research article system of operator quasi equilibrium โ€ฆ...internationaljournalofanalysis...

7
Research Article System of Operator Quasi Equilibrium Problems Suhel Ahmad Khan Department of Mathematics, BITS-Pilani, Dubai Campus, P.O. Box 345055, Dubai, UAE Correspondence should be addressed to Suhel Ahmad Khan; [email protected] Received 24 January 2014; Accepted 4 June 2014; Published 19 June 2014 Academic Editor: Sivaguru Sritharan Copyright ยฉ 2014 Suhel Ahmad Khan. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider a system of operator quasi equilibrium problems and system of generalized quasi operator equilibrium problems in topological vector spaces. Using a maximal element theorem for a family of set-valued mappings as basic tool, we derive some existence theorems for solutions to these problems with and without involving ฮฆ-condensing mappings. 1. Introduction In 2002, Domokos and Kolumbยด an [1] gave an interesting interpretation of variational inequality and vector variational inequalities (for short, VVI) in Banach space settings in terms of variational inequalities with operator solutions (for short, OVVI). e notion and viewpoint of OVVI due to Domokos and Kolumbยด an [1] look new and interesting even though it has a limitation in application to VVI. Recently, Kazmi and Raouf [2] introduced the operator equilibrium problem which gen- eralizes the notion of OVVI to operator vector equilibrium problems (for short, OVEP) using the operator solution. ey derived some existence theorems of solution of OVEP with pseudomonotonicity, without pseudomonotonicity, and with -pseudomonotonicity. However, they dealt with only the single-valued case of the bioperator. It is very natural and useful to extend a single-valued case to a corresponding set- valued one from both theoretical and practical points of view. e system of vector equilibrium problems and the system of vector quasi equilibrium problems were introduced and studied by Ansari et al. [3, 4]. Inspired by above cited work, in this paper, we consider a system of operator quasi equilibrium problems (for short, SOQEP) in topological vector spaces. Using a maximal element theorem for a family of set-valued mappings according to [5] as basic tool, we derive some existence theorems for solutions to SOQEP with and without involving ฮฆ-condensing mappings. Further, we consider a system of generalized quasi oper- ator equilibrium problems (for short, SGQOEP) in topo- logical vector spaces and give some of its special cases and derive some existence theorems for solutions to SOQEP with and without involving ฮฆ-condensing mappings by using well-known maximal element theorem [5] for a family of set-valued mappings, and, consequently, we also get some existence theorems for solutions to a system of operator equilibrium problems. 2. Preliminaries Let be an index set, for each โˆˆ, and let be a Hausdor๏ฌ€ topological vector space. We denote ( , ), the space of all continuous linear operators from into , where is topological vector space for each โˆˆ. Consider a family of nonempty convex subsets { } โˆˆ with in ( , ). Let =โˆ โˆˆ , =โˆ โˆˆ . (1) Let : โ†’ 2 be a set-valued mapping such that, for each โˆˆ, () is solid, open, and convex cone such that 0โˆ‰ () and =โ‹‚ โˆˆ (). For each โˆˆ, let :ร— โ†’ be a bifunction and let :โ†’2 be a set-valued mapping with nonempty values. We consider the following system of operator quasi Hindawi Publishing Corporation International Journal of Analysis Volume 2014, Article ID 848206, 6 pages http://dx.doi.org/10.1155/2014/848206

Upload: others

Post on 20-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleSystem of Operator Quasi Equilibrium Problems

    Suhel Ahmad Khan

    Department of Mathematics, BITS-Pilani, Dubai Campus, P.O. Box 345055, Dubai, UAE

    Correspondence should be addressed to Suhel Ahmad Khan; [email protected]

    Received 24 January 2014; Accepted 4 June 2014; Published 19 June 2014

    Academic Editor: Sivaguru Sritharan

    Copyright ยฉ 2014 Suhel Ahmad Khan.This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    We consider a system of operator quasi equilibrium problems and system of generalized quasi operator equilibrium problems intopological vector spaces. Using a maximal element theorem for a family of set-valued mappings as basic tool, we derive someexistence theorems for solutions to these problems with and without involvingฮฆ-condensing mappings.

    1. Introduction

    In 2002, Domokos and Kolumbaฬn [1] gave an interestinginterpretation of variational inequality and vector variationalinequalities (for short, VVI) in Banach space settings in termsof variational inequalities with operator solutions (for short,OVVI). The notion and viewpoint of OVVI due to DomokosandKolumbaฬn [1] looknew and interesting even though it hasa limitation in application toVVI. Recently, Kazmi and Raouf[2] introduced the operator equilibrium problem which gen-eralizes the notion of OVVI to operator vector equilibriumproblems (for short, OVEP) using the operator solution.Theyderived some existence theorems of solution of OVEP withpseudomonotonicity, without pseudomonotonicity, and with๐ต-pseudomonotonicity. However, they dealt with only thesingle-valued case of the bioperator. It is very natural anduseful to extend a single-valued case to a corresponding set-valued one from both theoretical and practical points of view.

    The system of vector equilibrium problems and thesystem of vector quasi equilibriumproblemswere introducedand studied by Ansari et al. [3, 4]. Inspired by above citedwork, in this paper, we consider a system of operator quasiequilibrium problems (for short, SOQEP) in topologicalvector spaces. Using a maximal element theorem for a familyof set-valued mappings according to [5] as basic tool, wederive some existence theorems for solutions to SOQEP withand without involvingฮฆ-condensing mappings.

    Further, we consider a system of generalized quasi oper-ator equilibrium problems (for short, SGQOEP) in topo-logical vector spaces and give some of its special cases and

    derive some existence theorems for solutions to SOQEPwith andwithout involvingฮฆ-condensingmappings by usingwell-known maximal element theorem [5] for a family ofset-valued mappings, and, consequently, we also get someexistence theorems for solutions to a system of operatorequilibrium problems.

    2. Preliminaries

    Let ๐ผ be an index set, for each ๐‘– โˆˆ ๐ผ, and let๐‘‹๐‘–be a Hausdorff

    topological vector space. We denote ๐ฟ(๐‘‹๐‘–, ๐‘Œ๐‘–), the space of

    all continuous linear operators from ๐‘‹๐‘–into ๐‘Œ

    ๐‘–, where ๐‘Œ

    ๐‘–is

    topological vector space for each ๐‘– โˆˆ ๐ผ. Consider a family ofnonempty convex subsets {๐พ

    ๐‘–}๐‘–โˆˆ๐ผ

    with๐พ๐‘–in ๐ฟ(๐‘‹

    ๐‘–, ๐‘Œ๐‘–).

    Let

    ๐‘‹ = โˆ

    ๐‘–โˆˆ๐ผ

    ๐‘‹๐‘–,

    ๐พ = โˆ

    ๐‘–โˆˆ๐ผ

    ๐พ๐‘–.

    (1)

    Let ๐ถ๐‘–: ๐พ โ†’ 2

    ๐‘Œ๐‘– be a set-valued mapping such that, foreach ๐‘“ โˆˆ ๐พ, ๐ถ

    ๐‘–(๐‘“) is solid, open, and convex cone such that

    0 โˆ‰ ๐ถ๐‘–(๐‘“) and ๐‘ƒ

    ๐‘–= โ‹‚๐‘“โˆˆ๐พ

    ๐ถ๐‘–(๐‘“).

