response spectrum analysis for peak floor acceleration

12
26.06.16 1 Response spectrum analysis for peak floor acceleration demands in earthquake excited structures Lukas Moschen, Christoph Adam Unit of Applied Mechanics University of Innsbruck Dimitrios Vamvatsikos School of Engineering National Technical University of Athens The 42 nd Risk, Hazard & Uncertainty Workshop Hydra, Greece, June 23-24, 2016 Response spectrum analysis – peak floor accelerations Christoph Adam© Motivation and objective ü Simplified approaches for estimating peak floor acceleration (PFA) demands § Lack usually generality in application ü Response spectrum methods with appropriate modal combination rules (SRSS, CQC) more accurate ü SRSS and CQC rules originally developed for relative response quantities (displacement, internal forces) ü PFA demand absolute response quantity ü CQC modal combination rule for PFA demands proposed § Closed form solution for peak factors and correlation coefficients § Based on concepts of normal stationary random vibration theory § Related studies: Taghavi and Miranda (2009), Pozzi and Der Kiureghian (2012, 2015) Page 2

Upload: others

Post on 16-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

26.06.16

1

Response spectrum analysis for peak floor acceleration demands in

earthquake excited structures

Lukas Moschen, Christoph Adam Unit of Applied Mechanics

University of Innsbruck

Dimitrios Vamvatsikos School of Engineering

National Technical University of Athens

The 42nd Risk, Hazard & Uncertainty Workshop Hydra, Greece, June 23-24, 2016

Response spectrum analysis – peak floor accelerations Christoph Adam©

Motivation and objective

ü  Simplified approaches for estimating peak floor acceleration (PFA) demands

§  Lack usually generality in application

ü  Response spectrum methods with appropriate modal combination rules

(SRSS, CQC) more accurate

ü  SRSS and CQC rules originally developed for relative response quantities

(displacement, internal forces)

ü  PFA demand absolute response quantity

ü  CQC modal combination rule for PFA demands proposed

§  Closed form solution for peak factors and correlation coefficients

§  Based on concepts of normal stationary random vibration theory

§  Related studies: Taghavi and Miranda (2009), Pozzi and Der Kiureghian (2012,

2015)

Page 2

26.06.16

2

Response spectrum analysis – peak floor accelerations Christoph Adam©

Modal response history analysis Equations of motion

Page 3

M!!u(rel) + C !u(rel) +Ku(rel) = −Me!!ug

u(rel) = φφiΓidi

(rel)

i=1

N

!!di(rel) + 2ζiωi

!di(rel) + ωi

2di(rel) = −!!ug

Γi =

φφiTMe

φφiTMφφi

uk(rel)

ukN

k

1

ug

Modal decomposition of u(rel)

Response spectrum analysis – peak floor accelerations Christoph Adam©

Modal response history analysis Equations of motion

Page 4

M!!u(rel) + C !u(rel) +Ku(rel) = −Me!!ug

u(rel) = φφiΓidi

(rel)

i=1

N

!!di(rel) + 2ζiωi

!di(rel) + ωi

2di(rel) = −!!ug

Γi =

φφiTMe

φφiTMφφi

!!u = !!u(rel) + e!!ug = φφiΓi!!di(rel) + !!ug( )!!di

" #$ %$i=1

N

∑ = φφiΓi!!di(rel)

i=1

N

∑!!u(rel)

" #$ %$+ φφiΓi!!ug

i=1

N

∑e!!ug

" #$ %$= φφiΓi

!!dii=1

N

uk(rel)

ukN

k

1

ugTotal accelerations

Modal decomposition of u(rel)

26.06.16

3

Response spectrum analysis – peak floor accelerations Christoph Adam©

Modal response history analysis Total accelerations

Page 5

!!u = φφiΓi

!!dii=1

N

∑ = φφiΓi!!di(rel)

i=1

N

∑ + φφiΓi!!ugi=1

N

∑ = φφiΓi!!di(rel)

i=1

N

∑ + e!!ug

!!u = φφiΓi!!di

i=1

n

∑ + φφiΓi!!di(rel)

i=n+1

N

∑ + φφiΓi!!ugi=n+1

N

∑ = φφiΓi!!di

i=1

n

u(n)" #$ %$

+ φφiΓi!!di(rel)

i=n+1

N

∑≈0

" #$$ %$$+ e − φφiΓi

i=1

n

∑⎛

⎝⎜

⎠⎟

r(n)" #$$ %$$

!!ug

Separation of modal series into 1,…, n modes and n+1,...,N modal contributions

Response spectrum analysis – peak floor accelerations Christoph Adam©

Modal response history analysis Total accelerations

Page 6

!!u = φφiΓi

!!dii=1

N

∑ = φφiΓi!!di(rel)

