research paper...a ship, through use of internal pad welding or underwater hull welding, or use of...

6
Vol 36 No 5 October 2011 Corrosion & Materials www.corrosion.com.au 68 69 Microbiologically Influenced Corrosion in Maritime Vessels S.A. Wade 1 , P.L. Mart 2 , A.R. Trueman 2 1 IRIS, Swinburne University of Technology, Melbourne, Australia 2 DSTO, Melbourne, Australia Summary The environmental conditions in many locations on board maritime vessels can favour the proliferation of micro- organisms associated with microbiologically influenced corrosion (MIC). This paper will broadly review the internal and external environments for ships and submarines, and provide several case histories of MIC in maritime vessels, both merchant marine and naval. The main focus will be consideration of the various complementary approaches required to unequivocally diagnose the presence of MIC, possibly in the presence of alternative corrosion mechanisms, and then to categorise and quantify the microbiological species present. Particular consideration is given to diagnosis that is applicable to field testing, as well as techniques that are more suitable for confirmatory laboratory based testing. Quick but accurate diagnosis is essential on maritime vessels and in shipyards where maintenance activity must be tightly scheduled and controlled, to control costs and to maximise availability. The paper also considers developments in MIC sensors, for monitoring vulnerable regions of maritime vessels, and providing early warning of the risk or onset of MIC so that preventative maintenance activity can be better scheduled. This is part of an industry move towards Condition Based Maintenance, and is equally applicable to minimising the effects of MIC on shore-based infrastructure. Finally, a brief survey of possible mitigation techniques to reduce the propensity or severity of MIC is discussed. Overall the paper considers the diagnosis, measuring and monitoring of MIC in maritime vessels from a pragmatic, operator- based viewpoint, allowing future integration with mitigation strategies that are aimed to minimise the impact on through-life costs of maintenance and repair, while maximising operator availability. 1. Introduction A wide range of different materials are used in the construction of maritime vessels, in both structural and support elements, and many of these material types have been shown to be susceptible to microbiologically influenced corrosion (MIC) [1-3]. This includes many of the metals typically used in areas such as hulls, tanks and piping systems. The damage of these structures can necessitate expensive repairs and the added loss of earnings and/or asset availability while the repairs are undertaken, and in a worst case scenario can potentially lead to structural failure. Most of the better known forms of corrosion that attack materials used in maritime vessels are relatively well understood and can be accounted for in the design and maintenance processes [4]. How to account for the potentially rapid corrosion rates and difficulties of predicting and diagnosing MIC, however, presents a major challenge. One of the difficulties with predicting, identifying and dealing with MIC is the wide variety of environmental conditions and microorganisms associated with this problem [1,3,5]. While the environmental conditions in many locations onboard maritime vessels and the conditions in which they operate can vary significantly (e.g. merchant shipping versus naval ships), the temperatures, availability of nutrients and oxygen levels are often conducive to the survival of many MIC-related microorganisms [6,7]. MIC-related microorganisms have been detected for example in shipboard fuel tanks [8], bilges [9-11], engine and other mechanical rooms [12], and in the waters of polluted harbours and ports which could potentially be used for ballast [13,14]. There is a range of possible sources of nutrients for the MIC microorganisms available from both onboard sources (e.g. cleaning products, fuel and lubricants) and external sources (e.g. polluted water from harbours and ports). The existence of stagnant water in bilges, tanks and pipes, especially if the vessel is docked for extended periods, can also be conducive to the establishment of anaerobic conditions required by some of the better known MIC-related microorganisms, such as sulfate reducing bacteria (SRB). Some of the problems with MIC in maritime vessels have possibly been further exacerbated as a result of the restrictions on discharge of bilge and ballast water [15]. The range of MIC related microorganisms and interactions between microorganisms in a consortium means that the corrosion can be influenced in a number of different ways. Some of the many possible mechanisms by which these microbes can influence corrosion include assisting the formation of oxygen concentration cells, the production of metabolic by-products that increase corrosion (e.g. iron sulphide (FeS)), the production of acids (e.g. sulfuric acid) and the alteration of passivating layers on the surfaces of metals [1,2]. The range of possible corrosive effects increases the difficulty in positive identification of MIC as the corrosive mechanism involved. While definitive identification of MIC is difficult it is generally accepted that a combination of information including metallurgical, chemical and bacterial evidence is required [3,16,17]. In addition the very nature of many maritime structures can further increase difficulties in diagnosis and remediation. For example the size and design complexity of vessels such as very large crude carriers (VLCC), which can have ballast tank surface areas >200,000 m 2 [18,19] mean that detailed inspections are extremely time consuming if not impossible. This also presents problems for access for inspection and when attempting to apply remediation strategies. Another MIC related problem for maritime vessels is the changes to modern vessel design that have come about as a result Research Paper This paper was originally published in the ACA’s 2011 Microbiologically Influenced Corrosion Symposium proceedings. } of attempts to either reduce build costs and/or to reduce problems due to spills. New high strength steels (e.g. those produced by Thermo-Mechanical Controlled Processing (TMCP)) have lead to bottom shell plating being reduced to thicknesses of 20 mm compared to 26-28 mm used in older designs [20], which could potentially be penetrated in a much shorter time. 1.1 Ship Maintenance - MIC implications It is very expensive to withdraw a ship from service to undergo periodic maintenance in dry-dock or on a slipway or ship-lift. The loss of availability of the vessel, crew downtime and possible requirement to temporarily replace the vessel through lease of another to meet ongoing contractural obligations (cargo delivery, fishing, maritime patrol or naval capability) can incur large cost penalties. This is in addition to the significant docking costs. Such maintenance activity is therefore preferably scheduled well in advance, to minimize the impact on cost and availability. Typical maintenance activity is scheduled on a time basis, which will vary dependent on the class of vessel and the nature of its operational service. Both commercial and maritime patrol (including naval) operators will seek to extend the interval between docking periods, and to schedule necessary maintenance and repairs concurrently. Typically vessels are serviced every five years. “An ounce of prevention is worth a pound of cure”. This adage holds well for corrosion prevention and control, thus regular inspection, preventative maintenance and early intervention can prevent corrosion gaining a hold and escalating to the point where repair activity is required. However, with minimal crewing of commercial vessels, and decreasing crew sizes on maritime patrol and naval vessels, the ability to use crew to inspect for and perform regular maintenance activity has diminished. US Naval policy has moved away from crew “chipping and painting” activity, in order to offer a maritime lifestyle more conducive to attracting and retaining crew [21]. This puts an increased responsibility for corrosion inspection onto commercial maintainers and hull surveyors. The costs of emptying, opening, steam cleaning and inspecting ballast tanks, cargo tanks, grey- and black-water tanks (also known as collection and holding tanks - CHT) is significant, and the sheer numbers of tanks on large US Naval vessels mitigates against inspection other than on a periodic rotational basis. This is neither cost efficient when such tanks are found to be corrosion free, nor when corroding tanks are not inspected until corrosion has reached a point where significant repair activity is required. Regular hull surveys that identify areas of general hull corrosion in bilges and tanks in a maritime vessel allow timing of repair of the corrosion to be deferred until scheduled docking activity. Hull plating thickness and scantling dimensions generally include a corrosion allowance, although as mentioned earlier this is decreasing with use of new high strength steels and anti-corrosive coatings. Weld filler metal, in addition to its mechanical properties, is chosen to be more corrosion resistant than shell plating, so that general corrosion primarily affects the shell plating or scantlings rather than the structurally significant welds. Knowledge of general corrosion rates allows repair activity to then be safely deferred without risk of hull plating penetration or structurally significant loss of metal. However, MIC can involve very localized deep pitting corrosion with extremely high corrosion rates, typically several mm per year (see section 2). Welds can also be preferentially attacked, especially in stainless steels used for example in piping [2]. Repair techniques are available to repair small areas of hull plating without dry-docking a ship, through use of internal pad welding or underwater hull welding, or use of coffer dams to perform small area crop and renew repairs. However, if significant areas of hull plating, welded or structural members are affected by MIC, the repairs will likely require dry docking. The difficulty in predicting the rate and affected area of MIC causes significant problems for maintenance and repair activity, and alignment with scheduled dry docking. 1.2 Condition Based Maintenance To address the previously mentioned inadequacies of time-based inspection and maintenance of ballast tanks, there is an increased move toward Condition Based Maintenance (CBM), where maintenance or repair activity is only scheduled when required. For example, the US Naval Research Laboratory has developed a suite of corrosion sensors, including a Tank Monitoring System (TMS) based on cathodic protection measurements that enables the condition of a tank to be monitored and assessed without the need for tank opening or survey [22]. The savings have been considerable [23]. While this CBM approach works well for general area corrosion in tanks, it is potentially deficient for detecting and monitoring localized deep pitting as may occur with MIC. There is a requirement for corrosion sensors that are sensitive to MIC, and preferably respond before MIC causes significant damage to the hull, system or structure. However, the many possible micro-organisms and complex mechanisms that give rise to MIC mean that there is unlikely to be a single universal sensor, and that a number of different types of sensor will be required that are responsive to different forms of MIC. This is discussed in a following section. Also, the selection of the most appropriate sites for such sensors is difficult without detailed knowledge of the predominant MIC mechanism likely to occur in a particular situation, and if the sensors are wrongly located they may not detect MIC before significant damage has occurred. A better approach may be to monitor the environment rather than for MIC. A knowledge of the key environmental factors that provide conditions conducive to MIC proliferation can then provide early warning of the need to take preventative action before MIC has initiated.