    For each ๐‘– โˆˆ ๐ผ, let ๐น๐‘–: ๐พ ร— ๐พ

    ๐‘–โ†’ ๐‘Œ๐‘–be a bifunction and

    let ๐ด๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– be a set-valued mapping with nonemptyvalues. We consider the following system of operator quasi

    Hindawi Publishing CorporationInternational Journal of AnalysisVolume 2014, Article ID 848206, 6 pageshttp://dx.doi.org/10.1155/2014/848206

  • 2 International Journal of Analysis

    equilibrium problems (for short, SOQEP). Find ๐‘“ โˆˆ ๐พ suchthat, for each ๐‘– โˆˆ ๐ผ,

    ๐‘“๐‘–โˆˆ ๐ด๐‘–(๐‘“) , ๐น

    ๐‘–(๐‘“, ๐‘”๐‘–) โˆ‰ โˆ’๐ถ

    ๐‘–(๐‘“) , โˆ€๐‘”

    ๐‘–โˆˆ ๐ด๐‘–(๐‘“) . (2)

    We remarked that, for the suitable choices of ๐ผ, ๐น๐‘–, ๐พ๐‘–,

    ๐‘‹๐‘–, ๐‘Œ๐‘–, ๐ถ๐‘–, and ๐ด

    ๐‘–, SOQEP (2) reduces to the problems

    considered and studied by [3โ€“6] and the references therein.Now, we will give the following concepts and results

    which are used in the sequel.

    Definition 1. Let ๐‘€ be a nonempty and convex subset of atopological vector space, and let ๐‘ be a topological vectorspace with a closed and convex cone๐‘ƒwith apex at the origin.A vector-valued function ๐œ™ : ๐‘€ โ†’ ๐‘ is said to be as follows:

    (i) P-function if and only if โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€ and ๐œ† โˆˆ [0, 1]:

    ๐œ™ (๐œ†๐‘ฅ + (1 โˆ’ ๐œ†) ๐‘ฆ) โˆˆ ๐œ†๐œ™ (๐‘ฅ) + (1 โˆ’ ๐œ†) ๐œ™ (๐‘ฆ) โˆ’ ๐‘ƒ; (3)

    (ii) natural P-quasifunction if and only if โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€ and๐œ† โˆˆ [0, 1]:

    ๐œ™ (๐œ†๐‘ฅ + (1 โˆ’ ๐œ†) ๐‘ฆ) โˆˆ ๐ถ๐‘œ {๐œ™ (๐‘ฅ) , ๐œ™ (๐‘ฆ)} โˆ’ ๐‘ƒ, (4)

    where ๐ถ๐‘œ๐ต denotes the convex hull of ๐ต;(iii) P-quasifunction if and only if โˆ€๐›ผ โˆˆ ๐‘ and the set {๐‘ฅ โˆˆ

    ๐‘€ : ๐œ™(๐‘ฅ) โˆ’ ๐›ผ โˆˆ โˆ’๐‘ƒ} is convex.

    Definition 2 (see [7]). Let๐‘‹ be a topological vector space andlet ๐ฟ be a lattice with a minimal element, denoted by 0. Amapping ๐œ™ : 2๐‘‹ โ†’ ๐ฟ is called a measure of noncompactnessprovided that the following conditions hold for any ๐‘€,๐‘ โˆˆ2๐‘‹:

    (i) ๐œ™(๐ถ๐‘œ๐‘€) = ๐œ™(๐‘€), where ๐ถ๐‘œ๐‘€ denotes the closedconvex hull of๐‘€;

    (ii) ๐œ™(๐‘€) = ๐‘œ if and only if๐‘€ is precompact;(iii) ๐œ™(๐‘€ โˆช๐‘) = max{๐œ™(๐‘€), ๐œ™(๐‘)}.

    Definition 3 (see [7]). Let ๐‘‹ be a topological vector space,๐ท โŠ‚ ๐‘‹, and let ๐œ™ be a measure of noncompactness on ๐‘‹.A set-valued mapping ๐‘‡ : ๐ท โ†’ 2๐‘‹ is called ๐œ™-condensingprovided that ๐‘€ โŠ‚ ๐ท with ๐œ™(๐‘‡(๐‘€)) โ‰ฅ ๐œ™(๐‘€); then ๐‘€ isrelative compact; that is,๐‘€ is compact.

    Remark 4. Note that every set-valued mapping defined ona compact set is ๐œ™-condensing for any measure of noncom-pactness ๐œ™. If ๐‘‹ is locally convex, then a compact set-valuedmapping (i.e., ๐‘‡(๐ท) is precompact) is ๐œ™-condensing for anymeasure of noncompactness ๐œ™. Obviously, if ๐‘‡ : ๐ท โ†’ 2๐‘‹ is๐œ™-condensing and ๐‘‡ : ๐ท โ†’ 2๐‘‹ satisfies ๐‘‡(๐‘ฅ) โŠ‚ ๐‘‡(๐‘ฅ), forall ๐‘ฅ โˆˆ ๐‘‹, then ๐‘‡ is also ๐œ™-condensing.

    The following maximal element theorems will play keyrole in establishing existence results.

    Theorem 5 (see [8]). For each ๐‘– โˆˆ ๐ผ, let ๐พ๐‘–be a nonempty

    convex subset of a topological vector space ๐‘‹๐‘–and let ๐‘†

    ๐‘–, ๐‘‡๐‘–:

    ๐พ โ†’ 2๐พ๐‘– be the two set-valued mappings. For each ๐‘– โˆˆ ๐ผ,

    assume that the following conditions hold:

    (a) for all ๐‘ฅ โˆˆ ๐พ, ๐ถ๐‘œ๐‘†๐‘–(๐‘ฅ) โŠ† ๐‘‡

    ๐‘–(๐‘ฅ);

    (b) for all ๐‘ฅ โˆˆ ๐พ, ๐‘ฅ๐‘–โˆ‰ ๐‘‡๐‘–(๐‘ฅ);

    (c) for all ๐‘ฆ๐‘–โˆˆ ๐พ๐‘–, ๐‘†๐‘–

    โˆ’1(๐‘ฆ๐‘–) is compactly open ๐พ;

    (d) there exist a nonempty compact subset ๐ท of ๐พ and anonempty compact convex subset ๐ธ

    ๐‘–โŠ† ๐พ๐‘–, for each ๐‘– โˆˆ

    ๐ผ, such that, for all ๐‘ฅ โˆˆ ๐พ \ ๐ท, there exists ๐‘– โˆˆ ๐ผ suchthat ๐‘†

    ๐‘–(๐‘ฅ) โˆฉ ๐ธ

    ๐‘–ฬธ= 0.

    Then, there exists ๐‘ฅ โˆˆ ๐พ such that ๐‘†๐‘–(๐‘ฅ) = 0 for each ๐‘– โˆˆ ๐ผ.

    We will use the following particular form of a maximalelement theorem for a family of set-valued mappings due toDeguire et al. [5].

    Theorem 6 (see [5]). Let ๐ผ be any index set, for each ๐‘– โˆˆ ๐ผ,let ๐พ๐‘–be a nonempty convex subset of a Hausdorff topological

    vector space๐‘‹๐‘–, and let ๐‘†

    ๐‘–: ๐พ = โˆ

    ๐‘–โˆˆ๐ผ๐พ๐‘–โ†’ 2๐พ๐‘– be a set-valued

    mapping. Assume that the following conditions hold:

    (i) โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘ฅ โˆˆ ๐พ; ๐‘†๐‘–(๐‘ฅ) is convex;

    (ii) โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘ฅ โˆˆ ๐พ; ๐‘ฅ๐‘–โˆ‰ ๐‘†๐‘–(๐‘ฅ), where ๐‘ฅ

    ๐‘–is the ๐‘–th

    component of ๐‘ฅ;(iii) โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘ฆ

    ๐‘–โˆˆ ๐พ๐‘–; ๐‘†๐‘–

    โˆ’1(๐‘ฆ๐‘–) is open ๐พ;

    (iv) there exist a nonempty compact subset ๐ท of ๐พ and anonempty compact convex subset ๐ธ

    ๐‘–โŠ† ๐พ๐‘–, โˆ€๐‘– โˆˆ ๐ผ such

    that โˆ€๐‘ฅ โˆˆ ๐พ \๐ท and there exists ๐‘– โˆˆ ๐ผ such that ๐‘†๐‘–(๐‘ฅ) โˆฉ

    ๐ธ๐‘–

    ฬธ= 0.