i=1

N

∑ + φφiΓi!!ugi=1

N

∑ = φφiΓi!!di(rel)

i=1

N

∑ + e!!ug

!!u = φφiΓi!!di

i=1

n

∑ + φφiΓi!!di(rel)

i=n+1

N

∑ + φφiΓi!!ugi=n+1

N

∑ = φφiΓi!!di

i=1

n

u(n)" #$ %$

+ φφiΓi!!di(rel)

i=n+1

N

∑≈0

" #$$ %$$+ e − φφiΓi

i=1

n

∑⎛

⎝⎜

⎠⎟

r(n)" #$$ %$$

!!ug

!!u ≈ φφiΓi!!di

i=1

n

∑!!u(n)

" #$ %$+ e − φφiΓi

i=1

n

∑⎛

⎝⎜

⎠⎟

r(n)" #$$ %$$

!!ug = !!u(n) + r(n)!!ug

residual vector -> high frequency contribution of ground acceleration considered

Approximation of total accelerations by the first n modes

Separation of modal series into 1,…, n modes and n+1,...,N modal contributions

26.06.16

4

Response spectrum analysis – peak floor accelerations Christoph Adam©

Total accelerations in terms of stationary random variables

Proposed response spectrum method

Page 7

!!U ≈ φφiΓi

!!Dii=1

n

∑ + r(n)!!Ug = !!U(n) + r(n)!!Ug

Var !!U⎡⎣ ⎤⎦ = Var !!U(n)⎡

⎣⎢⎤⎦⎥ + r(n)( )2 Var !!Ug

⎡⎣

⎤⎦ + 2Cov !!U(n),r(n)!!Ug

⎡⎣⎢

⎤⎦⎥

Var !!U⎡⎣ ⎤⎦ = Cov !!Ui

(n), !!Uj(n)⎡

⎣⎢⎤⎦⎥

j=1

n

∑i=1

n

∑ + r(n)( )2 Var !!Ug⎡⎣

⎤⎦ + 2 Cov !!Ui

(n),r(n)!!Ug⎡⎣⎢

⎤⎦⎥

i=1

n

Assumption: Ø  Set of ground motions represent Gaussian random process with zero mean

