resistive wall mode stabilization of high- b nstx plasmas

18
NSTX ACS APS 2004 Resistive Wall Mode Stabilization of High- NSTX Plasmas Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland U New Mexico U Rochester U Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI Ioffe Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching U Quebec 46 th Annual Meeting of Division of Plasma Physics American Physical Society November 15-19, 2004 Savannah, GA A.C. Sontag 1 , S. A. Sabbagh 1 , J.M. Bialek 1 , D.A. Gates 2 , A. H. Glasser 3 , B.P. LeBlanc 2 , J.E. Menard 2 , W. Zhu 1 , M.G. Bell 2 , R. E. Bell 2 , A. Bondeson 4 , J.D. Callen 5 , M.S. Chu 6 , C.C. Hegna 5 , S. M. Kaye 2 , L. L. Lao 6 , Y. Liu 4 , R. Maingi 7 , D. Mueller 2 , K.C. Shaing 5 , D. Stutman 8 , K. Tritz 8 1 Department of Applied Physics, Columbia University 2 Plasma Physics Laboratory, Princeton University 3 Los Alamos National Laboratory 4 Institute for Electromagnetic Field Theory, Chalmers U., Goteborg, Sweden 5 University of Wisconsin - Madison 6 General Atomics 7 Oak Ridge National Laboratory 8 Johns Hopkins University

Upload: zachery-valentine

Post on 02-Jan-2016

24 views

Category:

Documents


5 download

DESCRIPTION

Supported by. Resistive Wall Mode Stabilization of High- b NSTX Plasmas. Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland U New Mexico U Rochester U Washington - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Resistive Wall Mode Stabilization of High- NSTX Plasmas

Supported by

Columbia UComp-X

General AtomicsINEL

Johns Hopkins ULANLLLNL

LodestarMIT

Nova PhotonicsNYU

ORNLPPPL

PSISNL

UC DavisUC Irvine

UCLAUCSD

U MarylandU New Mexico

U RochesterU Washington

U WisconsinCulham Sci Ctr

Hiroshima UHIST

Kyushu Tokai UNiigata U

Tsukuba UU Tokyo

JAERIIoffe Inst

TRINITIKBSI

KAISTENEA, Frascati

CEA, CadaracheIPP, Jülich

IPP, GarchingU Quebec

46th Annual Meeting of Division of Plasma PhysicsAmerican Physical Society

November 15-19, 2004Savannah, GA

A.C. Sontag1, S. A. Sabbagh1, J.M. Bialek1, D.A. Gates2, A. H. Glasser3, B.P. LeBlanc2, J.E. Menard2, W. Zhu1, M.G. Bell2, R. E. Bell2, A. Bondeson4, J.D. Callen5, M.S. Chu6, C.C. Hegna5, S. M. Kaye2, L. L. Lao6, Y. Liu4, R. Maingi7, D. Mueller2, K.C. Shaing5, D. Stutman8, K. Tritz8

1Department of Applied Physics, Columbia University2Plasma Physics Laboratory, Princeton University3Los Alamos National Laboratory4Institute for Electromagnetic Field Theory, Chalmers U., Goteborg, Sweden5University of Wisconsin - Madison6General Atomics7Oak Ridge National Laboratory8Johns Hopkins University

Page 2: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Understanding of -Limiting Instabilities Necessary for Sustained High- Operation

• Motivation Recent machine upgrades have extended performance further into

the high- long-pulse regime Several instabilities can limit performance in this regime Resistive wall mode (RWM) can limit high- operations at low

plasma rotation and low-q

• Outline RWM identification at high- and low aspect ratio RWM rotation damping and critical rotation frequency Beta limiting mechanisms in wall stabilized regime Resonant field amplification using initial RWM stabilization coil

Page 3: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

NSTX Facility Equipped to Study RWM Physics at Low Aspect Ratio

NSTX ParametersIp

BT

R0

A

PNBI

1.5 MA 0.6 T0.86 m>1.27

2.67 MW

• New Capabilities: RWM sensors Initial stabilization coils

• Theory Ideal MHD stability – DCON (Glasser) Drift kinetic theory (Bondeson – Chu) RWM growth rate – VALEN (Bialek –

Boozer )

Initial RWM stabilization coilsSensors

Passive plates

Page 4: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Long-Pulse High- Correlated with High Toroidal Rotation

• NSTX extending performance to higher-IN

t = 39% N = 6.8 achieved lower-q more susceptible

to RWM

Tor

oida

l (

%)

IN Ip/aBT (MA/m-T)

0 2 4 6 80

10

20

30

40

50N = 6

5

4

3

2

Shot 112546

t

N

DCONn = 1

I p (

MA

)

0.4

0.8

PN

BI (M

W)2

46

time (s)0 0.2 0.4 0.6 0.8 1.0 1.2

51015

t (

%)

Ip

PNBI

246

N

Ft (

kHz)

5

15

25 R = 1.3 mW

(ar

b.)