    Then, there exists ๐‘ฅ โˆˆ ๐พ such that ๐‘†๐‘–(๐‘ฅ) = 0 for each ๐‘– โˆˆ ๐ผ.

    Remark 7. If โˆ€๐‘– โˆˆ ๐ผ, ๐พ๐‘–is nonempty, closed, and convex

    subset of a locally convex Hausdorff topological vector space๐‘‹๐‘–, then condition (iv) of Theorem 6 can be replaced by the

    following condition:(iv)1 the set-valued mapping ๐‘† : ๐พ โ†’ 2๐พ is defined as

    ๐‘†(๐‘ฅ) = โˆ๐‘–โˆˆ๐ผ

    ๐‘†๐‘–(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐พ, ๐œ™-condensing.

    3. Main Result

    Throughout this paper, unless otherwise stated, for any indexset ๐ผ and for each ๐‘– โˆˆ ๐ผ, let ๐‘Œ

    ๐‘–be a topological vector space

    and let ๐พ = โˆ๐‘–โˆˆ๐ผ

    ๐พ๐‘–, ๐ถ๐‘–: ๐พ โ†’ 2

    ๐‘Œ๐‘– be a set-valued mappingsuch that, for each ๐‘“ โˆˆ ๐พ, ๐ถ

    ๐‘–(๐‘“) is proper, solid, open, and

    convex cone such that 0 โˆ‰ ๐ถ๐‘–(๐‘“) and ๐‘ƒ

    ๐‘–= โ‹‚๐‘“โˆˆ๐พ

    ๐ถ๐‘–(๐‘“). We

    denote ๐ฟ(๐‘‹๐‘–, ๐‘Œ๐‘–), the space of all continuous linear operators

    from๐‘‹๐‘–into ๐‘Œ

    ๐‘–. We also assume that โˆ€๐‘– โˆˆ ๐ผ, ๐ด

    ๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– isa set-valued mapping such that โˆ€๐‘“ โˆˆ ๐พ,๐ด

    ๐‘–(๐‘“) is nonempty

    and convex,๐ดโˆ’1(๐‘”๐‘–) is open in๐พ,๐‘“

    ๐‘–โˆˆ ๐พ๐‘–, and the set๐น

    ๐‘–: {๐‘“ โˆˆ

    ๐พ : ๐‘“๐‘–โˆˆ ๐ด๐‘–(๐‘“)} is closed in๐พ, where ๐‘“

    ๐‘–is the ๐‘–th component

    of ๐‘“.Now, we have the following existence result for SOQEP

    (2).

    Theorem 8. For each ๐‘– โˆˆ ๐ผ, let ๐พ๐‘–be nonempty and convex

    subset of aHausdorff topological vector space๐‘‹๐‘–and let๐น

    ๐‘–: ๐พร—

    ๐พ๐‘–โ†’ ๐‘Œ๐‘–be a bifunction. Suppose that the following conditions

    hold:

  • International Journal of Analysis 3

    (i) โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘“ โˆˆ ๐พ, ๐น๐‘–(๐‘“, ๐‘“๐‘–) โˆ‰ โˆ’๐ถ

    ๐‘–(๐‘“), where ๐‘“

    ๐‘–is the

    ๐‘–th component of ๐‘“;(ii) โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘“ โˆˆ ๐พ; the vector-valued function ๐‘”

    ๐‘–โ†’

    ๐น๐‘–(๐‘“, ๐‘”๐‘–) is natural ๐‘ƒ

    ๐‘–-quasifunction;

    (iii) โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘”๐‘–โˆˆ ๐พ๐‘–; the set {๐‘“ โˆˆ ๐พ : ๐น

    ๐‘–(๐‘“, ๐‘”๐‘–) โˆ‰

    โˆ’๐ถ๐‘–(๐‘“)} is closed in ๐พ;

    (iv) there exist a nonempty compact subset ๐‘ of ๐พ and anonempty compact convex subset๐ต

    ๐‘–of๐พ๐‘–, for each ๐‘– โˆˆ ๐ผ

    such that โˆ€๐‘“ โˆˆ ๐พ \ ๐‘; there exists ๐‘– โˆˆ ๐ผ and ๐‘”๐‘–โˆˆ ๐ต๐‘–

    such that ๐‘”๐‘–โˆˆ ๐ด๐‘–(๐‘“) and ๐น

    ๐‘–(๐‘“, ๐‘”๐‘–) โˆˆ โˆ’๐ถ

    ๐‘–(๐‘“).

    Then SOQEP (2) has a solution.

    Proof. Let us define, for each given ๐‘– โˆˆ ๐ผ, a set-valuedmapping ๐‘‡

    ๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– by

    ๐‘‡๐‘–(๐‘“) = {๐‘”

    ๐‘–โˆˆ ๐พ๐‘–: ๐น๐‘–(๐‘“, ๐‘”๐‘–) โˆˆ โˆ’๐ถ

    ๐‘–(๐‘“)} , โˆ€๐‘“ โˆˆ ๐พ. (5)

    First, we claim that โˆ€๐‘– โˆˆ ๐ผ and ๐‘“ โˆˆ ๐พ, ๐‘‡๐‘–(๐‘“) is convex. Fix an

    arbitrary ๐‘– โˆˆ ๐ผ and ๐‘“ โˆˆ ๐พ. Let ๐‘”๐‘–,1, ๐‘”๐‘–,2

    โˆˆ ๐‘‡๐‘–(๐‘“) and ๐œ† โˆˆ [0, 1];

    then we have

    ๐น๐‘–(๐‘“, ๐‘”๐‘–๐‘—) โˆˆ โˆ’๐ถ

    ๐‘–(๐‘“) , for ๐‘— = 1, 2. (๐‘–)

    Since๐น๐‘–(๐‘“, โ‹…) is natural๐‘ƒ

    ๐‘–-quasifunction, there exists๐œ‡ โˆˆ [0, 1]

    such that

    ๐น๐‘–(๐‘“, ๐œ†๐‘”

    ๐‘–,1+ (1 โˆ’ ๐œ†) ๐‘”๐‘–,2) โˆˆ ๐œ‡๐น๐‘– (๐‘“, ๐‘”๐‘–,1)

    + (1 โˆ’ ๐œ‡) ๐น๐‘–(๐‘“, ๐‘”๐‘–,2) โˆ’ ๐‘ƒ๐‘–.

    (๐‘–๐‘–)

    From the inclusion of (๐‘–) and (๐‘–๐‘–), we get

    ๐น๐‘–(๐‘“, ๐œ†๐‘”

    ๐‘–,1+ (1 โˆ’ ๐œ†) ๐‘”๐‘–,2) โˆˆ โˆ’๐ถ๐‘– (๐‘“) โˆ’ ๐ถ๐‘– (๐‘“) โˆ’ ๐‘ƒ๐‘– โŠ† ๐ถ๐‘– (๐‘“) .

    (6)

    Hence, ๐œ†๐‘”๐‘–,1+(1โˆ’๐œ†)๐‘”

    ๐‘–,2โˆˆ ๐‘‡๐‘–(๐‘“) and therefore๐‘‡

    ๐‘–(๐‘“) is convex.