Ø  is Gaussian with zero mean

Ø 

Ø  Central peak floor acceleration (PFA) demand

!!U

E !!U2⎡⎣⎢

⎤⎦⎥ = Var !!U⎡⎣ ⎤⎦

Variance

E max !!Uk⎡⎣

⎤⎦ ≡ mPFAk

= Var !!Uk⎡⎣ ⎤⎦pk

peak factor

quantity to be determined

variance

uk

k

!!uk

Response spectrum analysis – peak floor accelerations Christoph Adam©

Var !!U⎡⎣ ⎤⎦ = Cov !!Ui

(n), !!Uj(n)⎡

⎣⎢⎤⎦⎥

j=1

n

∑i=1

n

∑ + r(n)( )2 Var !!Ug⎡⎣

⎤⎦ + 2 Cov !!Ui

(n),r(n)!!Ug⎡⎣⎢

⎤⎦⎥

i=1

n

∑Modal decomposition of variance

Proposed response spectrum method

Page 8

Var !!U⎡⎣ ⎤⎦ = φφiΓiφφjΓ jCov !!Di , !!Dj

⎡⎣⎢

⎤⎦⎥

j=1

n

∑i=1

n

∑ + r(n)( )2 Var !!Ug⎡⎣

⎤⎦ + 2r(n) φφiΓiCov !!Di , !!Ug

⎡⎣⎢

⎤⎦⎥

i=1

n

Ø  Pearson’s cross correlation coefficient and central peak modal coordinate

ρi,j =Cov !!Di,

!!Dj⎡⎣

⎤⎦

Var !!Di⎡⎣ ⎤⎦Var !!Dj

⎡⎣

⎤⎦

Cov !!Di,

!!Dj⎡⎣

⎤⎦ = ρi,j Var !!Di

⎡⎣ ⎤⎦Var !!Dj⎡⎣

⎤⎦ = ρi,j

E max !!Di⎡⎣

⎤⎦

pi

E max !!Dj⎡⎣

⎤⎦

pj≈ ρi,j

Sa,i

pi

Sa,j

pj

E max !!Di⎡⎣

⎤⎦ ≈ Sa,i = Var !!Di

⎡⎣ ⎤⎦pi

Var !!U⎡⎣ ⎤⎦ = ρi,jφφiΓiφφjΓ jSa,i

pi

Sa,j

pjj=1

n

∑i=1

n

∑ + r(n)( )2 mPGA2

pg2

+ 2r(n) mPGApg

ρi,gφφiΓiSa,i

pii=1

n

ρi,j

E max !!Di⎡⎣

⎤⎦

central spectral pseudo-acceleration at i-th period

26.06.16

5

Response spectrum analysis – peak floor accelerations Christoph Adam©

=pkpi

pkpj

φφi,kΓiSa,iφφj,kΓ jSa,jρi,jj=1

n

∑i=1

n

∑ +pkpg

⎝⎜⎜

⎠⎟⎟

2

mPGA2 rk

(n)( )2 + 2mPGArk(n) pk

pg

pkpii=1

n

∑ φφi,kΓ jSa,jρi,g

⎢⎢⎢

⎥⎥⎥

1/2

CQC mode superposition rule for central PFA demand of the k-th floor

Proposed response spectrum method

Page 9

correlation coefficients

E max !!Uk⎡⎣

⎤⎦ ≡ mPFAk

= Var !!Uk⎡⎣ ⎤⎦pk =

peak factors

Response spectrum analysis – peak floor accelerations Christoph Adam©

Proposed response spectrum method

Page 10

Gg(KT) = G0

1 + 4ζg2(ν / νg)

2

1 − (ν / νg)2( )2 + 4ζg

2(ν / νg)2

ρi,j =λ0,ij

λ0,iiλ0,jj

ρi,g =λ0,ig

λ0,iiλ0,gg

λl,XY = νl

0

∞∫ GXY(ν)dν = νl

0

∞∫ Gg

(KT)(ν)HX(ν)HY*(ν)dν , l = 0,1,2,..

Correlation coefficients

l-th cross-spectral moment

Hg(ν) = 1

zeroth cross-spectral moment between i-th and j-th random modal acceleration

zeroth cross-spectral moment between i-th random modal and ground acceleration

cross PSD

Kanai-Tajimi PSD

FRFs

FRF of i-th modal acceleration FRF of ground acceleration

Hi(ν) =

ωi2 + 2iζiωiν

ωi2 − ν2 + 2iζiωiν

Kanai-Tajimi PSD – characterization of ground excitation

26.06.16

6

Response spectrum analysis – peak floor accelerations Christoph Adam©

foa-CQC-pf modal combination rule Ø  Assumption: first order approximation of cross-spectral moments

Approximations

Page 11

ha-CQC-pf modal combination rule Ø  Assumption: hybrid approximation of cross-spectral moments

CQC-nopf modal combination rule Ø  Assumption: ratios of peak factors are unity

mPFAk

≈ φφi,kΓiSa,iφφj,kΓ jSa,jρi,jj=1

n

∑i=1

n

∑ +mPGA2 rk

(n)( )2 + 2mPGArk(n) φφi,kΓ jSa,jρi,g

i=1

n

∑⎡

⎣⎢⎢

⎦⎥⎥

1/2

pkpi

=pkpj

=pkpg

= 1

mPFAk=

pkpi

pkpj

φφi,kΓiSa,iφφj,kΓ jSa,jρi,jj=1

n

∑i=1

n

∑ +pkpg

⎝⎜⎜

⎠⎟⎟

2

mPGA2 rk

(n)( )2 + 2mPGArk(n) pk

pg

pkpii=1

n

∑ φφi,kΓ jSa,jρi,g

⎢⎢⎢

⎥⎥⎥

1/2

Response spectrum analysis – peak floor accelerations Christoph Adam©

Approximations

Page 12

mPFAk≈

pkpi

φφi,kΓiSa,i

⎝⎜

⎠⎟

2

i=1

n

∑ + mPGArk(n)( )2

⎢⎢⎢

⎥⎥⎥

1/2

mPFAk

≈ φφi,kΓiSa,i( )2i=1

n

∑ + µPGArk(n)( )2⎡

⎣⎢⎢

⎦⎥⎥

1/2

t-SRSS-pf modal combination rule Ø  Assumption: modal response uncorrelated; peak factors and truncated modes considered

t-SRSS-nopf modal combination rule Ø  Assumptions: modal response uncorrelated; peak factor ratios unity;

truncated modes considered

26.06.16

7

Response spectrum analysis – peak floor accelerations Christoph Adam©

SRSS-pf modal combination rule Ø  Assumptions: modal response uncorrelated; truncated modes neglected