Upload: others

Post on 20-Feb-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Paper...a ship, through use of internal pad welding or underwater hull welding, or use of coffer dams to perform small area crop and renew repairs. However, if significant

Vol 36 No 5 October 2011 Corrosion & Materials www.corrosion.com.au68 69

Microbiologically Influenced Corrosion in Maritime Vessels

S.A.Wade1,P.L.Mart2,A.R.Trueman2

1IRIS,SwinburneUniversityofTechnology,Melbourne,Australia

2DSTO,Melbourne,Australia

Summary Theenvironmentalconditionsinmanylocationsonboardmaritimevesselscanfavourtheproliferationofmicro-organismsassociatedwithmicrobiologicallyinfluencedcorrosion(MIC).Thispaperwillbroadlyreviewtheinternalandexternalenvironmentsforshipsandsubmarines,andprovideseveralcasehistoriesofMICinmaritimevessels,bothmerchantmarineandnaval.ThemainfocuswillbeconsiderationofthevariouscomplementaryapproachesrequiredtounequivocallydiagnosethepresenceofMIC,possiblyinthepresenceofalternativecorrosionmechanisms,andthentocategoriseandquantifythemicrobiologicalspeciespresent.Particularconsiderationisgiventodiagnosisthatisapplicabletofieldtesting,aswellastechniquesthataremoresuitableforconfirmatorylaboratorybasedtesting.Quickbutaccuratediagnosisisessentialonmaritimevesselsandinshipyardswheremaintenanceactivitymustbetightlyscheduledandcontrolled,tocontrolcostsandtomaximiseavailability.ThepaperalsoconsidersdevelopmentsinMICsensors,formonitoringvulnerableregionsofmaritimevessels,andprovidingearlywarningoftheriskoronsetofMICsothatpreventativemaintenanceactivitycanbebetterscheduled.ThisispartofanindustrymovetowardsConditionBasedMaintenance,andisequallyapplicabletominimisingtheeffectsofMIConshore-basedinfrastructure.Finally,abriefsurveyofpossiblemitigationtechniquestoreducethepropensityorseverityofMICisdiscussed.Overallthepaperconsidersthediagnosis,measuringandmonitoringofMICinmaritimevesselsfromapragmatic,operator-basedviewpoint,allowingfutureintegrationwithmitigationstrategiesthatareaimedtominimisetheimpactonthrough-lifecostsofmaintenanceandrepair,whilemaximisingoperatoravailability.

1. Introduction Awiderangeofdifferentmaterialsareusedintheconstructionofmaritimevessels,inbothstructuralandsupportelements,andmanyofthesematerialtypeshavebeenshowntobesusceptibletomicrobiologicallyinfluencedcorrosion(MIC)[1-3].Thisincludesmanyofthemetalstypicallyusedinareassuchashulls,tanksandpipingsystems.Thedamageofthesestructurescannecessitateexpensiverepairsandtheaddedlossofearningsand/orassetavailabilitywhiletherepairsareundertaken,andinaworstcasescenariocanpotentiallyleadtostructuralfailure.Mostofthebetterknownformsofcorrosionthatattackmaterialsusedin

maritimevesselsarerelativelywellunderstoodandcanbeaccountedforinthedesignandmaintenanceprocesses[4].HowtoaccountforthepotentiallyrapidcorrosionratesanddifficultiesofpredictinganddiagnosingMIC,however,presentsamajorchallenge.

Oneofthedifficultieswithpredicting,identifyinganddealingwithMICisthewidevarietyofenvironmentalconditionsandmicroorganismsassociatedwiththisproblem[1,3,5].Whiletheenvironmentalconditionsinmanylocationsonboardmaritimevesselsandtheconditionsinwhichtheyoperatecanvarysignificantly(e.g.merchantshippingversusnavalships),thetemperatures,availabilityofnutrientsandoxygenlevelsareoftenconducivetothesurvivalofmanyMIC-relatedmicroorganisms[6,7].MIC-relatedmicroorganismshavebeendetectedforexampleinshipboardfueltanks[8],bilges[9-11],engineandothermechanicalrooms[12],andinthewatersofpollutedharboursandportswhichcouldpotentiallybeusedforballast[13,14].ThereisarangeofpossiblesourcesofnutrientsfortheMICmicroorganismsavailablefrombothonboardsources(e.g.cleaningproducts,fuelandlubricants)andexternalsources(e.g.pollutedwaterfromharboursandports).Theexistenceofstagnantwaterinbilges,tanksandpipes,especiallyifthevesselisdockedforextendedperiods,canalsobeconducivetotheestablishmentofanaerobicconditionsrequiredbysomeofthebetterknownMIC-relatedmicroorganisms,suchassulfatereducingbacteria(SRB).SomeoftheproblemswithMICinmaritimevesselshavepossiblybeenfurtherexacerbatedasaresultoftherestrictionsondischargeofbilgeandballastwater[15].

TherangeofMICrelatedmicroorganismsandinteractionsbetweenmicroorganismsinaconsortiummeansthatthecorrosioncanbeinfluencedinanumberofdifferentways.Someofthemanypossiblemechanismsbywhichthesemicrobescaninfluencecorrosionincludeassistingtheformationofoxygenconcentrationcells,theproductionofmetabolicby-productsthatincreasecorrosion(e.g.ironsulphide(FeS)),theproductionofacids(e.g.sulfuricacid)andthealterationofpassivatinglayersonthesurfacesofmetals[1,2].TherangeofpossiblecorrosiveeffectsincreasesthedifficultyinpositiveidentificationofMICasthecorrosivemechanisminvolved.WhiledefinitiveidentificationofMICisdifficultitisgenerallyacceptedthatacombinationofinformationincludingmetallurgical,chemicalandbacterialevidenceisrequired[3,16,17].Inadditiontheverynatureofmanymaritimestructurescanfurtherincreasedifficultiesindiagnosisandremediation.Forexamplethesizeanddesigncomplexityofvesselssuchasverylargecrudecarriers(VLCC),whichcanhaveballasttanksurfaceareas>200,000m2[18,19]meanthatdetailedinspectionsareextremelytimeconsumingifnotimpossible.Thisalsopresentsproblemsforaccessforinspectionandwhenattemptingtoapplyremediationstrategies.AnotherMICrelatedproblemformaritimevesselsisthechangestomodernvesseldesignthathavecomeaboutasaresult

Research PaperThispaperwasoriginallypublishedintheACA’s2011MicrobiologicallyInfluencedCorrosionSymposiumproceedings.}

ofattemptstoeitherreducebuildcostsand/ortoreduceproblemsduetospills.Newhighstrengthsteels(e.g.thoseproducedbyThermo-MechanicalControlledProcessing(TMCP))haveleadtobottomshellplatingbeingreducedtothicknessesof20mmcomparedto26-28mmusedinolderdesigns[20],whichcouldpotentiallybepenetratedinamuchshortertime.

1.1 Ship Maintenance - MIC implications Itisveryexpensivetowithdrawashipfromservicetoundergoperiodicmaintenanceindry-dockoronaslipwayorship-lift.Thelossofavailabilityofthevessel,crewdowntimeandpossiblerequirementtotemporarilyreplacethevesselthroughleaseofanothertomeetongoingcontracturalobligations(cargodelivery,fishing,maritimepatrolornavalcapability)canincurlargecostpenalties.Thisisinadditiontothesignificantdockingcosts.Suchmaintenanceactivityisthereforepreferablyscheduledwellinadvance,tominimizetheimpactoncostandavailability.Typicalmaintenanceactivityisscheduledonatimebasis,whichwillvarydependentontheclassofvesselandthenatureofitsoperationalservice.Bothcommercialandmaritimepatrol(includingnaval)operatorswillseektoextendtheintervalbetweendockingperiods,andtoschedulenecessarymaintenanceandrepairsconcurrently.Typicallyvesselsareservicedeveryfiveyears.

“Anounceofpreventionisworthapoundofcure”.Thisadageholdswellforcorrosionpreventionandcontrol,thusregularinspection,preventativemaintenanceandearlyinterventioncanpreventcorrosiongainingaholdandescalatingtothepointwhererepairactivityisrequired.However,withminimalcrewingofcommercialvessels,anddecreasingcrewsizesonmaritimepatrolandnavalvessels,theabilitytousecrewtoinspectforandperformregularmaintenanceactivityhasdiminished.USNavalpolicyhasmovedawayfromcrew“chippingandpainting”activity,inordertoofferamaritimelifestylemoreconducivetoattractingandretainingcrew[21].Thisputsanincreasedresponsibilityforcorrosioninspectionontocommercialmaintainersandhullsurveyors.Thecostsofemptying,opening,steamcleaningandinspectingballasttanks,cargotanks,grey-andblack-watertanks(alsoknownascollectionandholdingtanks-CHT)issignificant,andthesheernumbersoftanksonlargeUSNavalvesselsmitigatesagainstinspectionotherthanonaperiodicrotationalbasis.Thisisneithercostefficientwhensuchtanksarefoundtobecorrosionfree,norwhencorrodingtanksarenotinspecteduntilcorrosionhasreachedapointwheresignificantrepairactivityisrequired.

Regularhullsurveysthatidentifyareasofgeneralhullcorrosioninbilgesandtanksinamaritimevesselallowtimingofrepairofthecorrosiontobedeferreduntilscheduleddockingactivity.Hullplatingthicknessandscantlingdimensionsgenerallyincludeacorrosionallowance,althoughasmentionedearlierthisisdecreasingwithuseofnewhighstrengthsteelsandanti-corrosive

coatings.Weldfillermetal,inadditiontoitsmechanicalproperties,ischosentobemorecorrosionresistantthanshellplating,sothatgeneralcorrosionprimarilyaffectstheshellplatingorscantlingsratherthanthestructurallysignificantwelds.Knowledgeofgeneralcorrosionratesallowsrepairactivitytothenbesafelydeferredwithoutriskofhullplatingpenetrationorstructurallysignificantlossofmetal.However,MICcaninvolveverylocalizeddeeppittingcorrosionwithextremelyhighcorrosionrates,typicallyseveralmmperyear(seesection2).Weldscanalsobepreferentiallyattacked,especiallyinstainlesssteelsusedforexampleinpiping[2].Repairtechniquesareavailabletorepairsmallareasofhullplatingwithoutdry-dockingaship,throughuseofinternalpadweldingorunderwaterhullwelding,oruseofcofferdamstoperformsmallareacropandrenewrepairs.However,ifsignificantareasofhullplating,weldedorstructuralmembersareaffectedbyMIC,therepairswilllikelyrequiredrydocking.