    Since ๐‘– โˆˆ ๐ผ and ๐‘“ โˆˆ ๐พ are arbitrary, ๐‘‡๐‘–(๐‘“) is convex, โˆ€๐‘“ โˆˆ ๐พ

    and โˆ€๐‘– โˆˆ ๐ผ.Hence, our claim is then verified.Now โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘”

    ๐‘–โˆˆ ๐พ๐‘–; the complement of ๐‘‡

    ๐‘–

    โˆ’1(๐‘”๐‘–) in

    ๐พ can be defined as

    [๐‘‡๐‘–

    โˆ’1(๐‘”๐‘–)]๐‘

    = {๐‘“ โˆˆ ๐พ : ๐น๐‘–(๐‘“, ๐‘”๐‘–) โˆ‰ โˆ’๐ถ

    ๐‘–(๐‘“)} . (7)

    From condition (iii) of the above theorem, [๐‘‡๐‘–

    โˆ’1(๐‘”๐‘–)]๐‘ will be

    closed in ๐พ.Suppose that โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘“ โˆˆ ๐พ; we define another set-

    valued mapping๐‘€๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– by

    ๐‘€๐‘–(๐‘“) =

    {

    {

    {

    ๐ด๐‘–(๐‘“) โˆฉ ๐‘‡

    ๐‘–(๐‘“) if ๐‘“ โˆˆ F

    ๐‘–

    ๐ด๐‘–(๐‘“) ; if ๐‘“ โˆˆ ๐พ \F

    ๐‘–.

    (8)

    Then, it is clear that โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘“ โˆˆ ๐พ,๐‘€๐‘–(๐‘“) is convex,

    because ๐ด(๐‘“) and ๐‘‡๐‘–(๐‘“) are both convex. Now, by condition

    (i), ๐‘“๐‘–โˆ‰ ๐‘€๐‘–(๐‘“). Since โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘”

    ๐‘–โˆˆ ๐พ๐‘–,

    ๐‘€๐‘–

    โˆ’1(๐‘”๐‘–)

    = (๐ด๐‘–

    โˆ’1(๐‘”๐‘–) โˆฉ ๐‘‡๐‘–

    โˆ’1(๐‘”๐‘–))โ‹ƒ((๐พ \F

    ๐‘–) โˆฉ ๐ด๐‘–

    โˆ’1(๐‘”๐‘–))

    (9)

    is open in ๐พ, because ๐ด๐‘–

    โˆ’1(๐‘”๐‘–), ๐‘‡๐‘–

    โˆ’1(๐‘”๐‘–) and ๐พ \F

    ๐‘–are open

    in ๐พ.Condition (iv) of Theorem 6 is followed from condition

    (iv). Hence, by fixed pointTheorem 6, there exists๐‘“ โˆˆ ๐พ suchthat ๐‘€

    ๐‘–(๐‘“) = 0, โˆ€๐‘– โˆˆ ๐ผ. Since โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘“ โˆˆ ๐พ,๐ด

    ๐‘–(๐‘“)

    is nonempty, we have ๐ด๐‘–(๐‘“) โˆฉ ๐‘‡

    ๐‘–(๐‘“) = 0, โˆ€๐‘– โˆˆ ๐ผ. Therefore,

    โˆ€๐‘– โˆˆ ๐ผ, ๐‘“๐‘–โˆˆ ๐ด๐‘–(๐‘“) and ๐น

    ๐‘–(๐‘“, ๐‘”๐‘–) โˆˆ โˆ’๐ถ

    ๐‘–(๐‘“), โˆ€๐‘”

    ๐‘–โˆˆ ๐ด๐‘–(๐‘“).

    This completes the proof.

    Now, we establish an existence result for SOQEP (2)involving ๐œ™-condensing maps.

    Theorem 9. For each ๐‘– โˆˆ ๐ผ, let ๐พ๐‘–be a nonempty, closed, and

    convex subset of a locally convex Hausdorff topological vectorspace ๐‘‹

    ๐‘–, suppose that ๐น

    ๐‘–: ๐พ ร— ๐พ

    ๐‘–โ†’ ๐‘Œ๐‘–is a bifunction, and

    let the set-valued mapping ๐ด = โˆ๐‘–โˆˆ๐ผ

    ๐ด๐‘–: ๐พ โ†’ 2

    ๐พ definedas ๐ด(๐‘“) = โˆ

    ๐‘–โˆˆ๐ผ๐ด๐‘–(๐‘“), โˆ€๐‘“ โˆˆ ๐พ be ๐œ™-condensing. Assume that

    conditions (i), (ii), and (iii) of Theorem 8 hold. Then SOQEP(2) has a solution.

    Proof. In view of Remark 7, it is sufficient to show that theset-valued mapping ๐‘† : ๐พ โ†’ 2๐พ defined as ๐‘†(๐‘“) =โˆ๐‘–โˆˆ๐ผ

    ๐‘†๐‘–(๐‘“), โˆ€๐‘“ โˆˆ ๐พ, is ๐œ™-condensing, where ๐‘†

    ๐‘–s are the same

    as defined in the proof of Theorem 8. By the definition of๐‘†๐‘–, ๐‘†๐‘–(๐‘“) โŠ† ๐ด

    ๐‘–(๐‘“), โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘“ โˆˆ ๐พ and therefore ๐‘†(๐‘“) โŠ†

    ๐ด(๐‘“), โˆ€๐‘“ โˆˆ ๐พ. Since ๐ด is ๐œ™-condensing, by Remark 7, wehave ๐‘† being also ๐œ™-condensing.

    This completes the proof.

    4. System of Generalized Quasi OperatorEquilibrium Problem

    Throughout this section, unless otherwise stated, let ๐ผ be anyindex set. For each ๐‘– โˆˆ ๐ผ, let ๐‘‹

    ๐‘–be a Hausdorff topological

    vector space. We denote ๐ฟ(๐‘‹๐‘–, ๐‘Œ๐‘–), the space of all continuous

    linear operators from๐‘‹๐‘–into๐‘Œ

    ๐‘–, where๐‘Œ

    ๐‘–is topological vector

    space for each ๐‘– โˆˆ ๐ผ and for each ๐‘– โˆˆ ๐ผ; let ๐‘ƒ๐‘–โŠ‚ ๐‘Œ๐‘–be a closed,

    pointed, and convex conewith int๐‘ƒ๐‘–

    ฬธ= 0, where int ๐‘ƒ๐‘–denotes

    the interior of set ๐‘ƒ๐‘–, โˆ€๐‘– โˆˆ ๐ผ. Consider a family of nonempty

    convex subsets {๐พ๐‘–}๐‘–โˆˆ๐ผ

    with๐พ๐‘–in ๐ฟ(๐‘‹

    ๐‘–, ๐‘Œ๐‘–). Let, for each ๐‘– โˆˆ ๐ผ,

    a bifunction ๐น๐‘–: ๐พ ร— ๐พ

    ๐‘–โ†’ ๐‘Œ๐‘–and two set-valued mappings

    ๐ด๐‘–, ๐ต๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– be with nonempty values.Let ๐‘’๐‘–be the unit vector in ๐‘Œ

    ๐‘–, for each ๐‘– โˆˆ ๐ผ, and also

    ๐›ผ๐‘–๐‘’๐‘–, ๐›ฝ๐‘–๐‘’๐‘–โˆˆ ๐‘Œ๐‘–such that ๐›ผ

    ๐‘–๐‘’๐‘–ฬธ<๐‘ƒ๐‘–

    ๐›ฝ๐‘–๐‘’๐‘–, where ๐›ผ

    ๐‘–, ๐›ฝ๐‘–โˆˆ R are two

    real numbers such that ๐›ผ๐‘–โ‰ค ๐›ฝ๐‘–.