Approximations

Page 13

Classical SRSS modal combination rule (SRSS-nopf) Ø  Assumptions: modal response uncorrelated; peak factor ratios unity;

truncated modes neglected

mPFAk≈

pkpi

φφi,kΓiSa,i

⎝⎜

⎠⎟

2

i=1

n

∑⎡

⎢⎢⎢

⎥⎥⎥

1/2

mPFAk

≈ φφi,kΓiSa,i( )2i=1

n

∑⎡

⎣⎢⎢

⎦⎥⎥

1/2

Response spectrum analysis – peak floor accelerations Christoph Adam©

Ground motion modeling in frequency domain

Page 14

Reference solution: outcome of RHA Ø  Seismic hazard representative for Century City (Los Angeles)

Ø  92 site compatible ground motion records from PEER NGA database

Ø  Median and dispersion of record set match design spectrum and target spectrum

in period range 0.05s ≤ T ≤ 3.0s σt = 0.80

G0 = 0.18

Gg(KT) = G0

1 + 4ζg2(ν / νg)

2

1 − (ν / νg)2( )2 + 4ζg

2(ν / νg)2

Calibration of Kanai-Tajimi PSD

ζg = 0.78

νg / (2π) = 1.79Hz

0.0

1.0

2.0

3.0

4.0

5.0

0.1 1 10 100

Sa

/ g

f = ν /2π [Hz]

0.0

0.1

0.2

0.3

0.4

0.1 1 10

Gg

f = ν / 2π [Hz]

Gg(ground motions)

Gg(KT)

26.06.16

8

Response spectrum analysis – peak floor accelerations Christoph Adam©

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

hre

l

6/6

2/6

4/6

5/6

3/6

1/6

mPFAk / g

RHACQC-pf mode 1-95%

CQC-pf mode 1

CQC-pf mode 1+2

CQC-pf all modes

6-story SMRF

Application

Page 15

Planar SMRF structures Ø  6-story ( ), 12-story ( ), and 24-story ( ) structures

Ø  Linear mode shape

Ø  Seismic active mass concentrated to BC connections. Roof only half mass.

Ø  5% Rayleigh damping

ω1 = 7.33 rad / s ω1 = 4.22 rad / s ω1 = 2.42 rad / s

1.0 1.1 1.2 1.3 1.4 1.5 1.6pk

hre

l

pk(hrel=0)=pg

6/6

2/6

4/6

5/6

3/6

1/6

mode 1-3

mode 1

mode 1+2

all modes

6-story SMRF

Response spectrum analysis – peak floor accelerations Christoph Adam©

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5mPFAk / g

hre

l

RHA

CQC-pf mode 1-95%

CQC-pf mode 1

CQC-pf mode 1+2

CQC-pf all modes

12/12

4/12

8/12

10/12

6/12

2/12

12-story SMRF

0.0 0.5 1.0 1.5 2.0 2.5 3.0mPFAk / g

hre

l

RHA

CQC mode 1-95%

CQC mode 1

CQC mode 1+2

CQC all modes

24/24

8/24

16/24

20/24

12/24

4/24

24-story SMRF

Application

Page 16

Planar SMRF structures Ø  6-story ( ), 12-story ( ), and 24-story ( ) structures

Ø  Linear mode shape

Ø  Seismic active mass concentrated to BC connections. Roof only half mass.

Ø  5% Rayleigh damping

ω1 = 7.33 rad / s ω1 = 4.22 rad / s ω1 = 2.42 rad / s

12-story SMRF 24-story SMRF

26.06.16

9

Response spectrum analysis – peak floor accelerations Christoph Adam©

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5mPFAk / g

hre

l

12/12

4/12

8/12

10/12

6/12

2/12

12-story SMRF

RHA

CQC-pf

ha-CQC-pf

foa-CQC-pf

t-SRSS-pf

SRSS-pf

1 to 95% m.p. mode included

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5mPFAk / g

hre

l1 to 95% m.p. mode included

12/12

4/12

8/12

10/12

6/12

2/12

RHA

12-story SMRF

CQC-nopf

ha-CQC-nopf

foa-CQC-nopf

t-SRSS-nopfSRSS-nopf

Application

Page 17

Planar SMRF structures Ø  6-story ( ), 12-story ( ), and 24-story ( ) structures

Ø  Linear mode shape

Ø  Seismic active mass concentrated to BC connections. Roof only half mass.