ThedifficultyinpredictingtherateandaffectedareaofMICcausessignificantproblemsformaintenanceandrepairactivity,andalignmentwithscheduleddrydocking.

1.2 Condition Based Maintenance Toaddressthepreviouslymentionedinadequaciesoftime-basedinspectionandmaintenanceofballasttanks,thereisanincreasedmovetowardConditionBasedMaintenance(CBM),wheremaintenanceorrepairactivityisonlyscheduledwhenrequired.Forexample,theUSNavalResearchLaboratoryhasdevelopedasuiteofcorrosionsensors,includingaTankMonitoringSystem(TMS)basedoncathodicprotectionmeasurementsthatenablestheconditionofatanktobemonitoredandassessedwithouttheneedfortankopeningorsurvey[22].Thesavingshavebeenconsiderable[23].

WhilethisCBMapproachworkswellforgeneralareacorrosionintanks,itispotentiallydeficientfordetectingandmonitoringlocalizeddeeppittingasmayoccurwithMIC.ThereisarequirementforcorrosionsensorsthataresensitivetoMIC,andpreferablyrespondbeforeMICcausessignificantdamagetothehull,systemorstructure.However,themanypossiblemicro-organismsandcomplexmechanismsthatgiverisetoMICmeanthatthereisunlikelytobeasingleuniversalsensor,andthatanumberofdifferenttypesofsensorwillberequiredthatareresponsivetodifferentformsofMIC.Thisisdiscussedinafollowingsection.Also,theselectionofthemostappropriatesitesforsuchsensorsisdifficultwithoutdetailedknowledgeofthepredominantMICmechanismlikelytooccurinaparticularsituation,andifthesensorsarewronglylocatedtheymaynotdetectMICbeforesignificantdamagehasoccurred.AbetterapproachmaybetomonitortheenvironmentratherthanforMIC.AknowledgeofthekeyenvironmentalfactorsthatprovideconditionsconducivetoMICproliferationcanthenprovideearlywarningoftheneedtotakepreventativeactionbeforeMIChasinitiated.

Page 2: Research Paper...a ship, through use of internal pad welding or underwater hull welding, or use of coffer dams to perform small area crop and renew repairs. However, if significant

Vol 36 No 5 October 2011 Corrosion & Materials www.corrosion.com.au70 71

2. Case Histories of Mic in Maritime Vessels Beforelaunchingintodetailsofindividualcasehistoriesitisworthacknowledgingseveralofthemoregeneral/summaryreportsthathavebeenwrittenonMICinmaritimevesselsbybothindividuals(e.g.Stuart[6]andTowers[20])andby/inrelevantforums(e.g.[24]).

OneoftheearlierreportsontheproblemsofsuspectedMICinaship’sbilgewasmadebyCopenhagenin1966[25].Localiseddeeppittingincludingperforationof8mmmildsteelplatelocatednearthepropellershaftcasingintheship’ssternoccurredinlessthan2years.Thepresenceofferroussulphide,aby-productofthemetabolismofsulfatereducingbacteria[2],inbilgewateratthislocationwastakenasanotherindicationthatthecorrosionwasduetoMIC.

Problemswithcontaminationoffuels,thecorrosionoffuelstoragetanksandequipmentwhichusesthefuel,andtheblockingofpurifiersandfiltershavebeenreportedbytheUSNavysincethe1960s[8,26-28].Insomecasesthishasresultedinconsiderablelossesinfleetefficiency,andhasrequiredexpensiveandtimeconsumingtreatmentmethodstoresolve.Theseproblemshavebeenlinkedtothepresenceofsulfatereducingbacteria,fungiandyeasts.Intestingcarriedouton80fueltanksof8navalships,viablemicroorganismswerefoundtobepresentinallsamplesexamined[8].ItisalsoworthmentioningtheobservationsofKlemme[28]whonotedthedifficultiesinmaintainingviableculturesofsuitablebacteriaandrecommendedtheuseofmorerealisticmixedmicrobialpopulationsasopposedtopureculturesinrelationtolaboratorystudies.

SimilarissueswithmicrobiologicalcontaminationofdistillatefuelhavebeenexperiencedbytheCanadianNavy[29],andincludedthedamageofseveralgasturbinesrequiringexpensiverepairs.Testsfromfueltankstakenatthefuelwaterinterfacefoundcontaminationwithbacteria,fungiandyeasts.Remediationrequiredthelengthyprocessofemptyingtanks,steamcleaning,wipingthetanksdry,inspection,refillingwithfreshfuelandtheadditionofabiocide.Otherfuelsystemcomponentswerealsocleanedandinspected.Duetoconcernswiththetoxicityofbiocidestobothcrewandtheenvironmenttheuseofbiocideshoweverwasnotrecommendedasaprimaryremediationprocess.

AsignificantamountofworkrelatedtoMICintheRoyalAustralianNavy(RAN)wasundertakenlargelytoinvestigateandpreventtheformationoftoxichydrogensulfidegas,whichisaby-productofthegrowthofsulfate-reducingbacteria[12,30].This,andcorrosionspecificstudiesundertakenatasimilartime[7],includedtestingforsulfatereducingbacteriaandthefactorswhichaffecttheirmetabolismandgrowthintheshipboardenvironment.TestingofbilgewatersintheengineroomandothermachinespacesofarelativelylargenumberofRANandforeignnavalvesselsfoundthepresenceofsulfate

reducing,aerobicandcoliformbacteriainthemajorityofthelocationsinspected.In2007Mart[31]reportedseveralexamplesofsuspectedMICinRANvesselsincludingonecaseinwhich10mmbilgeshellplatingwaspenetratedinlessthanayear.MorerecentlyWadeandfellowresearchers[10,11]undertookdetailedmicrobiological,chemicalandmetallurgicalteststodeterminethepotentialforMICcorrosionofvariousmetals,includinghullsteels,inthebilgewaterssampledfromRANvessels.

IntheRoyalNavy(UK)therehavebeenreportsoffailuresofgasturbineenginesduetoMIC,whichcausedsignificantissuesintermsofresourcesandplatformavailability[32].Thefailureswerefoundtobelinkedtocorrosionofcoolingsystemswhichuseseawaterasthecoolingmedium.Aninvestigationintothecauseshowedthatafterarefitthesesystemswerefloodedusingwatertakenfromanestuarinebasin,foundtobepollutedwithmarineorganismsandpotentialnutrients,andweretypicallyleftstagnantforperiodsofmorethanthreetofourweeksfollowingcommissioning.AnotherexampleofMICintheRoyalNavyistheseverepittingofcopper-nickelalloytubingusedinthecoolingsystemsofsubmarines[33].Thisproblemcoincidedwiththemovetotheuseofpotentiallypollutedseawatersourcedfromanon-tidalbasinasopposedtonominallycleanseawaterorfreshmainswater.Severepitting(e.g.2mm/yr)causedproblemswithoperationalavailabilityofplatforms.Trialsofcorrosioninhibitorsdesignedformacroandmicrofoulingwerefoundnottosolvetheissue.Oneoftheconfoundingresultsofsubsequentbacteriologicaltestswasthatsimilarpopulationprofiles,includingaerobicandanaerobic(includingSRBs)bacteria,weredetectedregardlessofwhetherthecoolerswereoperatedinnominallycleanornon-tidalbasinwaters.

Anotherexampleoftherapidcorrosionofsteelhullplateinaship’sbilgewasreportedbyCampbelletalinwhichpitdepthsof8mmin12monthswererecorded[34].Adetailedexaminationwasundertakenincludingmicrobiological,chemicalandmetallurgicalstudies.Variousmicroorganismsincludingaerobicandanaerobic(e.g.SRB)bacteria,fungiandyeastsweredetectedinthebilgewaterandsludge.Anumberofanalyticalmethodsuseddetectedthepresenceofsulfidesinthecorrosionproductormudsamplestaken,whichistypicalofMICcasesinvolvingSRB.

Clelanddiscussesacaseofacceleratedcorrosionintheballasttanksofashipincludingperforationofstringersinlessthan2years(i.e.corrosionrateof~6mm/yr)[15].Testingofcorrosionproductsfoundthataerobic,anaerobic(SRB)andmouldswerepresentinsamplestakenfromtheareaswithhighcorrosionrates.Inthepaperitisarguedthatcontrarytosomeopinions,thisformofcorrosioncanbemitigatedbykeepingthewateroxygenated,possiblyduetothefactthatSRBsareanaerobicbacteria,andthatthesituationofanaerobicandaerobiccyclesisthemostdangerous.Thiswouldagreewithlaboratorytests[35]whichshowedsignificantincreasesincorrosion

ratesofmildsteelsinanaerobicmediacontainingSRBafterspargingwithair.Itisalsoworthnotingthediscussioninreference15ofpossibleimplicationsforMICoftheInternationalMaritimeOrganisationGuidelinesforpreventingtheintroductionofunwantedaquaticorganismsandpathogensfromships'ballastwaterandsedimentdischarges.