    Now, we consider the system of generalized quasi operatorequilibrium problems (for short, SGQOEP). Find ๐‘“ โˆˆ ๐พ suchthat, for each ๐‘– โˆˆ ๐ผ,

    ๐‘“๐‘–โˆˆ ๐ต๐‘–(๐‘“) , ๐›ผ

    ๐‘–๐‘’๐‘–ฬธ<๐‘ƒ๐‘–๐น๐‘–(๐‘“, ๐‘”๐‘–) ฬธ<๐‘ƒ๐‘–๐›ฝ๐‘–๐‘’๐‘–; โˆ€๐‘”

    ๐‘–โˆˆ ๐ด๐‘–(๐‘“) .

    (10)

    4.1. Special Cases

    (I) If ๐ด๐‘–= ๐ต๐‘–, โˆ€๐‘–, then SGQOEP (10) reduces to finding

    of ๐‘“ โˆˆ ๐พ such that, for each ๐‘– โˆˆ ๐ผ,

    ๐›ผ๐‘–๐‘’๐‘–ฬธ<๐‘ƒ๐น๐‘–(๐‘“, ๐‘”๐‘–) ฬธ<๐‘ƒ๐›ฝ๐‘–๐‘’๐‘–; โˆ€๐‘”

    ๐‘–โˆˆ ๐ด๐‘–(๐‘“) . (11)

  • 4 International Journal of Analysis

    (II) If, in Case (I), we take ๐‘Œ๐‘–= R, then ๐‘ƒ

    ๐‘–= R+and

    ๐‘’๐‘–= 1; then problem (10) reduces to the system of

    generalized quasi operator equilibriumproblemswithlower and upper bounds (for short, SGQOEPLUB).Find ๐‘“ โˆˆ ๐พ such that, for each ๐‘– โˆˆ ๐ผ,

    ๐‘“๐‘–โˆˆ ๐ต๐‘–(๐‘“) , ๐›ผ

    ๐‘–โ‰ค ๐น๐‘–(๐‘“, ๐‘”๐‘–) โ‰ค ๐›ฝ๐‘–; โˆ€๐‘”

    ๐‘–โˆˆ ๐ด๐‘–(๐‘“) . (12)

    Now, we establish the existence result for SGQOEP (10).

    Theorem 10. For each ๐‘– โˆˆ ๐ผ, let ๐พ๐‘–be a nonempty convex

    subset of a topological vector space๐‘‹๐‘–and๐น๐‘–, ๐‘ƒ๐‘–, ๐‘„๐‘–: ๐พร—๐พ

    ๐‘–โ†’

    ๐พ๐‘–are the bifunctions, ๐ต

    ๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– is a set-valued mappingsuch that the set ๐น

    ๐‘–= {๐‘“ โˆˆ ๐พ : ๐‘“

    ๐‘–โˆˆ ๐ต๐‘–(๐‘“)} is compactly closed,

    ๐ด๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– is a set-valued mapping with nonempty valuessuch that, for each ๐‘”

    ๐‘–โˆˆ ๐พ๐‘–, ๐ด๐‘–

    โˆ’1(๐‘”๐‘–) is compactly open in ๐พ,

    and โˆ€๐‘– โˆˆ ๐ผ, ๐‘’๐‘–โˆˆ ๐‘Œ๐‘–are the unit vector such that ๐›ผ

    ๐‘–๐‘’๐‘–ฬธ<๐‘ƒ๐‘–๐›ฝ๐‘–๐‘’๐‘–,

    where ๐›ผ๐‘–, ๐›ฝ๐‘–โˆˆ R are two real numbers such that ๐›ผ

    ๐‘–โ‰ค ๐›ฝ๐‘–. For

    each ๐‘– โˆˆ ๐ผ, assume that the following conditions hold:

    (i) for all ๐‘“ โˆˆ ๐พ, ๐ถ๐‘œ๐ด๐‘–(๐‘“) โŠ† ๐ต

    ๐‘–(๐‘“);

    (ii) for all ๐‘“ โˆˆ ๐พ, ๐›ผ๐‘–๐‘’๐‘–>๐‘ƒ๐‘–๐‘ƒ๐‘–(๐‘“, ๐‘“๐‘–) or ๐‘„

    ๐‘–(๐‘“, ๐‘“๐‘–)>๐‘ƒ๐‘–๐›ฝ๐‘–๐‘’๐‘–;

    (iii) for all๐‘“ โˆˆ ๐พ and for every nonempty finite subset๐‘๐‘–โŠ†

    {๐‘”๐‘–โˆˆ ๐พ๐‘–: ๐น๐‘–(๐‘“, ๐‘”๐‘–)<๐‘ƒ๐‘–๐›ผ๐‘–๐‘’๐‘–or ๐น๐‘–(๐‘“, ๐‘”๐‘–)>๐‘ƒ๐‘–๐›ฝ๐‘–๐‘’๐‘–}, we have

    ๐ถ๐‘œ๐‘๐‘–โŠ† {๐‘”๐‘–โˆˆ ๐พ๐‘–: ๐‘ƒ๐‘–(๐‘“, ๐‘”๐‘–) ฬธ<๐‘ƒ๐‘–๐›ผ๐‘–๐‘’๐‘–and ๐‘„

    ๐‘–(๐‘“, ๐‘”๐‘–) ฬธ>๐‘ƒ๐‘–๐›ฝ๐‘–๐‘’๐‘–} ;

    (13)

    (iv) for all ๐‘”๐‘–โˆˆ ๐พ๐‘–, the set {๐‘“ โˆˆ ๐พ : ๐›ฝ

    ๐‘–๐‘’๐‘–ฬธ<๐‘ƒ๐‘–๐น๐‘–(๐‘“, ๐‘”๐‘–) ฬธ<๐‘ƒ๐‘–๐›ผ๐‘–๐‘’๐‘–

    is compactly closed in ๐พ;(v) there exist a nonempty compact subset ๐ท of ๐พ and a

    nonempty compact convex subset ๐ธ๐‘–โŠ‚ ๐พ๐‘–, for each ๐‘– โˆˆ

    ๐ผ, such that, for all๐‘“ โˆˆ ๐พ\๐ท, there exists ๐‘– โˆˆ ๐ผ such that๐‘”๐‘–โˆˆ ๐ธ๐‘–satisfying ๐‘”

    ๐‘–โˆˆ ๐ด๐‘–(๐‘“) and either ๐น

    ๐‘–(๐‘“, ๐‘”๐‘–)๐‘ƒ๐‘–

    <

    ๐›ผ๐‘–๐‘’๐‘–or ๐น๐‘–(๐‘“, ๐‘”๐‘–)>๐‘ƒ๐‘–๐›ฝ๐‘–๐‘’๐‘–.

    Then the problem SGQOEP (10) has a solution.

    Proof. For each ๐‘– โˆˆ ๐ผ and for all ๐‘“ โˆˆ ๐พ, define two set-valuedmappings ๐บ

    ๐‘–, ๐ป๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– by

    ๐บ๐‘–(๐‘“) = {๐‘”

    ๐‘–โˆˆ ๐พ๐‘–: ๐น๐‘–(๐‘“, ๐‘”๐‘–) <๐‘ƒ๐‘–๐›ผ๐‘–๐‘’๐‘–or ๐น๐‘–(๐‘“, ๐‘”๐‘–) >๐‘ƒ๐‘–๐›ฝ๐‘–๐‘’๐‘–} ,

    ๐ป๐‘–(๐‘“) = {๐‘”

    ๐‘–โˆˆ ๐พ๐‘–: ๐‘ƒ๐‘–(๐‘“, ๐‘”๐‘–)๐‘ƒ๐‘–

    ฬธ< ๐›ผ๐‘–๐‘’๐‘–and ๐‘„

    ๐‘–(๐‘“, ๐‘”๐‘–) ฬธ>๐‘ƒ๐‘–๐›ฝ๐‘–๐‘’๐‘–} .