Ø  5% Rayleigh damping

ω1 = 7.33 rad / s ω1 = 4.22 rad / s ω1 = 2.42 rad / s

12-story SMRF

with peak factors no peak factors

Response spectrum analysis – peak floor accelerations Christoph Adam©

Application

Page 18

Spatial frame structures Ø  6-story ( ), 12-story ( ), and 24-story ( ) structures

Ø  Linear mode shape

Ø  Seismic active mass concentrated to BC connections. Roof only half mass.

Ø  5% Rayleigh damping

ω1 = 7.20 rad / s ω1 = 4.14 rad / s ω1 = 2.38 rad / s

Spatial wall structures Ø  6-story ( ), 12-story ( ), and 24-story ( ) structures

Ø  Parabolic mode shape ω1 = 12.58 rad / s ω1 = 7.55 rad / s ω1 = 4.49 rad / s

A7.32 m

7.3

2 m

3.6

6 m

3.6

6 m

0.30meccentricmass

!!uAxk

!!uAx1

!!uAx2

26.06.16

10

Response spectrum analysis – peak floor accelerations Christoph Adam©

0.0 1.0 2.0 3.0 4.0 5.0mPFAk / g

hre

l

RHA

12/12

4/12

8/12

10/12

6/12

2/12

12-story WALL

CQC-pf mode 1-95%CQC-pfmode 1 CQC-pf all modes

SRSS-nopf all modes

SRSS-nopfmode 1

0.0 1.0 2.0 3.0 4.0 5.0mPFAk / g

hre

l

RHA

12/12

4/12

8/12

10/12

6/12

2/12

12-story SMRF

CQC-pf mode 1-95%

CQC-pf mode 1

CQC-pf all modes

SRSS-nopf all modes

Application

Page 19

3.6

6 m

3.6

6 m

!!uAx1

!!uAx2

ω1 = 4.14 rad / sω2 = 4.21 rad / sω3 = 4.59 rad / s

ω1 = 7.55 rad / sω2 = 7.55 rad / sω3 = 31.0 rad / s

12-story SMRF

12-story WALL

Response spectrum analysis – peak floor accelerations Christoph Adam©

0.0 1.0 2.0 3.0 4.0 5.0mPFAk / g

hre

l

1 to 95% m.p. mode included

12/12

4/12

8/12

10/12

6/12

2/12

RHA

12-story SMRF

CQC-nopf

ha-CQC-nopf

foa-CQC-nopf

t-SRSS-nopf

SRSS-nopf

0.0 1.0 2.0 3.0 4.0 5.0mPFAk / g

hre

l

RHA

12/12

4/12

8/12

10/12

6/12

2/12

12-story SMRF

CQC-pf

ha-CQC-pf

foa-CQC-pf

t-SRSS-pf

SRSS-pf

1 to 95% m.p. mode included

Application

Page 20

3.6

6 m

3.6

6 m

!!uAx1

!!uAx2

ω1 = 4.14 rad / sω2 = 4.21 rad / sω3 = 4.59 rad / s

12-story SMRF

with peak factors

no peak factors

26.06.16

11

Response spectrum analysis – peak floor accelerations Christoph Adam©

ω1 = 7.55 rad / sω2 = 7.55 rad / sω3 = 31.0 rad / s

0.0 1.0 2.0 3.0 4.0 5.0mPFAk / g

hre

l

RHA

12-story WALL

CQC-pf

ha-CQC-pf

foa-CQC-pf

t-SRSS-pf

SRSS-pf

1 to 95% m.p. mode included

12/12

4/12

8/12

10/12

6/12

2/12

0.0 1.0 2.0 3.0 4.0 5.0mPFAk / g

hre

l

RHA

12-story WALL

CQC-nopf

ha-CQC-nopf

foa-CQC-nopf

t-SRSS-nopf

SRSS-nopf

1 to 95% m.p. mode included

12/12

4/12

8/12

10/12

6/12

2/12

Application

Page 21

3.6

6 m

3.6

6 m

!!uAx1

!!uAx2

12-story WALL

with peak factors

no peak factors

Response spectrum analysis – peak floor accelerations Christoph Adam©

Summary and conclusions ü  Robust CQC modal combination rule for central PFA demands proposed

ü  Analytical expressions and approximations for

§  Correlation coefficients

§  Peak factors

ü  Reliable assessment of the central PFA demand

ü  Peak factors

§  Significant for midrise to highrise structures

ü  Correlation coefficients

§  Insignificant for planar structures

§  Significant for spatial structures with closely spaced modes

ü  Truncated modes

§  Significant for lower stories

Page 22

26.06.16

12

Response spectrum analysis – peak floor accelerations Christoph Adam©

Thank you very much for your attention!

Page 23