ProblemswithMICinthecargotanksofbothsinglehullanddoublehullcrudeoiltankerswerereportedbyHuangetalin1997[36].Pittingofuncoatedbottomplatingwasreportedatratesofupto2mmperyear.TestingofanumberoftankersfoundMICbacteriaconsortia,includingSRBandacidproducingbacteria,insettledwaterandsludgeatthebottomofcargooiltanksandinwaterdropletsinthecrudeoilitself.ThecontrolofMICusingbiocidetreatmentswasfoundtobeimpracticalforcargooiltanks.

OneofthehighestcorrosionratesreportedthatwassuspectedtobeduetoMICwastheperforationof11mmhullinlessthan6months[37]Thesameauthorspresentedhistoricalresultsofmicrobiologicaltestsofbilgewatersof37vessels(includingferriesandtankers)whichshowedwidespreadcontaminationwithaerobicandanaerobic(includingSRB)bacteria,yeastsandmoulds[9].

ThecasestudiespresentedaboveshowthatMICcorrosionandMIC-relatedmicroorganismshavebeenfoundinavarietyoflocationsonboardmaritimevesselsandthatthesubsequentcorrosionratescanbeextremelyhighcomparedtowhatwouldbeexpectedforgeneralseawatercorrosioninthesameconditions(i.e.intherangeof0.1mm/yr[38]).AsummaryofthemaindetailsofthecasestudiesisprovidedinTable1.

3. Diagnosing Mic in Maritime Vessels ItistypicallyrecommendedthatthedefinitiveidentificationofMICastheformofcorrosiveattackrequiresacombinationofevidence[2,3,16,17].Thisevidenceshouldincludechemical,biologicalandmetallurgicaltestssuchas:

Chemical–identificationofcorrosionby-productsrelatedtoMIC,

Biological–identificationofthepresenceofmicroorganismsrelatedtoMIC,and,

Metallurgical–observationofMIC-relatedcorrosionmorphology,andsignificantlyincreasedcorrosionrates.

Inadditionotherformsofcorrosion(e.g.galvaniccorrosion)shouldberuledoutasbeingapossiblecause.

AnumberoftestingstandardshavebeendevelopedrelatedtothediagnosisofMIC(e.g.reference39).WhilethereissomeusefulinformationandtechniquespresentedinthesedocumentstheyhavemainlybeendevelopedforoilandgaspipelineapplicationsandassuchhavelimitedapplicabilitytoMICtestinginmaritimevessels.

3.1 Onboard/Field Testing TherearearangeofteststhatcanpossiblybecarriedoutonboardmaritimevesselstoassistinthediagnosisofMIC.Unlikeland-basedinfrastructure,theabilitytoperformtestsonshipswillberestrictedbytheoperationalavailability,theneedtoadequatelyventtestlocationswhicharesubjecttogasbuildup,andtheabilitytousesometestkitsonboardtheship.Accesstolocationsfortestingcanalsopresentsomedifficultiesduetothedesignofstructures(seeFigure1),andinadditionthespaceandlightinginmanylocationsmaymaketestingdifficult.

Author [Ref.] Location MIC Evidence Reported CR (mm/yr)

μorg. By-prod. CR Morph.

Copenhagen[25] Bilgeplate ✔ ✔

USNavy[8,26-28] Fueltanksandrelatedequipment ✔ ✔ ✔

Haggart[29] Fueltanks ✔

Upsher[7,12,30] Bilgeandenginerooms ✔

Mart[31] Bilgeplating,sludgetanks,freshwatertanks ✔ ✔ ✔ >10

Wade[10,11] Bilges ✔ ✔ ✔ ✔

Bolwell[32] Enginecoolingsystem ✔ ✔

Nicklin[33] Seawatercoolingtubes ✔ ✔ ✔ ✔ 2

Campbell[34] Ship’shullplate,ballasttank ✔ ✔ ✔ ✔ 8

Cleland[15] Stringers,webframesinballasttanks ✔ ✔ ✔ 6

Huang[36] Bottomplating,longitudinalsandstringersofcargooiltanks,

✔ ✔ ✔ 2

Hill[9,37] Hull,bilges ✔ ✔ ✔ 22

Table 1.SummaryofcasestudiesofMICinmaritimevessels(μorg–MIC-relatedmicroorganismspresent,By-prod.–MICcorrosionby-products,CR–highcorrosionrates,Morph.–MIC-relatedcorrosionmorphology)

Microbiologically Influenced Corrosion in Maritime Vessels

Page 3: Research Paper...a ship, through use of internal pad welding or underwater hull welding, or use of coffer dams to perform small area crop and renew repairs. However, if significant

Vol 36 No 5 October 2011 Corrosion & Materials www.corrosion.com.au72 73

Typicallythetimeconstraintsassociatedwithtestingmeanthatonlyalimitedsubsetofthedesiredlocationsfortestingcanbeexamined(e.g.the>200,000m2surfaceareaofVLCCballasttanks).AssuchtargetedtestingneedstobecarriedoutatspecificlocationsinwhichtheriskandlikelihoodofMICoccurringarehighest.TheriskofMICmayforexamplebehullpenetrationorareductioninstrengthatalocationinwhichsubsequentstructuralfailuremayoccur,oreventhecostassociatedintherepairofthedamagedarea.WhenworkingoutthemostlikelyplacesforMICtooccuritisworthkeepinginmindthelocationsinwhichpreviouscasesofMIChavebeenreported.Thesearetypicallyareaswhichhavestagnantwater,asourceofMIC-relatedmicroorganismsandnutrientsavailabletomaintainthemetabolismofthesemicrobes.

IntermsofspecifictestsforthediagnosisofMICinthefieldonecanperformmicroorganismtests,watersampling,coupontrials,physicalinspectionsandeventherelativelysimpletestforthepresenceofH2Sgas(rottenegg/sulphurodour).FieldtestkitstodeterminethepresenceandnumbersofvariousMIC-relatedmicroorganismsareavailablefromanumberofcommercialsuppliers.Thekitsrangefromrelativelysimpletouse,requiringminimaltraining,tothoseincludingsomewhatcomplexprocesses(e.g.multipleserialdilutions).Carehowevermustbetakenwhenusingandinterpretingtheresultsofthesekitsas;(a)onlyasmallfractionofmicroorganismswillgrowinartificialenrichmentmedia,(b)theexactnumbersoforganismsdoesnotusuallycorrelatewiththelevelofMIC,and(c)thelocationofsampling,andwhetherplanktonicorsessilesamplesaretaken,mayaffecttheresults[40,41].ItisalsowisetorememberthatSRBarenot

theonlyorganismsinvolvedinMIC.Watersamplingcanalsobeundertakenforusewithbacteriaidentification,determinationofwaterqualityparametersandthepresenceofMIC-relatednutrients.Whensamplingfluidscorrecttestproceduresshouldbedevelopedandfollowed,includingforexampletakingcarenottoaeratethesample,determiningthecorrecttypeofcontainerusedtostorethesample,keepingthesamplecoolwhentransportingandminimisingthetimebetweensamplingandsubsequentanalysis.SeeFigure1foranexampleofawatersamplingdevicedevelopedforonboardtesting.Coupontrials,whicharediscussedinmoredetailinsection4,arealsoanoptionforinvestigatingcorrosionratesandsamplingofbiofilms.Visualinspectionsofcorrosionpits,andmeasurementsofpitdepthsanddensity,providesomeofthemostusefulinformation.Wherepossiblephotosofcorrosionattackand/orcorrosionby-productsshouldbetaken,includingsomethingtoprovideanindicationofscale.Corrosionby-productsshouldbesampledforsubsequentlaboratoryanalysis.AsmentionedpreviouslyarangeofdifferenttesttypesshouldbeperformedasonepositivetestaloneisnotadequatetodiagnoseMIC.

Whencarryingoutonboardtestingthereareanumberofhealthandsafetyissuesthatmayariseandthereforeappropriateprecautionsneedtobetaken.Ballastandbilgewaterareoftencontaminatedwithitemssuchasdiesel,hydraulicoil,andchemicalsandcanpotentiallycontainharmfultoxinsandpathogens[42].Caremustbetakentoavoidskincontactthroughtheuseofappropriatepersonalprotectiveequipment.Allequipmentusedinsamplingandtestingshouldbecleaned/decontaminatedusingsuitableprocedures,suchasautoclavingorchemicaldisinfectionwithbleach.

3.2 Laboratory Testing InadditiontotestscarriedoutinthefieldthereareanumberoflaboratorybasedtestproceduresthatcanbeusedtohelpdiagnoseMICinmaritimevessels.Thesetypicallyhoweverrequirespecificallytrainedpersonnelandaccesstoexpensivelaboratoryequipment.Accesstotheseskillsandequipmentmaybepossibleviauniversities,researchinstitutionsorcommerciallaboratories.Abriefdescriptionofsomeofthepossibletestmethodsisprovidedbelow.

Therearearangeoflaboratorytechniquesthatcanbeusedforamoredetailedanalysisofthemicroorganisms.Thisincludesthemoretraditionalplatingandmicroscopymethods,andthemoremodernmicroscopyandgeneticcharacterisationtechniques(e.g.DAPI,FISH,qPCR,DGGE[40]).SuchtestingcanbeusedtoassistintheimportantstepofdeterminingthecompositionoftheconsortiaofmicroorganismspresentinasampleasopposedtosayindividualbacteriasuchasSRB.

TohelpdeterminethesusceptibilityofasystemtoMICattackcouponimmersiontrialscanbeundertakenusingeitherasolutiontakenfromthelocationofinterestoratestmediummadeupusingstrainsofMIC-relatedmicrobesculturedfromsamplesorsourceddirectlyfromanumberoforganisations.Reproducingtheconditionsandratesofcorrosionexperiencedinthefieldhoweverisnotatrivialtask.ThemostseriousformsofMIChavebeenreportedtotakeplacewhenaconsortiumofdifferenttypesofmicroorganismsispresent[3,5,16].Variouselectrochemicalmonitoring(seediscussioninSection4)andanalysistechniquescanbeusedincombinationwiththesetests.