    (14)

    Condition (iii) implies that, for each ๐‘– โˆˆ ๐ผ and for all ๐‘“ โˆˆ ๐พ,๐ถ๐‘œ๐บ๐‘–(๐‘“) โŠ† ๐ป

    ๐‘–(๐‘“).

    From condition (ii), we have ๐‘“๐‘–โˆ‰ ๐ป๐‘–(๐‘“) for all ๐‘“ โˆˆ ๐พ and

    for each ๐‘– โˆˆ ๐ผ.Thus, for each ๐‘– โˆˆ ๐ผ and for all ๐‘”

    ๐‘–โˆˆ ๐พ๐‘–,

    ๐บโˆ’1

    ๐‘–(๐‘”๐‘–) = {๐‘“ โˆˆ ๐พ : ๐น

    ๐‘–(๐‘“, ๐‘”๐‘–) <๐‘ƒ๐‘–๐›ผ๐‘–๐‘’๐‘–or ๐น๐‘–(๐‘“, ๐‘”๐‘–) >๐‘ƒ๐‘–๐›ฝ๐‘–๐‘’๐‘–} .

    (15)

    We have complement of ๐บโˆ’1๐‘–(๐‘”๐‘–) in๐พ:

    [๐บโˆ’1

    ๐‘–(๐‘”๐‘–)]๐‘

    = {๐›ฝ๐‘–๐‘’๐‘–ฬธ<๐‘ƒ๐‘–๐น๐‘–(๐‘“, ๐‘”๐‘–) ฬธ<๐‘ƒ๐‘–๐›ผ๐‘–๐‘’๐‘–} , (16)

    which is compactly closed by virtue of condition (iv). There-fore, for each ๐‘– โˆˆ ๐ผ and for all ๐‘”

    ๐‘–โˆˆ ๐พ๐‘–, ๐บโˆ’1

    ๐‘–(๐‘”๐‘–) is compactly

    open in๐พ.For each ๐‘– โˆˆ ๐ผ, define two set-valued mappings ๐‘†

    ๐‘–, ๐‘‡๐‘–:

    ๐พ โ†’ 2๐พ๐‘– by

    ๐‘†๐‘–(๐‘“) =

    {

    {

    {

    ๐บ๐‘–(๐‘“) โˆฉ ๐ด

    ๐‘–(๐‘“) ; if ๐‘“ โˆˆ F

    ๐‘–

    ๐ด๐‘–(๐‘“) ; if ๐‘“ โˆˆ ๐พ \F

    ๐‘–,

    ๐‘‡๐‘–(๐‘“) =

    {

    {

    {

    ๐ป๐‘–(๐‘“) โˆฉ ๐ต

    ๐‘–(๐‘“) ; if ๐‘“ โˆˆ F

    ๐‘–

    ๐ต๐‘–(๐‘“) ; if ๐‘“ โˆˆ ๐พ \F

    ๐‘–.

    (17)

    Thus, for each ๐‘– โˆˆ ๐ผ and for all ๐‘“ โˆˆ ๐พ,๐ถ๐‘œ๐บ๐‘–(๐‘“) โŠ† ๐ป

    ๐‘–(๐‘“) and

    in view of condition (i), we obtain ๐ถ๐‘œ๐‘†๐‘–(๐‘“) โŠ† ๐‘‡

    ๐‘–(๐‘“). It is easy

    to see that

    ๐‘†๐‘–

    โˆ’1(๐‘”๐‘–) = (๐ด

    ๐‘–

    โˆ’1(๐‘”๐‘–) โˆฉ ๐บ๐‘–

    โˆ’1(๐‘”๐‘–))โ‹ƒ((๐พ \F

    ๐‘–) โˆฉ ๐ด๐‘–

    โˆ’1(๐‘”๐‘–))

    (18)

    for each ๐‘– โˆˆ ๐ผ and for all ๐‘“ โˆˆ ๐พ. Thus, for each ๐‘– โˆˆ ๐ผ and forall๐บ๐‘–

    โˆ’1(๐‘”๐‘–), ๐ด๐‘–

    โˆ’1(๐‘”๐‘–) and๐พ\F

    ๐‘–are compactly open in๐พ. We

    have ๐‘†๐‘–

    โˆ’1(๐‘”๐‘–) being compactly open in ๐พ. Also ๐‘“

    ๐‘–โˆ‰ ๐‘‡๐‘–(๐‘“) for

    all ๐‘“ โˆˆ ๐พ and for each ๐‘– โˆˆ ๐ผ.Then, byTheorem 5, there exists ๐‘“ โˆˆ ๐พ such that ๐‘†

    ๐‘–(๐‘“) =

    0 for each ๐‘– โˆˆ ๐ผ. If ๐‘“ โˆˆ ๐พ \F๐‘–, then ๐ด

    ๐‘–(๐‘“) = ๐‘†

    ๐‘–(๐‘“) = 0, which

    contradicts the fact that ๐ด๐‘–(๐‘“) is nonempty for each ๐‘– โˆˆ ๐ผ

    and for all ๐‘“ โˆˆ ๐‘‹. Hence, ๐‘“ โˆˆ F๐‘–, for each ๐‘– โˆˆ ๐ผ. Therefore,

    ๐‘“๐‘–โˆˆ ๐ต๐‘–(๐‘“) and ๐บ

    ๐‘–(๐‘“) โˆฉ ๐ด

    ๐‘–(๐‘“) = 0, for all ๐‘– โˆˆ ๐ผ. Thus, for each

    ๐‘– โˆˆ ๐ผ, ๐‘“๐‘–โˆˆ ๐ต๐‘–(๐‘“) and ๐›ฝ

    ๐‘–๐‘’๐‘–ฬธ<๐‘ƒ๐‘–๐น๐‘–(๐‘“, ๐‘”๐‘–) ฬธ<๐‘ƒ๐‘–๐›ผ๐‘–๐‘’๐‘–for all ๐‘”

    ๐‘–โˆˆ ๐ด๐‘–(๐‘“).

    This completes the proof.

    Now, we establish an existence result for SGQOEP (10)involving ๐œ™-condensing maps.

    Theorem 11. For each ๐‘– โˆˆ ๐ผ, assume that conditions (i)โ€“(iv)of Theorem 10. hold. Let ๐œ™ be a measure of noncompactness onโˆ๐‘–โˆˆ๐ผ

    ๐‘‹๐‘–. Further, assume that the set-valuedmapping ๐ต : ๐พ โ†’

    2๐พ defined as ๐พ

    ๐‘–is a nonempty, closed, and convex subset of a

    locally convex Hausdorff topological vector space ๐‘‹๐‘–and ๐น

    ๐‘–:

    ๐พร—๐พ๐‘–โ†’ ๐‘Œ๐‘–is a bifunction and let the set-valuedmapping๐ด =

    โˆ๐‘–โˆˆ๐ผ

    ๐ด๐‘–: ๐พ โ†’ 2

    ๐พ defined as ๐ต(๐‘“) = โˆ๐‘–โˆˆ๐ผ

    ๐ต๐‘–(๐‘“), โˆ€๐‘“ โˆˆ ๐พ be

    ๐œ™-condensing. Then, there exists a solution ๐‘“ โˆˆ ๐พ of SGQOEP(10).

