgents and Disease, vol. 3, no. 4, pp. 168–180, 1994.

[2] A. A. V. Albertini, R. W. H. Ruigrok, and D. Blondel, “Rabiesvirus transcription and replication,”Advances in Virus Research,vol. 79, pp. 1–22, 2011.

[3] A. A. V. Albertini, G. Schoehn, W. Weissenhorn, and R. W. H.Ruigrok, “Structural aspects of rabies virus replication,”Cellularand Molecular Life Sciences, vol. 65, no. 2, pp. 282–294, 2008.

[4] M. Rustici, L. Bracci, L. Lozzi et al., “A model of the rabies virusglycoprotein active site,” Biopolymers, vol. 33, no. 6, pp. 961–969,1993.

[5] Y. Gaudin, R. W. H. Ruigrok, C. Tuffereau, M. Knossow, and A.Flamand, “Rabies virus glycoprotein is a trimer,” Virology, vol.187, no. 2, pp. 627–632, 1992.

[6] Y. Gaudin, S. Moreira, J. Benejean, D. Blondel, A. Flamand, andC. Tuffereau, “Soluble ectodomain of rabies virus glycoproteinexpressed in eukaryotic cells folds in a monomeric conforma-tion that is antigenically distinct from the native state of thecomplete, membrane-anchored glycoprotein,” The Journal ofGeneral Virology, vol. 80, no. 7, pp. 1647–1656, 1999.

[7] L. Sissoeff, M. Mousli, P. England, and C. Tuffereau, “Sta-ble trimerization of recombinant rabies virus glycoprotein

Page 10: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

10 BioMed Research International

ectodomain is required for interaction with the p75NTR recep-tor,” The Journal of General Virology, vol. 86, no. 9, pp. 2543–2552, 2005.

[8] A. Anilionis, W. H. Wunner, and P. J. Curtis, “Structure of theglycoprotein gene in rabies virus,”Nature, vol. 294, no. 5838, pp.275–278, 1981.

[9] Y. Gaudin, “Rabies virus-induced membrane fusion pathway,”The Journal of Cell Biology, vol. 150, no. 3, pp. 601–612, 2000.

[10] T. L. Lentz, T. G. Burrage, A. L. Smith, and G. H. Tignor, “Theacetylcholine receptor as a cellular receptor for rabies virus,”TheYale Journal of Biology and Medicine, vol. 56, no. 4, pp. 315–322,1983.

[11] T. L. Lentz, E. Hawrot, D. Donnelly-Roberts, and P. T. Wilson,“Synthetic peptides in the study of the interaction of rabiesvirus and the acetylcholine receptor,” Advances in BiochemicalPsychopharmacology, vol. 44, pp. 57–71, 1988.

[12] C. Tuffereau, J. Benejean, D. Blondel, B. Kieffer, andA. Flamand,“Low-affinity nerve-growth factor receptor (P75NTR) can serveas a receptor for rabies virus,”The EMBO Journal, vol. 17, no. 24,pp. 7250–7259, 1998.

[13] M. Lafon, “Rabies virus receptors,” Journal of NeuroVirology,vol. 11, no. 1, pp. 82–87, 2005.

[14] K. Hotta, Y. Motoi, A. Okutani et al., “Role of GPI-anchoredNCAM-120 in rabies virus infection,” Microbes and Infection /Institut Pasteur, vol. 9, no. 2, pp. 167–174, 2007.

[15] C. Tuffereau, K. Schmidt, C. Langevin, F. Lafay, G. Dechant,and M. Koltzenburg, “The rabies virus glycoprotein receptorp75NTR is not essential for rabies virus infection,” Journal ofVirology, vol. 81, no. 24, pp. 13622–13630, 2007.

[16] Y. Gaudin, R. W. H. Ruigrok, M. Knossow, and A. Flamand,“Low-pH conformational changes of rabies virus glycoproteinand their role in membrane fusion,” Journal of Virology, vol. 67,no. 3, pp. 1365–1372, 1993.