0

-20

-40

• Long-pulse, high-N requires wall stabilization

no-wallideal-wall

Page 5: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

RWM Can Limit at Low-q

• RWM is external kink modified by presence of resistive wall

• RWM Characteristics: slow growth: ~ 1/wall

slow rotation: fRWM ~ 1/wall

strong rotation damping stabilized by rotation & dissipation

• High toroidal rotation passively stabilizes RWM at higher-q

• Other modes can saturate before RWM is destabilized

Shot 114147

0.2

0.4

0.6

0.8

1.0

1.2

0

4

-4

I p (

MA

)

no-wallideal-wall

Ip

N

0

2

4

6

1

3

5

N

0.00 0.05 0.10 0.15 0.20 0.25 0.30time (s)

0.25 0.26 0.27time (s)

Bp

(Gau

ss)

0

2040

60locked n = 1 frominternal sensors

wallstabilized

DCON n = 1

W (

arb.

)

wall ~ 5 ms)

RWM

Page 6: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Visible Image & Theory Show Mode Structure

• Toroidal asymmetry observed on visible camera images during RWM

• DCON computed B structure EFIT reconstruction of experimental

equilibrium includes sum of n=1-3 components scaled to measured amplitudes and

phases

Before RWM activity

RWM with Bp = 92 G Theoretical B (x10) with n=1-3 (DCON)

(interior view)(exterior view)

114147t = 0.268s

114147t = 0.250s

Page 7: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Internal Sensor Array Used for RWM Detection• Internal toroidal arrays of Bz and Br

sensors installed 5 kHz digitization rate instrumented to detect n = 1 - 3

• Measured coil currents used for background subtraction ~2 Gauss noise level achieved allows real time mode detection

• SVD mode detection is robust

CL

Br

Shot 114150

BzI p

(M

A)

0.40.81.2

10

20

10

20

10

20

B (

Gau

ss)

lower Bpupper Bp

external Br

0.25 0.26 0.27 0.28 0.29 0.30time (s)

2

4

6

NIp

N

n=1

n=2

n=3

Passive Stabilizing Plate•See poster JP1.005 (S.A. Sabbagh - Wed. Afternoon)

Page 8: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

SXR Measurement Shows RWM Toroidal Asymmetry

• Experiment / theory show RWM not edge localized Supported by

measured Te

Bay G array (0 deg)Bay J array (90 deg)

114024, t=0.273sN = 5

0.27 0.28 0.29

8

4

0

time (s)

Inte

nsity

(ar

b)

0.0 0.5 1.0 1.5 2.0R(m)

2

1

0

-1

-2

Z(m

)

USXR separated by 90 degrees toroidally

6

2

2

1

00.0 0.2 0.4 0.6 0.8 1.0

DCON n = 1 modedecomposition

n

(arb

)

m=34

56

m=2

m=1

Te During RWM

1139240.26s - 0.277s

T

e (k

eV)

0.0 0.4 0.8 1.2

R (m)

0.0

0.1

0.2

0.3

RWM growth

n = 0.4

Page 9: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

RWM Rotation Damping Differs from Other Modes

• RWM damping is global 1/1 mode not present

• Edge rotation does not go to zero consistent with neoclassical

toroidal viscosity (NTV)

• 1/1 causes core damping leads to ‘rigid rotor’ plasma

core

• momentum transfer across rational surface at R = 1.3 m

RWM Core 1/1

Torque NTV ~ δB2Ti0.5

Ft (

kHz)

Radius (cm)90 100 110 120 130 140

10

0

20

30

40

Ft (

kHz)

10

0

20

30

40

150

50

Radius (cm)90 100 110 120 130 140 150

Time (s)0.2250.2350.255

Time (s)0.4150.4250.4350.445

Page 10: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Neoclassical Toroidal Viscosity Theory Matches Measured Damping Profile

• Damping due to NTV only

• B magnitude and profile from measured Te

• No low frequency islands during this period

• Damping due to NTV and JB torques

• B magnitude and profile from measured SXR emission

core 1/1 modeRWM

*See talk CO3.008 by W. Zhu for more detail- Monday Afternoon, Room 204/205 SCC

113924

Td

(N m

-2)

0.40.30.20.10.0

-0.1-0.2

t = 0.276s

TNTV

theory3.0

2.0

1.0

0.0

1.61.41.21.00.8

TNTV+JxB

theory

measuredTd

(N m

-2)

R (m)

-R2(d/dt)

-R2(d/dt)measured

0.8 1.0 1.2 1.4 1.6R (m)

Page 11: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Experiment Supports 1/q2 Scaling of Critical Rotation Frequency