    Proof. In view of Remark 7, it is sufficient to show that theset-valued mapping ๐‘‡ : ๐พ โ†’ 2๐พ defined as ๐‘‡(๐‘“) =โˆ๐‘–โˆˆ๐ผ

    ๐‘‡๐‘–(๐‘“), โˆ€๐‘“ โˆˆ ๐พ, is ๐œ™-condensing, where ๐‘‡

    ๐‘–s are the same

    as defined in the proof of Theorem 10. By the definition of๐‘‡๐‘–, ๐‘‡๐‘–(๐‘“) โŠ† ๐ต

    ๐‘–(๐‘“), โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘“ โˆˆ ๐พ and therefore ๐‘†(๐‘“) โŠ†

    ๐ด(๐‘“), โˆ€๐‘“ โˆˆ ๐พ. Since๐ต is๐œ™-condensing, by Remark 7, we have๐‘‡ being also ๐œ™-condensing.

    This completes the proof.

    Next, we derive the existence result for the solution ofSGQOEPLUB (12).

  • International Journal of Analysis 5

    Corollary 12. For each ๐‘– โˆˆ ๐ผ, let ๐พ๐‘–be a nonempty convex

    subset of a topological vector space๐‘‹๐‘–and๐น๐‘–, ๐ฟ๐‘–, ๐‘„๐‘–: ๐พร—๐พ

    ๐‘–โ†’

    R are the bifunctions, ๐ต๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– is a set-valued mappingsuch that the set F

    ๐‘–= {๐‘“ โˆˆ ๐พ : ๐‘“

    ๐‘–โˆˆ ๐ต๐‘–(๐‘“)} is compactly

    closed, ๐ด๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– is a set-valued mapping with nonemptyvalues such that, for each ๐‘”

    ๐‘–โˆˆ ๐พ๐‘–, ๐ด๐‘–

    โˆ’1(๐‘”๐‘–) is compactly open

    in ๐พ, and ๐›ผ๐‘–, ๐›ฝ๐‘–โˆˆ R are two real numbers such that ๐›ผ

    ๐‘–โ‰ค ๐›ฝ๐‘–.

    For each ๐‘– โˆˆ ๐ผ, assume that the following conditions hold:

    (i) for all ๐‘“ โˆˆ ๐พ, ๐ถ๐‘œ๐ด๐‘–(๐‘“) โŠ† ๐ต

    ๐‘–(๐‘“);

    (ii) for all ๐‘“ โˆˆ ๐พ, ๐ฟ๐‘–(๐‘“, ๐‘“๐‘–) < ๐›ผ๐‘–or ๐‘„๐‘–(๐‘“, ๐‘“๐‘–) > ๐›ฝ๐‘–;

    (iii) for all๐‘“ โˆˆ ๐พ and for every nonempty finite subset๐‘๐‘–โŠ†

    {๐‘”๐‘–โˆˆ ๐พ๐‘–: ๐น๐‘–(๐‘“, ๐‘”๐‘–) < ๐›ผ๐‘–or ๐น๐‘–(๐‘“, ๐‘”๐‘–) > ๐›ฝ๐‘–}, we have

    ๐ถ๐‘œ๐‘๐‘–โŠ† {๐‘”๐‘–โˆˆ ๐พ๐‘–: ๐ฟ๐‘–(๐‘“, ๐‘”๐‘–) โ‰ฅ ๐›ผ๐‘–and ๐‘„

    ๐‘–(๐‘“, ๐‘”๐‘–) โ‰ค ๐›ฝ๐‘–} ; (19)

    (iv) for all ๐‘”๐‘–โˆˆ ๐พ๐‘–, the set {๐‘“ โˆˆ ๐พ : ๐›ผ

    ๐‘–โ‰ค ๐น๐‘–(๐‘“, ๐‘”๐‘–) โ‰ค ๐›ฝ๐‘–} is

    compactly closed in ๐พ;(v) there exist a nonempty compact subset ๐ท of ๐พ and a

    nonempty compact convex subset ๐ธ๐‘–โŠ‚ ๐พ๐‘–, for each ๐‘– โˆˆ

    ๐ผ, such that, for all๐‘“ โˆˆ ๐พ\๐ท, there exists ๐‘– โˆˆ ๐ผ such that๐‘”๐‘–โˆˆ ๐ธ๐‘–satisfying ๐‘”

    ๐‘–โˆˆ ๐ด๐‘–(๐‘“) and either ๐น

    ๐‘–(๐‘“, ๐‘”๐‘–) < ๐›ผ๐‘–

    or ๐น๐‘–(๐‘“, ๐‘”๐‘–) > ๐›ฝ๐‘–.

    Then the problem SGQOEPLUB (12) has a solution.

    Proof. For each ๐‘– โˆˆ ๐ผ and for all ๐‘“ โˆˆ ๐พ, define two set-valuedmappings ๐บ

    ๐‘–, ๐ป๐‘–: ๐พ โ†’ 2

    ๐พ๐‘– by

    ๐บ๐‘–(๐‘“) = {๐‘”

    ๐‘–โˆˆ ๐พ๐‘–: ๐น๐‘–(๐‘“, ๐‘”๐‘–) < ๐›ผ๐‘–or ๐น๐‘–(๐‘“, ๐‘”๐‘–) > ๐›ฝ๐‘–} ,

    ๐ป๐‘–(๐‘“) = {๐‘”

    ๐‘–โˆˆ ๐พ๐‘–: ๐ฟ๐‘–(๐‘“, ๐‘”๐‘–) โ‰ฅ ๐›ผ๐‘–and ๐‘„

    ๐‘–(๐‘“, ๐‘”๐‘–) โ‰ค ๐›ฝ๐‘–} .

    (20)

    Condition (iii) implies that, for each ๐‘– โˆˆ ๐ผ and for all ๐‘“ โˆˆ ๐พ,๐ถ๐‘œ๐บ๐‘–(๐‘“) โŠ† ๐ป

    ๐‘–(๐‘“).

    From condition (ii), we have ๐‘“๐‘–โˆ‰ ๐ป๐‘–(๐‘“) for all ๐‘“ โˆˆ ๐พ and

    for each ๐‘– โˆˆ ๐ผ.Thus, for each ๐‘– โˆˆ ๐ผ and for all ๐‘”

    ๐‘–โˆˆ ๐พ๐‘–,

    ๐บโˆ’1

    ๐‘–(๐‘”๐‘–) = {๐‘“ โˆˆ ๐พ : ๐น

    ๐‘–(๐‘“, ๐‘”๐‘–) < ๐›ผ๐‘–or ๐น๐‘–(๐‘“, ๐‘”๐‘–) > ๐›ฝ๐‘–} . (21)

    We have complement of ๐บโˆ’1๐‘–(๐‘”๐‘–) in๐พ:

    [๐บโˆ’1

    ๐‘–(๐‘”๐‘–)]๐‘

    = {๐›ผ๐‘–โ‰ค ๐น๐‘–(๐‘“, ๐‘”๐‘–) โ‰ค ๐›ฝ๐‘–} , (22)

    which is compactly closed by virtue of condition (iv). There-fore, for each ๐‘– โˆˆ ๐ผ and for all ๐‘”

    ๐‘–โˆˆ ๐พ๐‘–, ๐บโˆ’1

    ๐‘–(๐‘”๐‘–) is compactly

    open in๐พ.For each ๐‘– โˆˆ ๐ผ, define two set-valued mappings ๐‘†

    ๐‘–, ๐‘‡๐‘–:

    ๐พ โ†’ 2๐พ

    ๐‘–by

    ๐‘†๐‘–(๐‘“) =

    {

    {

    {

    ๐บ๐‘–(๐‘“) โˆฉ ๐ด

    ๐‘–(๐‘“) if ๐‘“ โˆˆ F

    ๐‘–

    ๐ด๐‘–(๐‘“) ; if ๐‘“ โˆˆ ๐พ \F

    ๐‘–,

    ๐‘‡๐‘–(๐‘“) =

    {

    {

    {

    ๐ป๐‘–(๐‘“) โˆฉ ๐ต

    ๐‘–(๐‘“) if ๐‘“ โˆˆ F

    ๐‘–

    ๐ต๐‘–(๐‘“) ; if ๐‘“ โˆˆ ๐พ \F

    ๐‘–.