[17] A. Maillard, M. Domanski, P. Brunet, A. Chaffotte, E. Guittet,and Y. Gaudin, “Spectroscopic characterization of two peptidesderived from the stem of rabies virus glycoprotein,” VirusResearch, vol. 93, no. 2, pp. 151–158, 2003.

[18] A. P. Maillard and Y. Gaudin, “Rabies virus glycoprotein canfold in two alternative, antigenically distinct conformationsdepending on membrane-anchor type,” The Journal of GeneralVirology, vol. 83, no. 6, pp. 1465–1476, 2002.

[19] J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, and Y. Zhang, “TheI-TASSER suite: protein structure and function prediction,”Nature Methods, vol. 12, no. 1, pp. 7–8, 2015.

[20] M. R. Wilkins, E. Gasteiger, A. Bairoch et al., “Protein iden-tification and analysis tools in the ExPASy server,” Methods inMolecular Biology, vol. 112, pp. 531–552, 1999.

[21] C. Cole, J. D. Barber, and G. J. Barton, “The Jpred 3 secondarystructure prediction server,” Nucleic Acids Research, vol. 36, pp.W197–W201, 2008.

[22] F. Ferre and P. Clote, “DiANNA: a web server for disulfideconnectivity prediction,” Nucleic Acids Research, vol. 33, no. 2,pp. W230–W232, 2005.

[23] A. Krogh, B. Larsson, G. von Heijne, and E. L. L. Sonnhammer,“Predicting transmembrane protein topology with a hiddenMarkov model: application to complete genomes,” Journal ofMolecular Biology, vol. 305, no. 3, pp. 567–580, 2001.

[24] T. Nugent and D. T. Jones, “Transmembrane protein topologyprediction using support vector machines,” BMC Bioinformat-ics, vol. 10, article 159, 2009.

[25] A. Roy, A. Kucukural, and Y. Zhang, “I-TASSER: a unified plat-form for automated protein structure and function prediction,”Nature Protocols, vol. 5, no. 4, pp. 725–738, 2010.

[26] R. A. Laskowski, J. A. C. Rullmann, M. W. MacArthur, R.Kaptein, and J. M. Thornton, “AQUA and PROCHECK-NMR:programs for checking the quality of protein structures solvedby NMR,” Journal of Biomolecular NMR, vol. 8, no. 4, pp. 477–486, 1996.

[27] M. Wiederstein and M. J. Sippl, “ProSA-web: interactive webservice for the recognition of errors in three-dimensionalstructures of proteins,”Nucleic Acids Research, vol. 35, no. 2, pp.W407–W410, 2007.

[28] D. Kozakov, D. R. Hall, D. Beglov et al., “Achieving reliabilityand high accuracy in automated protein docking: ClusPro,PIPER, SDU, and stability analysis in CAPRI rounds 13-19,”Proteins, vol. 78, no. 15, pp. 3124–3130, 2010.

[29] S. R. Comeau, D. Kozakov, R. Brenke, Y. Shen, D. Beglov, andS. Vajda, “ClusPro: performance in CAPRI rounds 6-11 and thenew server,” Proteins: Structure, Function and Genetics, vol. 69,no. 4, pp. 781–785, 2007.

[30] S. R. Comeau, D. W. Gatchell, S. Vajda, and C. J. Camacho,“ClusPro: a fully automated algorithm for protein-proteindocking,” Nucleic Acids Research, vol. 32, pp. W96–W99, 2004.

[31] S. R. Comeau, D. W. Gatchell, S. Vajda, and C. J. Camacho,“ClusPro: an automated docking and discrimination methodfor the prediction of protein complexes,” Bioinformatics, vol. 20,no. 1, pp. 45–50, 2004.

[32] R. A. Laskowski, “PDBsum new things,”Nucleic Acids Research,vol. 37, no. 1, pp. D355–D359, 2009.