TheidentificationofMIC-relatedcorrosionby-productsornutrientsisalsoatasktypicallyperformedinthelaboratory.Techniquessuchasx-raydiffractionandenergy-dispersivespectroscopycanlookatthepresenceforexampleofironsulfidetypicallyassociatedwithMICduetoSRB.Thesetestscanbeperformedbothonsamplestakenfromthefieldandonthosepreparedinthelab.

MetallurgicalanalysisisoneoftheotherkeystoMICdiagnosis.PittingmorphologyisoftenquotedasakeyidentifierofMIC,withhemisphericalorterracedpittingoftencharacteristicofthisformofcorrosion[17].TherearesomecaseshoweverwhensuchpittingshapescanbeformedduetoattackthatisnotMIC-based,andthereforethisevidenceshouldbeusedonlyincombinationwithotherMICidentifiers.Dependinguponthesizeofthepittingitcanbeexaminedeithervisuallyorusingoptical/scanningelectronmicroscopy.Measurementssuchasweightlossandpitdepthscanhelptoquantifytherateandextentofattack.Modernequipmentsuchas3Dopticalsurfaceprofilerscanhelpreducesomeofthetime-consumingeffortinvolvedwiththisanalysis.Figure2showsacomparisonusingascanningelectronmicroscope(SEM)ofthedifferentformsofcorrosiveattackofmarinegrademildsteelsafterimmersioninbilgewatercontainingSRB,bilgewaterwithoutSRBandcleanseawaterwithoutSRB.

Figure 1:Imagesofonboardsampling,including(a)ahandheldperistalticpumpwithextendablerod,(b)samplingbilgewaterexample,and(c)exampleoflimitedaccesssometimesavailablefortesting.

Figure 2:SEMimagesofmarinegradehullsteelafterimmersionin(a)bilgewatercontainingSRB,(b)bilgewaterwithoutSRBpresent,and(c)cleanseawaterwithoutSRBpresent.

a. b. c.

Microbiologically Influenced Corrosion in Maritime Vessels

a.

b.

c.

Page 4: Research Paper...a ship, through use of internal pad welding or underwater hull welding, or use of coffer dams to perform small area crop and renew repairs. However, if significant

Vol 36 No 5 October 2011 Corrosion & Materials www.corrosion.com.au74 75

4. Monitoring Mic ThegenerictermMICencompassesmanytypesofmicroorganismsandpossiblecorrosionmechanisms.ThereforethedevelopmentofasinglesensorthatcanmonitorallthevariousformsofMICisextremelyambitiousandpossiblyunrealistic.ManytechniqueshavebeenproposedfordetectingMIChowevermosttestinghasbeencarriedoutinalaboratoryenvironmentandfewhavebeendevelopedforuseinthefield.Ofthecommerciallyavailabledevicesmostsystemshavebeentargetedtowardspipingapplications,andtheauthorsareunawareofanyproductsthathavebeenspecificallydesignedformaritimeuse.

TechniquesformonitoringofMICcantargetarangeofdifferentprocessessuchasbiofilmformation,thedirecteffectsofcorrosiononmaterials(suchasweightlossandpitting),thepresence/numbersofmicroorganisms(asdiscussedpreviously)andelectrochemicalprocesses.Anotherpossiblemethodistomonitorrelevantenvironmentalparameters,suchasthepresenceofspecificnutrientsrelatedtorelevantbacteria,whichmayindicatethepotentialforMICtooccur.Theuseofacombinationoftheaforementionedtechniquesisalsoapossibilityandmayhelpforexampletocoverthespecificlimitationsofaparticularmeasurementmethod.Themonitoringtechnique(s)chosenwillbedrivenbyarangeoffactorsincludingcost,continuousorintermittentmonitoringrequired,personnelavailabilityandeaseofaccess.Selectionsofsomeofthesensingtechniquesthatmaybeapplicabletotestinginmaritimevesselsarediscussedbelow.FurtherinformationonMICandbiofilmmonitoringtechniquescanbefoundinreferences[1,2,43-45]

OneofthemoststraightforwardmethodsformonitoringMICistheuseoftraditionalweightlosscouponsormoresophisticatedsamplingdevices.Whiletheydon’tnecessarilyproviderealtimedataonthecorrosionrateatthelocationofinteresttheycanbeusedtoobtainimportantinformationoncorrosionproperties(e.g.weightloss,pitting,morphology,etc.)and/orbiofilmproperties(microorganismtypes,etc).Couponscanbemanufacturedfrommostmaterialsandwitharangeofsurfacefinishes,sotheycanbeakintothematerialusedinthestructureofinterest,andthereforetheformandrateofcorrosiveattackshouldbesimilar.Careneedstobetakentoensurethatcouponsareplacedinalocationandatanorientationthatmatchestheregiontobestudied.Basiccorrosioncouponsareavailablefromanumberofcommercialsuppliers.Themoresophisticatedsamplingdevices,suchasthemodifiedRobbinsDevicearedesignedtoallowtheformationofsessilebacteria/biofilmsonsmallcouponsthatcanberemovedforsubsequentstudy.Arangeofdevicesareavailable,manyofwhicharedesignedforfluidflowapplications(e.g.piping)thatcanbeusedoverawiderangeofpressures.Itshouldbenotedthatthemicrobiologicalandmetallurgicalanalysisofthecouponsafterremovalwillmostlikelyrequirespeciallytrainedpersonnel.

TheZeroResistanceAmmetry(ZRA)orgalvanicmethodofcorrosionmeasurementisbasedonthecurrentgeneratedwhentwoelectrodesofdifferentmetalsareimmersedinanaqueousliquidandareelectricallyconnected.Thisisduetothefactthatdifferentmetalswillreachdifferentpotentialswhenimmersed.Themagnitudeofthecurrentgeneratedcanberelatedtotherateofcorrosionoccurringatthemoreactiveofthetwometals.Acommercialdeviceusinggalvanicmeasurementshasbeendesignedtomonitorbiofilmformationwhichusesaseriesofdisksmadefromstainlesssteel(seeforexample[46,47]).Thissystemtakestwosetsofmeasurements,thefirstinwhichavoltageisappliedtoonesetofdiskssothattheyarepolarisedrelativetotheotherset(performedonceadayforashortperiod)andthecurrentrequiredtoreachthedesiredpotentialismeasured.Fortheremainderofthetimetheappliedpotentialisturnedoffandthecurrentgeneratedbetweentheelectrodesetsismonitored.

OnecorrosionmeasurementmethodwhichcanmonitorinstantaneouscorrosionratesinaconductingfluidistheLinearPolarisationResistance(LPR)method[48].Thistechniqueusesasensorwith2or3electrodeprobeswhichareelectricallyisolated.Asmallpotential(~20mV)isappliedtotheelectrodesandtheresultingcurrentismeasured.Theslopeofthevoltageversuscurrentcurveisthepolarisationresistancewhichinturnisinverselyproportionaltothecorrosionrate.CommercialdeviceswhichusethistechniquearewidelyavailableandithasbeenusedinmanystudiesofMIC(e.g.[49,50]).Whenusedforlocalisedcorrosion,typicalofMIC,itissuggestedthatLPRisusedasaqualitativeindicationthatrapidcorrosionisoccurring,ratherthanforanindicationofexactcorrosionrates[1].

TheElectricalResistance(ER)ofametalsampleisinverselyproportionaltoitscross-sectionalarea,thereforewhencorrosionoccursandthecross-sectiondecreases,theresistanceincreases.Theaveragecorrosionrateoveraspecificperiodcanbecalculatedusingtheresistancereadingsobtainedatthestartandendoftheperiod.Thisrelativelysimpleprincipleisusedasthebasisofarangeofcommerciallyavailablecorrosionmeasurementdevices.Thesensitivityofthesensingprobecanbeoptimisedforaparticularapplicationbychangingtheinitialdimensions,wherethinnerprobesaremoresensitivebuthavereducedlifetimes.TheERmethodhasbeenusedbyarangeofauthorstostudyMIC(e.g.[49,51,52]).WhenusedforMICstudiesfoulingbyelectricallyconductingsulfidefilms,aby-productforexampleofthemetabolismofsulfatereducingbacteria,canleadtoerroneousresistancereadings.Thelocalisedcorrosiveattack,whichiscommonlyobservedwithMIC,canalsocausedifficultiesinthecalculationofcorrosionrates.Figure3showsexamplesofacorrosionsensorboardwith5stripsofmildsteeldesignedforERmeasurementsbeforeandafterimmersionfor9daysinnaturalseawatercontainingaerobicbacteria.Thereisclearevidenceoflocalisedcorrosioninthesamplewhichhadbeenexposed.

AswhendiagnosingMIC,careneedstobetakenwiththelocationofanysensorsusedformonitoringMICtoensurethattheyaresubjectedtotheconditionsinwhichMICmayoccur.Likewisethematerialschosenforuseinsensorsshouldtypicallybesimilartothestructurethatisbeingmonitored.FinallyitissuggestedthattheuseofacombinationofsensingtechniquesmayprovidethemostdependablewayofpickingupifandwhenMICmayoccur.

EnvironmentalsensorsthatmonitorlevelsofnutrientsthatpromotegrowthofmicroorgansimsresponsibleforMIC,orbiosensorsthatmonitormetabolicby-productsofsuchmicroorganisms,arepotentialfuturedevelopmentsthatwillsupplementMICsensors.TogethertheywilloffertheopportunityforConditionBasedMaintenanceofMICinmaritimevessels.Suchsensorsarethesubjectoflaboratoryresearchanddevelopment[53-55]butarenotyetsufficientlyadvancedorruggedforuseinthedemandingenvironmentaboardmaritimevessels.