    (23)

    Thus, for each ๐‘– โˆˆ ๐ผ and for all ๐‘“ โˆˆ ๐พ,๐ถ๐‘œ๐บ๐‘–(๐‘“) โŠ† ๐ป

    ๐‘–(๐‘“) and

    in view of condition (i), we obtain ๐ถ๐‘œ๐‘†๐‘–(๐‘“) โŠ† ๐‘‡

    ๐‘–(๐‘“). It is easy

    to see that

    ๐‘†๐‘–

    โˆ’1(๐‘”๐‘–) = (๐ด

    ๐‘–

    โˆ’1(๐‘”๐‘–) โˆฉ ๐บ๐‘–

    โˆ’1(๐‘”๐‘–))โ‹ƒ((๐พ \F

    ๐‘–) โˆฉ ๐ด๐‘–

    โˆ’1(๐‘”๐‘–))

    (24)

    for each ๐‘– โˆˆ ๐ผ and for all ๐‘“ โˆˆ ๐พ. Thus, for each ๐‘– โˆˆ ๐ผ and forall๐บ๐‘–

    โˆ’1(๐‘”๐‘–), ๐ด๐‘–

    โˆ’1(๐‘”๐‘–) and๐พ\F

    ๐‘–are compactly open in๐พ. We

    have ๐‘†๐‘–

    โˆ’1(๐‘”๐‘–) being compactly open in ๐พ. Also ๐‘“

    ๐‘–โˆ‰ ๐‘‡๐‘–(๐‘“) for

    all ๐‘“ โˆˆ ๐พ and for each ๐‘– โˆˆ ๐ผ.Then, byTheorem 5, there exists ๐‘“ โˆˆ ๐พ such that ๐‘†

    ๐‘–(๐‘“) =

    0 for each ๐‘– โˆˆ ๐ผ. If ๐‘“ โˆˆ ๐พ \F๐‘–, then ๐ด

    ๐‘–(๐‘“) = ๐‘†

    ๐‘–(๐‘“) = 0, which

    contradicts the fact that ๐ด๐‘–(๐‘“) is nonempty for each ๐‘– โˆˆ ๐ผ

    and for all ๐‘“ โˆˆ ๐‘‹. Hence, ๐‘“ โˆˆ F๐‘–, for each ๐‘– โˆˆ ๐ผ. Therefore,

    ๐‘“๐‘–โˆˆ ๐ต๐‘–(๐‘“) and ๐บ

    ๐‘–(๐‘“) โˆฉ ๐ด

    ๐‘–(๐‘“) = 0, for all ๐‘– โˆˆ ๐ผ. Thus, for each

    ๐‘– โˆˆ ๐ผ, ๐‘“๐‘–โˆˆ ๐ต๐‘–(๐‘“) and ๐›ผ

    ๐‘–โ‰ค ๐น๐‘–(๐‘“, ๐‘”๐‘–) โ‰ค ๐›ฝ

    ๐‘–for all ๐‘”

    ๐‘–โˆˆ ๐ด๐‘–(๐‘“).

    This completes the proof.

    Now, we establish an existence result for SGQOEPLUB(12) involving ๐œ™-condensing maps.

    Theorem 13. For each ๐‘– โˆˆ ๐ผ, assume that conditions (i)โ€“(iv)of Corollary 12 hold. Let ๐œ™ be a measure of noncompactnesson โˆ๐‘–โˆˆ๐ผ

    ๐‘‹๐‘–. Further, assume that the set-valued mapping ๐ต :

    ๐พ โ†’ 2๐พ defined as๐พ

    ๐‘–is a nonempty, closed, and convex subset

    of a locally convex Hausdorff topological vector space ๐‘‹๐‘–and

    ๐น๐‘–: ๐พร—๐พ

    ๐‘–โ†’ R is a bifunction and let the set-valuedmapping

    ๐ด = โˆ๐‘–โˆˆ๐ผ

    ๐ด๐‘–: ๐พ โ†’ 2

    ๐พ defined as ๐ต(๐‘“) = โˆ๐‘–โˆˆ๐ผ

    ๐ต๐‘–(๐‘“), โˆ€๐‘“ โˆˆ

    ๐พ, be ๐œ™-condensing. Then, there exists a solution ๐‘“ โˆˆ ๐พ ofSGQOEPLUB (12).

    Proof. In view of Remark 7, it is sufficient to show that theset-valued mapping ๐‘‡ : ๐พ โ†’ 2๐พ defined as ๐‘‡(๐‘“) =โˆ๐‘–โˆˆ๐ผ

    ๐‘‡๐‘–(๐‘“), โˆ€๐‘“ โˆˆ ๐พ, is ๐œ™-condensing, where ๐‘‡๐‘–๐‘  are the same

    as defined in the proof of Theorem 10. By the definition of๐‘‡๐‘–, ๐‘‡๐‘–(๐‘“) โŠ† ๐ต

    ๐‘–(๐‘“), โˆ€๐‘– โˆˆ ๐ผ and โˆ€๐‘“ โˆˆ ๐พ and therefore ๐‘†(๐‘“) โŠ†

    ๐ด(๐‘“), โˆ€๐‘“ โˆˆ ๐พ. Since๐ต is๐œ™-condensing, by Remark 7, we have๐‘‡ being also ๐œ™-condensing.

    This completes the proof.

    Conflict of Interests

    The author declares that there is no conflict of interestsregarding the publication of this paper.

    References

    [1] A. Domokos and J. Kolumbaฬn, โ€œVariational inequalities withoperator solutions,โ€ Journal of Global Optimization, vol. 23, no.1, pp. 99โ€“110, 2002.

    [2] K. R. Kazmi and A. Raouf, โ€œA class of operator equilibriumproblems,โ€ Journal of Mathematical Analysis and Applications,vol. 308, no. 2, pp. 554โ€“564, 2005.

    [3] Q. H. Ansari, W. K. Chan, and X. Q. Yang, โ€œThe system ofvector quasi-equilibrium problems with applications,โ€ Journalof Global Optimization, vol. 29, no. 1, pp. 45โ€“57, 2004.

  • 6 International Journal of Analysis

    [4] Q. H. Ansari, S. Schaible, and J. C. Yao, โ€œSystem of vector equi-librium problems and its applications,โ€ Journal of OptimizationTheory and Applications, vol. 107, no. 3, pp. 547โ€“557, 2000.

    [5] P. Deguire, K. K. Tan, and G. X.-Z. Yuan, โ€œThe study of maximalelements, fixed points for ๐ฟ

    ๐‘†-majorized mappings and their

    applications to minimax and variational inequalities in producttopological spaces,โ€ Nonlinear Analysis: Theory, Methods &Applications, vol. 37, no. 7, pp. 933โ€“951, 1999.

    [6] S. Al-Homidan andQ.H.Ansari, โ€œSystems of quasi-equilibriumproblems with lower and upper bounds,โ€ Applied MathematicsLetters, vol. 20, no. 3, pp. 323โ€“328, 2007.

    [7] P. M. Fitzpatrick and W. V. Petryshyn, โ€œFixed point theoremsfor multivalued noncompact acyclic mappings,โ€ Pacific Journalof Mathematics, vol. 54, no. 2, pp. 17โ€“23, 1974.

    [8] L.-J. Lin andQ. H. Ansari, โ€œCollective fixed points andmaximalelements with applications to abstract economies,โ€ Journal ofMathematical Analysis andApplications, vol. 296, no. 2, pp. 455โ€“472, 2004.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of