• Scaling from two stability classes: stabilized no RWM for t >>

wall when N > N no-wall

not stabilized collapse after a few wall when N > N no-wall

• Bondeson-Chu drift-kinetic model* agrees with observed scaling trapped particle effects weaken

stabilizing ion Landau damping toroidal inertia enhancement

becomes more important Alfven continuum damping

gives:

crit ≡ωt

ωA

=14q2 q

t(q

)/

A

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5

*Phys. Plasmas 3 (1996) 3013

not stabilized1/4q2stabilized

t/A(q,t) profiles

Page 12: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

High- Discharges Below crit(q) Can Suffer Collapse

• RWM growth when: rotation below crit inside q = 2

when N exceeds no-wall limit example - shot 114147:

• exceeds no-wall limit at ~ 0.2s

• RWM collapse at ~0.265 s

• Edge and low-order rational surfaces not stabilized

• Observed in all RWM shots

t(q

)/

A

0.0

0.1

0.2

0.3

1 2 3 4q

0.40.81.2

I p (

MA

)

Shot 114147

246

N

204060

Bp

(G)

0.20 0.22 0.24 0.26 0.28time (s)

0.21 s0.22 s0.23 s0.24 s0.25 s

n = 1

Ip

N

Page 13: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Global Mode Limits at Highest N

• Collapse observed at highest N on many shots

• Mode involves both core and edge Coincident D spike and neutron collapse

• Rotation collapse is global but brief not associated with rotating MHD

Shot 112794

0.0 0.2 0.4 0.6 0.8time (s)

D

neu

tro

ns/1

012

0

2

4

6

200

400600

24

6

NF

t (kH

z)

5

15

25 R = 1.3mFt (

kHz)

neutronsD

0

10

20

30

40

50

1.0 1.2 1.4 1.6R (m)

Time (s)0.4850.4950.5050.515

Page 14: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Growth Rate During Collapse Approaches Ideal

• early phase growth ~ 5 ms from RWM sensors

• later growth ~ 670 s from Mirnovs

• VALEN growth = 530 s

B (

Gauss

) Odd-n0.2-40 kHz

2468

Bp

(Gau

ss)

LowerArrayn = 1

0.45 0.46 0.47 0.48

-505

• Consistent with external to internal kink transition DCON shows kink becomes more

internal wall stabilization less effective

• VALEN shows mode growth rate approaching ideal

N

4

6

8Shot 112785

0.30 0.35 0.40 0.45 0.50time (s)

W

0-10

(s

-1)

-20

50010001500

ideal-wallno-wall

Page 15: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Collapse Restores Stability, Triggers Rotating Mode

• collapse removes unstable drive

• Rotation profile moves toward stability N > N no-wall before and after

collapse

• Relatively low amplitude Bp < 10 Gauss Bp > 30 Gauss during typical

RWM

• n = 1 triggered by collapse pure n = 2, n = 3 modes

triggered in similar discharges

n = 1 2 3

F (

kHz)

20

40

60

80

time (s)0.35 0.450.30 0.500

0.40

Magnetic PickupMode Spectrum

Page 16: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Resonant Field Amplification by Stable RWM Observed

• Single RWM coil pair available for CY 04 run 180 degree separation

• Resonant field amplification (RFA) when N > N no-wall

amplification of external perturbations by stable RWM

predicted by theory*

Shot 113955

0.20 0.24 0.28 0.32time (s)

0.2

0.6

1.0

2

4

6

N

I p (

MA

)

Ip

N

W (

arb.

)

0

4

-4

-8

5

10

15B

p (G

auss

)

ideal-wallno-wall

coil on

DCONn = 1

n = 1plasma

response

*Boozer, A.H., Phys. Rev. Lett., 86 5059 (2001)

Page 17: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

RWM Coil Used to Study RFA Characteristics

• RFA amplitude increases with N

similar to DIII-D

• RFA decay after coil pulse gives negative mode growth rate ~3 ms decay time observed ~ wall

• Full coil set will enable more detailed study of RWM rotating error field odd and even n harmonics

0.24 0.26 0.28 0.30

4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

1

2

3

4

5

6

4.5 5.50.0

0

time (s)

N

RF

AB

p (G

auss

)

no-walllimit

decayperiod

Active Coil On

n = 1

Page 18: Resistive Wall Mode Stabilization of High- b  NSTX Plasmas

NSTX ACS APS 2004

Understanding Key RWM Physics Important for Sustained High- Operation in NSTX

• Control system improvements allow access to high-IN & high- regime t = 39%, N = 6.8 early H-mode gives routine access to long-pulse

• n = 1 - 3 RWM measured

• Rotation damping consistent with neoclassical toroidal viscosity model

• Rotation data indicate crit ~ A/q2

• Global mode with growth rate >> 1/wall observed to limit highest N plasmas

• Initial resonant field amplification results consistent with DIII-D observations

• Preparation for RFA suppression and active feedback stabilization of RWM is underway