5. Potential Mitigation Strategies Anumberofauthorshavereviewedstrategiesforprevention,controlandmitigationofMIC[1,44,56,57].Goodengineeringdesign,selectionofappropriatematerials,goodmaintenanceandoperationalprocedures,andavoidingtheriskofmicrobialcontaminationofthesystemareallhighlyrelevantcriteria.Howevertherearepracticalconstraintsinmaritimevesselsthatoftenpreventtherealisationofthesegoals.Shipsaredesignedandbuiltforstructuralandengineeringconsiderations,andcorrosiondesignisoftensecondary.Difficultyofaccessandtightlypackedauxiliarysystemspresentconstraintsinmaritimevesselsthatcanimpactanumberofpreventionandmitigationstrategies.Materialsthataresusceptibletocrevicecorrosionorunder-depositcorrosionappeartobesusceptibletobiocorrosion[56].Materialsareselectedprimarilyfortheirmechanicalpropertiesinordertomeetmarinestructuralandengineeringdesignrequirements,withcostanadditionalfactor,butcorrosionresistanceshouldalsobeconsideredandmaterialselectionoptimisedwherepossible.

Coatingsareamajorpreventativemeasureforcorrosionprotection,whetherthecorrosioniscausedbyabioticcorrosionmechanismsorMIC.Ifthecoatingformsanadherentandimperviousfilm,freefromholidaysordefects,whichdoesnotdegradeinthepresenceofmicrobiologicalorganisms,thentherewillbereducedopportunityfortheunderlyingmetaltocorrode.However,theconstraintsofsurfacepreparation,applicationandshipboardoperationcausethecoatingtocontaindefectsortodegradein-service,allowingopportunityformicrobialattack.

Cathodicprotectioncanberegardedasbothapreventionandmitigationstrategy[56],andinthispaperisdiscussedunderthelatterheadingforconvenience.

5.1 Cleanliness and Physical-Mechanical treatments Theforemostrequirementisto“keepthesystemclean”,andwhereverpossiblethedesignofavesselshouldaddressthisasapreventionstrategy.Ifthisisnotpossible,orMICisdiagnosedinthesystem,thenactivecleaningofthesystemisnecessaryasamitigationstrategy.Thisincludesmechanicalremovalofbiofilms,andwatertreatmentstodecreasethenumbersandtypesoforganismsbymakingtheenvironmentlessconducivetotheirgrowthandsurvival.

Inpipingsystems,hydrostatictestwatercanbeasourceofmicrobialcontamination,sotheuseofacleanwatersourceanddraininganddryingimmediatelyaftertestingisessential.Ifitisnotpossibletoremovetrapsforstagnantwater,thenthedesignshouldallowforperiodiccleaningorflushing,togetherwithfiltrationsystemstoremovesuspendedsolidsfrommake-upwater[58].Designchangestoincreasefluidvelocitiesinpipingsystems,soastoreducebacteriaresidencetime,eliminationofcrevices,andstagnantareas,arealleffectivecountermeasuresforavoidingbiocorrosion[44].However,fluidvelocitiesmustbekeptsufficientlylowthaterosioncorrosiondoesnotresult.

Intanksandbilgesinmaritimevesselsmechanicalremovalofbiofilmismoredifficultthaninpipelines,wherespongeballs,brushes,piggingandhighfluidvelocitycanbeused.Difficultaccesstosuchareasalsopreventstotalremovalofbiofilm,whichmayre-establish.

Somemitigationstrategiesinvolvetechniqueswhichcombinephysical-mechanicaltreatmentwithkillingofmicro-organisms.Theseincludeultrasonictreatmentandthermalmethods.

Ultrasonictreatment[59]orsonication[60]producescollapsingcavitationbubblesandmicro-jetsthatcandisruptlargercellsandbacteria.Ultrasonictreatmentisnotpracticalforlargetanksinmarinevessels.Possiblyballasttankwatercouldbepumpedthroughacentralizedultrasonicunitduringloading,butthiswouldaffectonlyplanktonicbacteria,andnotsessilebacteriaandbiofilmsthatestablishontanksurfaces.

Microbiologically Influenced Corrosion in Maritime Vessels

Figure 3: Photosofanelectricalresistancesensorboard,110×105mm,(a)beforeand(b)after9daysimmersioninnaturalseawatercontainingaerobicbacteria.Localisedcorrosion,whichincludedtubercles,isclearlyvisibleintheimmersedsample.

a. b.

Page 5: Research Paper...a ship, through use of internal pad welding or underwater hull welding, or use of coffer dams to perform small area crop and renew repairs. However, if significant

Vol 36 No 5 October 2011 Corrosion & Materials www.corrosion.com.au76 77

Heattreatmentofballastwaterhasbeenproposedforkillingintroducedmarinespeciesinballasttanks,butthereareenergy,structuralandenvironmentalconcernswithheating,holdingforextendedperiodsoftime,andthendischargingthelargevolumesofwaterinballasttanksonships[61].Highpressuresteamcleaninghasbeenusedforkillinganddislodgingbiofilms,alsopriortoabrasiveblastingofballasttanksforrecoating.However,accessforpersonnelandhosesisdifficult,andtheprocedureislabourintensive.

5.2 Treatments targeting the bioorganisms Otherwatertreatmentsaimtodecreasethenumbersandtypesoforganismsbyuseofphysicalorchemicaltreatmentsthataremorefocussedondisruptingtheorganismsthanjustontheirremoval.Biocidesareanti-microbialchemicalsthateitherkilltheorganismsorinhibittheirgrowthandreproductivecycle[57,62].Theycanbeeitheroxidizing(e.gchlorine,bromine.ozone)ornonoxidizing(e.g.glutaraldehyde,carbamates,guanides,isothiazolines,quaternaryammoniumcompounds).Itismoredifficulttokillbacteriainbiofilmsthanitistokillthesameorganismssuspendedinaliquidmedium(i.e.planktoniccells),duetotheinabilityofthebiocidetopenetratethebiofilm.Thereforebiocidesworkbestincleansystems.Therearemanycriteria[58]thatmustbeconsideredwhenselectingandapplyingabiocide,includingcompatibilitywithequipment,solubility,doselevel,dosefrequency,chemicalcompatibility,safety,persistence,toxicity,andcost.Bacteriacandevelopresistancetoasinglebiocide,soitisnecessarytoperiodicallychangethebiocide.Biocidescanonlybeusedinenclosedsystems,andincreasingOccupationalHealthandSafetyandenvironmentalconcernslimittheirapplicability.Considerationmustbegiventotheirsafeuse,dischargeordisposal,withoutdeleteriousconsequencesforhumans,marinelifeortheenvironment.

Exposuretoultravioletlightat254nmisanestablishedmethodfordisinfectingmicrobiologylaboratoryapparatus.Itisalsousedtodisinfectdomesticpotablewatersuppliesandinwastewatertreatmentonanindustrialscale.Unlikebiocides,therearenotoxicresidues.UVexposureisonlyeffectiveinrelativelyclearwaters,notturbidwaterscontainingahighproportionofsuspendedparticles.Fortanksandbilgescontaininglargevolumesofwater,orcomplexstructureswhichcauseshadowing,itisunlikelythatsurfaceswillreceivesufficientlyhighdosestokillbiofilms.Otherconsiderationsincludeelectricalpowerrequirements,cabling,fragilequartzUVtubes,andsedimentationandfoulingofthetubesreducingtheirUVoutputandrequiringperiodiccleaning[63].Openbilgesinattendedcompartmentswillrequirecrewshielding..IftankorbilgecontentsarepumpedthroughacentralUVunit,lowflowrates,longexposurepathlength,andhighUVintensityarerequiredtoachievesufficientexposure.However,onlyplanktonicbacteriaandothersuspendedorganismswill

beexposed,whilesessilebacteriaandbiofilmsontanksurfaceswillnot.

SRBaregenerallyobligateanaerobes,whichflourishinoxygendepletedenvironments,andusesulphateasaterminalelectronacceptor.ItwasthereforeoncethoughtthataerationofasystemwouldpreventcorrosionarisingfromSRBbyreducingorkillingthepopulationofSRB.However,asdiscussedbyLittleandLee[64],thishassincebeendisprovedasSRBexistinconsortwithotherorganismsonwhichtheydependforremovalofoxygenandproductionofnutrientswhichtheycanmetabolise.Thereforetheycansurviveinaeratedsystems.

Pumpingofotherwisestagnantwatersmaybeeffectiveindisruptingthegradientsofoxygenconcentration,nutrients,pH,organismsandtheirmetabolicbyproductswhichmightotherwisedevelopinastagnantbodyofwater,togetherwithdisruptingtheformationofbiofilms.Therefore,ifpumpingoftanksisundertakenregularly,thismayhaveabeneficialeffectonpreventingtheinitiationofMIC.

De-oxygenationornitrogenpurgingofseawaterballasttankshasbeenusedtopreventcorrosionofheadspacesandtolimitthespreadofintroducedmarinespecies.However,asdiscussedbyLittleandLee[1,64,65],corrosioninanaerobicseawaterismoreaggressivethaninaerobicseawaterastotallyanaerobicconditionsrapidlyformthatpromoteSRBwithresultantcorrosionofexposedsteel.Inevitablysealsandgasketsfailandoxygenleaksintothetank,andthisgivesrisetohighercorrosionratesincarbonsteelthandoesconsistentlyaerobicordeoxygenatedseawater.