[33] J. C. Phillips, R. Braun, W. Wang et al., “Scalable moleculardynamics with NAMD,” Journal of Computational Chemistry,vol. 26, no. 16, pp. 1781–1802, 2005.

[34] A. D. MacKerell Jr., D. Bashford, M. Bellott et al., “All-atomempirical potential for molecular modeling and dynamicsstudies of proteins,”The Journal of Physical Chemistry B, vol. 102,no. 18, pp. 3586–3616, 1998.

[35] N. M. Glykos, “Software news and updates. Carma: a moleculardynamics analysis program,” Journal of Computational Chem-istry, vol. 27, no. 14, pp. 1765–1768, 2006.

[36] J. Hsin, A. Arkhipov, Y. Yin, J. E. Stone, and K. Schulten,“Using VMD: an introductory tutorial,” Current Protocols inBioinformatics, vol. 24, unit 5.7, pp. 5.7.1–5.7.48, 2008.

[37] P. Smialowski, A. J. Martin-Galiano, A. Mikolajka, T. Girschick,T. A. Holak, and D. Frishman, “Protein solubility: sequencebased prediction and experimental verification,”Bioinformatics,vol. 23, no. 19, pp. 2536–2542, 2007.

[38] M. Saxena, S. S. Bhunia, and A. K. Saxena, “Docking studiesof novel pyrazinopyridoindoles class of antihistamines withthe homology modelled H(1)-receptor,” SAR and QSAR inEnvironmental Research, vol. 23, no. 3-4, pp. 311–325, 2012.

[39] I. R. Ramachandran, W. Song, N. Lapteva et al., “Thephosphatase SRC homology region 2 domain-containingphosphatase-1 is an intrinsic central regulator of dendritic cellfunction,”The Journal of Immunology, vol. 186, no. 7, pp. 3934–3945, 2011.

[40] A. Ferlin, H. Raux, E. Baquero, J. Lepault, and Y. Gaudin, “Char-acterization of pH-sensitive molecular switches that trigger thestructural transition of vesicular stomatitis virus glycoproteinfrom the postfusion state toward the prefusion state,” Journal ofVirology, vol. 88, no. 22, pp. 13396–13409, 2014.

Page 11: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

BioMed Research International 11

[41] A. A. Albertini, C. Merigoux, S. Libersou et al., “Characteri-zation of monomeric intermediates during VSV glycoproteinstructural transition,” PLoS Pathogens, vol. 8, no. 2, Article IDe1002556, 2012.

[42] Y. Gaudin, “Reversibility in fusion protein conformationalchanges. The intriguing case of rhabdovirus-induced mem-brane fusion,” Sub-Cellular Biochemistry, vol. 34, pp. 379–408,2000.

[43] X. Sun, S. Belouzard, and G. R. Whittaker, “Molecular archi-tecture of the bipartite fusion loops of vesicular stomatitis virusglycoprotein G, a class III viral fusion protein,” The Journal ofBiological Chemistry, vol. 283, no. 10, pp. 6418–6427, 2008.

[44] S. Roche, S. Bressanelli, F. A. Rey, and Y. Gaudin, “Crystalstructure of the low-pH form of the vesicular stomatitis virusglycoprotein G,” Science, vol. 313, no. 5784, pp. 187–191, 2006.

[45] C. Colovos and T. O. Yeates, “Verification of protein structures:patterns of nonbonded atomic interactions,” Protein Science,vol. 2, no. 9, pp. 1511–1519, 1993.

[46] S. C. Lovell, I. W. Davis, W. B. Arendall III et al., “Structurevalidation by 𝐶𝛼 geometry: 𝜙/𝜓 and 𝐶𝛽 deviation,” Proteins:Structure, Function &Genetics, vol. 50, no. 3, pp. 437–450, 2002.

Page 12: Research Article Predicted 3D Model of the Rabies Virus ...downloads.hindawi.com/journals/bmri/2016/1674580.pdf · Research Article Predicted 3D Model of the Rabies Virus Glycoprotein

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttp://www.hindawi.com

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Microbiology