5.3 Topical Issues with MIC Mitigation LittleandLee[1]addressseveralstrategiestomitigatetheeffectsofMIC,includingalteringpotentialelectronacceptorstoinhibitspecificgroupsofbacteria,andusingselectedbacteriatoinhibitcorrosion.

AdditionofnitratecausesashiftinthemicrobialpopulationfromSRBtonitrate-reducingbacteria(NRB).LittleandLee[1,58,65]discusstheseveralpossiblemechanismsforthisobservation,andnotethatnitrate-nitritesupplementationiseffectivefordecreasingsulphideconcentrations,butfurtherresearchisrequiredtooptimisethisforwaterswithdifferenthydrocarbonconcentrations.

LittleandLee[58,65]reviewedlaboratoryandfieldtrialsofcorrosioninhibitionduetobiofilms,butconcludedthatwhileithasbeendemonstratedinthelaboratoryforseveralmicroorganismsonseveralmetalsandalloys,ithasneverbeendemonstratedinafieldapplication.Theyhighlightedthestochasticnatureofbiofilms,theissueofcontaminationandnaturalcompetition,theinfluenceofnutrientsonelectrochemicalmeasurements,andonthecorrosionmechanism.

5.4 Cathodic Protection Cathodicprotection(CP)involvesapplicationofprotectivecurrenttothemetaltobeprotectedbyuseofsacrificialanodesorimpressedcurrentanodes.Cathodicprotectionappearedtobeeffectiveininhibitingthegrowthofbiofilmsformedbyaerobicbacteriaonsurfacesofmildsteelstructuressubmergedinseawater[44].Theoppositeeffectwasreportedforanaerobicbiofilmsofsulphate-reducingbacteria.ThecombineduseofCPandprotectivecoatingscanbeveryeffectiveincontrollingbiocorrosionofpipesandstructuresexposedtoseawater,suchasshipbilgesandballasttanks.However,CPmustbeusedfromtheoutsetinconjunctionwithgoodcoatings,andislesseffectivewhenretrofittedtomitigatebiocorrosioninstructureswherecorrosionhasalreadytakenhold.[66]

AreviewofCPefficiencyinthepresenceofSRBconfirmsthatthecriterionof-0.900VvsAg/AgClisnotenoughtoprotectcarbonsteelfromMICbySRB[67].FurtherresearchisrequiredtodeterminetheeffectivenessofCPinengineeringapplications[63],andthisincludesbilgesandballasttanksonmarinevessels.

6. Conclusions Microbiologicallyinfluencedcorrosionhasbeenfoundtocauseseriousproblemsinarangeoflocationsonboardmaritimevessels.IndeedtestinghasfoundthewidespreadpresenceofmicrobesrelatedtoMICinmanydifferentareasonboardshipsandboats.Someoftheproblemswerereportedtohaveoccurredfollowingtakingonwatersthatweremostlikelypollutedwithboththesemicroorganismsandthenutrientsthattheyrequire.Thissituationshouldobviouslybeavoidedwhereverpossible.

TherearemanyfieldandlaboratorytechniquesavailableforthediagnosisofMIC.Theuseofarangeoftestmethodsincludingacombinationofthosewhichprovidechemical,biologicalandmetallurgicalevidenceisrecommendedasisthecarefuldocumentationofanyevidencefound.LikewisemonitoringofMICinamaritimevesselcouldpotentiallybecarriedoutwithanumberofdifferentcommercialdevices,whichusevariousdetectionmethods.Knowingthelimitationsofaparticularmonitoringtechniqueandhavingaclearunderstandingofhowtointerpretthesensoroutputarecriticalwhenusinganysensor.AswasthecaseforMICdiagnosisitisexpectedthatnosinglemonitoringtechniquewillprovideadefinitivesolutionforMICanditisexpectedthatacombinationoftechniquesisprobablybest.ThereisaneedforruggedenvironmentalsensorsthatmonitorthelevelofnutrientsorbyproductsthatarespecifictoparticularMIC-causingmicroorganisms,tocomplementMICsensorsandelectrochemicalbiosensors,andtoalloweventualdevelopmentofConditionBasedMaintenanceforMIC.

Arangeofpreventionandmitigationstrategiesareavailable,withtheprimaryonebeingtokeepthesystemcleanfromtheoutset.Again,nosingletreatmentwillworkforallsituations,andcombinationsoftreatmentsmayberequireddependentuponthespecificmaterials,environmentandmicroorganismspresent.Foroperatorsofmaritimevessels,thereisoftenalimitedsuiteofavailableoptions,dictatedbycost,complexityandregulatoryconstraints.Furtherresearchisrequiredtodeterminetheon-boardefficacyofthesimpler,environmentallybenignandmorereadilyavailabletechniques,suchascathodicprotectionandsomephysical-mechanicaltreatments,whilecontinuingtomonitorresearchdevelopmentsofstrategiestargetingspecificmicroorganisms,butstillatlaboratoryscale.

Thepotentialrewardsformaintenanceandrepaircostavoidanceandincreasedavailabilityofmaritimevesselsishuge.

7. Acknowledgments TheauthorswouldliketothankstafffromtheDefenceScienceandTechnologyOrganisation,ASCPtyLtd,MonashUniversityandmembersoftheRoyalAustralianNavywhoassistedinsomeoftheMICworkpresented.FundingfromtheCRCforIntegratedEngineeringAssetManagementandDefenceMaterialsTechnologyCentreisgratefullyacknowledged.

8. References [1] LittleBJ,LeeJS,MicrobiologicallyInfluenced

Corrosion,JohnWileyandSonsInc,Hoboken,NewJersey,USA,2007.

[2] JackTR,Biologicalcorrosionfailures,(In)FailureAnalysisandPrevention:ASMHandbookVolume11,(Ed)RTShipley,WTBecker,ASMInternational,2002.

[3] DexterSC,MicrobiologicallyInfluencedCorrosion,(In)Corrosion:Fundamentals,Testing,andProtection,ASMHandbookVolume13A,(Ed)SDCramer,BSCovinoJr,ASMInternational,2003.

[4] GardinerCP,MelchersRE,Corrosionanalysisofbulkcarriers,PartI:operationalparametersinfluencingcorrosionrates,MarineStructures16(2003)547-566.

[5] BeechIB,GaylardeCC,Recentadvancesinthestudyofbiocorrosion–anoverview,RevistadeMicrobiologia30(1999)177-190.

[6] StuartRA,Microbialattackonshipsandtheirequipment,Lloyd’sRegisterTechnicalAssociation(1994-1995)1-41.

[7] UpsherJF,Areviewofmicrobiallyinducedcorrosion(MIC)ofsteelandapreliminaryinvestigationtodetermineitsoccurrenceinnavalvessels,DefenceScienceandTechnologyOrganisation(Australia)1993,TechnicalReportMRL-GD-0048.

[8] NeihoffR,MayM,Microbialandparticulatecontaminationinfueltanksonnavalships,InternationalBiodeteriorationBulletin19(2)(1983)59-68.

Microbiologically Influenced Corrosion in Maritime Vessels

Page 6: Research Paper...a ship, through use of internal pad welding or underwater hull welding, or use of coffer dams to perform small area crop and renew repairs. However, if significant

Vol 36 No 5 October 2011 Corrosion & Materials www.corrosion.com.au78 79

[9] HillEC,andHillGC,Microbialproliferationinbilgesanditsrelationshiptopittingcorrosionofhullplateofin-shorevessels,Trans.IMArE105(4)(1993)175-182.

[10]WadeSA,TruemanA,MartP,SloanG,VinceP,InvestigationofthepotentialforMICinthebilgewatersofAustraliannavalvessels,Corrosion/2009,22-26March,2009,Atlanta,USA,Paper09399.

[11]WadeSA,MartP,TruemanAR,MICofsteelsinthebilgewatersofmaritimevessels,AustralasianCorrosionAssociation-CorrosionandPrevention2009,15-18November,2009,CoffsHarbour,Australia,Paper041.

[12]UpsherFJ,FletcherLE,HodgemanDKC.Hydrogensulfidegenerationinshipboardoily-waste:Part2Microbiologicalaspects:DefenceScienceandTechnologyOrganisation(Australia)1995.TechnicalReportDSTO-TR-0054.

[13]FarinhaP,JeffreyJ,MICinportsandharbours–AnoverviewofALWCphenomenainAustralia,MIC–AnInternationalPerspective,14-15February,2007,Perth,Australia.

[14]BeechIB,CampbellSA,Acceleratedlowwatercorrosionofcarbonsteelinthepresenceofabiofilmharbouringsulfate-reducingandsulphur-oxidisingbacteriarecoveredfromamarinesediment,ElectrochimicaActa54(2008)14-21.

[15]ClelandJH,Corrosionrisksinships’ballasttanksandtheIMOpathogenguidelines,EngineeringFailureAnalysis2(1)(1995)79-84.

[16]TatnallTR,PopeDH,IdentificationofMIC.In:KobrinG,editor.PracticalManualonMicrobiologicallyInfluencedCorrosion.Houston:NACEInternational:65-77.

[17]LittleBJ,LeeJS,RayRI,Diagnosingmicrobiologicallyinfluencedcorrosion:Astate-of-the-artreview,Corrosion62(2006)1006-1017.

[18]ItoM,CanBallastWaterTreatmentAffectaShip'sLifeCycleCost?IntroductionoftheVOSSystem.Int.MarineCoatingsSummit;30-31October,2008,Busan,SouthKorea.

[19]BallastTankProtection(CenterforTankshipExcellence),see:http://www.c4tx.org/ctx/job/btp/summary.htmlLastaccessed8June2011.

[20]TowersR,Acceleratedcorrosionincargotanksoflarge,double-hullships:causesandcountermeasures,JournalofProtectiveCoatingsandLinings,March(2000)30-42.

[21]ChristianDK,SeelingerAD,WegandJC.Fleetsustainabilityandmaintenancecostsusingstate-of-the-artcorrosioncontrolsurfacepreparationtools.http://www.nstcenter.com/docs/PDFs/MR2005/MR2005_5005-D.Christian-FleetSustainabilityMaintenanceCosts.pdfLastaccessed8June2011.

[22]LucasKE,ThomasED,SlebodnickPF,HoganEA,LemieuxEJandKaznoffAI,Ballasttankcoatings:Evaluatinganddocumentingtheirconditionwitharemotemonitoringsystem,JournalofProtectiveCoatings&Linings18(6)(2001)40-46.

[23]LemieuxE,BrinkerhoffB.Newpreservationtechniquesonthehorizon,http://www.nstcenter.com/writeup.aspx?title=Mega%20Rust%202007&page=MR2007/MR2007_ProceedingsFleet.htmlFCSMR2007-14.Lastaccessed8June2011.

[24]OilCompaniesInternationalMarineForum,Factorsinfluencingacceleratedcorrosionofcargooiltanks1997:Availablefromhttp://www.ocimf.com/.

[25]CopenhagenWJ,Acceleratedcorrosionofshipsbottomplate,BritishCorrosionJournal1(9)(1966)344.

[26]HazlettRN,ControlofcorrosioninwaterballastedavgasfuelingsystemsbypHadjustment:NavalResearchLaboratory(USA)1969,NRLMemorandumReport1956.

[27]KlemmeDE,NeihofRA,Controlofmarinesulfate-reducingbacteriainwater-displacedshipboardfuelstoragetanks:NavalResearchLaboratory(USA)1969,NRLMemorandumReport2069.

[28]KlemmeDE,LeonardJM,Inhibitorsformarinesulphate-reducingbacteriainshipboardfuelstoragetanks:NavalResearchLaboratory(USA)1969,NRLMemorandumReport2324.

[29]HaggettRD,MorchatRM,Microbiologicalcontamination:Biocidetreatmentinnavaldistillatefuel,InternationalBiodeteriorationandBiodegradation29(1992)87-99.

[30]HodgemanDKC,UpsherFJ,FletcherLE.Hydrogensulfidegenerationinshipboardoily-waste:Part1Originofthehydrogensulfide,DefenceScienceandTechnologyOrganisation(Australia)1995,TechnicalReportDSTO-TR-0053.

[31]MartP,MICinnavalvessels,“MIC–AnInternationalPerspective”,ConferenceonMicrobialCorrosion14-15February,2007,Perth,Australia.

[32]BolwellR,UnderstandingRoyalNavygasturbineseawaterlubricatingoilcoolerfailureswhencausedbymicrobialinducedcorrosion“SRB”,JournalofEngineeringforGasTurbinesandPower128(2006)153-162.

[33]NicklinGJE,Livingwiththethreatofmicrobiologicallyinfluencedcorrosioninsubmarineseawatersystems:TheRoyalNavy’sperspective,9thIntl.NavalEngineeringConference,April2008Hamburg,Germany.

[34]CampbellSA,ScannellRA,WalshFC,Microbially-assistedpittingcorrosionofship’shullplate,IndustrialCorrosion8(1990)1-14

[35]HardyJAandBrownJL,Thecorrosionofmildsteelbybiogenicsulphidefilmsexposedtoair,Corrosion40(12)(1984)650-654.

[36]HuangRT,McFarlandBL,HodgemanRZ.Microbialinfluencedcorrosionincargooiltanksofcrudeoiltankers.Corrosion/97,March,1997,NewOrleans,USA,Paper535.

[37]HillEC,MicrobialCorrosioninShipsTanks-Detection

andRemediation,Tankcare2000,May13-14,1996Hamburg,Germany.

[38]MelchersRE,Effectoftemperatureonthemarineimmersioncorrosionofcarbonsteels,Corrosion58(9)(2002)768-782.

[39]TM0106-2006Detection,Testing,andEvaluationofMicrobiologicallyInfluencedCorrosion(MIC)onExternalSurfacesofBuriedPipelines,NACEInternationalStandardTestMethod,2006.

[40]LarsenJ,SorensenK,HojrisB,SkovhusTL,Significanceoftroublesomesulfate-reducingprokaryotes(SRP)inoilfieldsystemsCorrosion/2009,22-26March,2009,Atlanta,USA,Paper09389.

[41]LittleB,WagnerP,Mythsrelatedtomicrobiologicallyinfluencedcorrosion,MaterialsPerformance36(6)(1997)40-44.

[42]RuizGM,RawlingsTK,DobbsFC,DrakeLA,MulladyT,HuqA,ColwellRR,Globalspreadofmicroorganismsbyships,Nature408(2000)49-50.

[43]ScottPJB,Microbiologicallyinfluencedcorrosionmonitoring:Realworldfailuresandhowtoavoidthem,MaterialsPerformance39(1)(2000)54-59.

[44]VidelaHA,Preventionandcontrolofbiocorrosion,InternationalBiodeterioration&Biodegradation49(2002)259–270.

[45]MansfeldF,Theuseofelectrochemicaltechniquesfortheinvestigationandmonitoringofmicrobiologicallyinfluencedcorrosionanditsinhibition–areview,MaterialsandCorrosion54(2003)489–502.

[46]LicinaGJ,NekoksaG,Rapiddetectionofmicrobiologicallyinfluencedcorrosioninshipboardequipmentbyon-linemonitoringofbiofilmformation,Corrosion/1997,9-14March,1997.NewOrleans,Louisiana,USA,Paper528.

[47]GeorgeRP,MarshallD,NewmanRC,MechanismofaMICprobe,CorrosionScience45(2003)1999-2015.

[48]G59-97Standardtestmethodforconductingpotentiodynamicpolarizationresistancemeasurements,ASTMInternational(2009).

[49]SmartJ,PickthallT,Fieldexperiencesinon-linebacteriamonitoring,Corrosion/1996,March,1996,Denver,Colorado,USA,Paper279.

[50]KaneRD,CampbellS,Real-timecorrosionmonitoringofsteelinfluencedbymicrobialactivity(SRBinsimulatedseawaterinjectionenvironments,Corrosion/2004,March,2004,NewOrleans,LA,USA,Paper04579.

[51]RoyerRA,UnzRF,Useofelectricalresistanceprobesforstudyingmicrobiologicallyinfluencedcorrosion,Corrosion58(10)(2002)863-870.

[52]LiSY,KimYG,JungS,SongHS,LeeSM,Applicationofsteelthinfilmelectricalresistancesensorforinsitucorrosionmonitoring,SensorsandActuatorsB120(2007)368–377.

[53]SooknahR,PapavinasamS,RevieRW,Asulphideoxidasebiosensorformonitoringsulphide,Corrosion/2008,16-20March,2008,NewOrleans,LA,USA.

[54]HaileT,SooknahR,PapavinasamS,GouldWD,DinardoO,SimultaneousonlinemonitoringofSRBactivityandcorrosionrate,Corrosion/2010,14-18March,2010,SanAntonio,TX,USA.

[55]HaileT,DouldWD,FurtherevaluationofanonlineprobeforsimultaneousmonitoringofcorrosionrateandSRBactivity,Corrosion/2011,13-17March,2011,Houston,TX,USA.

[56]BorensteinSW,Microbiologicallyinfluencedcorrosionhandbook,IndustrialPressInc.,NewYork,1994.

[57]Videla,HA,Manualofbiocorrosion,LewisPublishers,CRCPress,BocaRaton,1996.

[58]LittleBJ,LeeJS,Microbiologicallyinfluencedcorrosion,Kirk-OthmerEncyclopediaofChemicalTechnology,JohnWileyandSons,2009.

[59]B.G.Pound,Y.Gorfu,P.Schattner,andK.E.Mortelmans,Ultrasonicmitigationofmicrobiologicallyinfluencedcorrosioninnaturalgaspipelinefacilities,Corrosion61(5)(2005)452-463.

[60]HolmER,StamperDM,BrizzolaraRA,BarnesL,DeamerN,BurkholderJM,Sonicationofbacteria,phytoplanktonandzooplankton:Applicationtotreatmentofballastwater,MarinePollutionBulletin56(2008)1201–1208.

[61]Quilez-BadiaG,McCollinT,JosefsenKD,VourdachasA,GillME,MesbahiEandFridCLJ,Onboardshort-timehightemperatureheattreatmentofballastwater:Afieldtrialunderoperationalconditions,MarinePollutionBulletin56(2008)127–135.

[62]ChelossiE,FaimaliM,Comparativeassessmentofantimicrobialefficacyofnewpotentialbiocidesfortreatmentofcoolingandballastwaters,ScienceoftheTotalEnvironment356(2006)1–10.

[63]JavaherdashtiR,Microbiologicallyinfluencedcorrosion:Anengineeringinsight,Springer,London,2008.

[64]LeeJS,RayRI,LittleBJandLemieuxEJ,Evaluationofdeoxygenationasacorrosioncontrolmeasureforballasttanks,Corrosion61(12)(2005)1173-1188.

[65]LittleB,LeeJandRayR,Areviewof'green'strategiestopreventormitigatemicrobiologicallyinfluencedcorrosion,Biofouling23(2)(2007)87–97.

[66]King,RA,Microbiologicallyinducedcorrosionintheoilindustryandtheimpactofmitigationprogrammes,MIC-AnInternationalPerspective,14-15February,2007,Perth,Australia.

[67]deRomeroM,deRincónOandOcandoL,CathodicprotectionefficiencyinthepresenceofSRB:Stateoftheart,Corrosion/2009,22-26March,2009,Atlanta,USA,Paper09407.

Microbiologically Influenced Corrosion in Maritime Vessels