resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x...

59
Resultants modulo p Carlos D’Andrea July 28th 2016 Carlos D’Andrea Resultants modulo p

Upload: others

Post on 21-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Resultants modulo p

Carlos D’Andrea

July 28th 2016

Carlos D’Andrea

Resultants modulo p

Page 2: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Carlos D’Andrea

Resultants modulo p

Page 3: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Univariate Resultants

{f1 = a10x0

d1 + a11x0d1−1x1 + . . . + a1d1x1

d1

f2 = a20x0d2 + a21x0

d2−1x1 + . . . + a2d2x1d2

Res(f1, f2) = det

a10 a11 . . . a1d1 0 . . . 00 a10 . . . a1d1−1 a1d1 . . . 0...

.... . . . . . . . .

. . ....

0 0 . . . a10 . . . . . . a1d1a20 a21 . . . a2d2 0 . . . 00 a20 . . . a2d2−1 a2d2 . . . 0...

.... . . . . . . . .

. . ....

0 0 . . . a20 . . . . . . a2d2

Carlos D’Andrea

Resultants modulo p

Page 4: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Univariate Resultants

{f1 = a10x0

d1 + a11x0d1−1x1 + . . . + a1d1x1

d1

f2 = a20x0d2 + a21x0

d2−1x1 + . . . + a2d2x1d2

Res(f1, f2) = det

a10 a11 . . . a1d1 0 . . . 00 a10 . . . a1d1−1 a1d1 . . . 0...

.... . . . . . . . .

. . ....

0 0 . . . a10 . . . . . . a1d1a20 a21 . . . a2d2 0 . . . 00 a20 . . . a2d2−1 a2d2 . . . 0...

.... . . . . . . . .

. . ....

0 0 . . . a20 . . . . . . a2d2

Carlos D’Andrea

Resultants modulo p

Page 5: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Resultants modulo p

f1, f2 ∈ Z[x1, x2] =⇒ Res(f1, f2) ∈ Z

Res(f1, f2) = 0 mod p ⇐⇒deg(gcd(f1 mod p, f2 mod p)) > 0

pdeg(gcd(f1 mod p,f2 mod p))|Res(f1, f2)(Gomez-Gutierrez-Ibeas-Sevilla 2009)

Carlos D’Andrea

Resultants modulo p

Page 6: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Resultants modulo p

f1, f2 ∈ Z[x1, x2] =⇒ Res(f1, f2) ∈ ZRes(f1, f2) = 0 mod p ⇐⇒

deg(gcd(f1 mod p, f2 mod p)) > 0

pdeg(gcd(f1 mod p,f2 mod p))|Res(f1, f2)(Gomez-Gutierrez-Ibeas-Sevilla 2009)

Carlos D’Andrea

Resultants modulo p

Page 7: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Resultants modulo p

f1, f2 ∈ Z[x1, x2] =⇒ Res(f1, f2) ∈ ZRes(f1, f2) = 0 mod p ⇐⇒

deg(gcd(f1 mod p, f2 mod p)) > 0

pdeg(gcd(f1 mod p,f2 mod p))|Res(f1, f2)(Gomez-Gutierrez-Ibeas-Sevilla 2009)

Carlos D’Andrea

Resultants modulo p

Page 8: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

This fact has been used!

(Chang-D-Ostafe-Shparlinski-Sombra 2016)

bounding the cardinality of thereduction mod p of lengths of orbits

of pairs of univariate dynamicalsystems

Carlos D’Andrea

Resultants modulo p

Page 9: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

This fact has been used!

(Chang-D-Ostafe-Shparlinski-Sombra 2016)

bounding the cardinality of thereduction mod p of lengths of orbits

of pairs of univariate dynamicalsystems

Carlos D’Andrea

Resultants modulo p

Page 10: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Igor Shparlinski’s Question

pdeg(gcd(f1 mod p,f2 mod p))|Res(f1, f2)

How general is this?

Carlos D’Andrea

Resultants modulo p

Page 11: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Igor Shparlinski’s Question

pdeg(gcd(f1 mod p,f2 mod p))|Res(f1, f2)

How general is this?

Carlos D’Andrea

Resultants modulo p

Page 12: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Vanishing of Resultantes modulo p

(Buse-D-Sombra 2016)

f1 =

∑α0+...+αn=d1

a1,α0,...,αnx0α0. . . xn

αn

f2 =∑

α0+...+αn=d2a2,α0,...,αn

x0α0. . . xn

αn

...fn+1 =

∑α0+...+αn=dn+1

an+1,α0,...,αnx0α0. . . xn

αn

f1, . . . , fn+1Z[x ] =⇒ Res(f1, . . . , fn+1) ∈ Z

Carlos D’Andrea

Resultants modulo p

Page 13: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Vanishing of Resultantes modulo p

(Buse-D-Sombra 2016)

f1 =

∑α0+...+αn=d1

a1,α0,...,αnx0α0. . . xn

αn

f2 =∑

α0+...+αn=d2a2,α0,...,αn

x0α0. . . xn

αn

...fn+1 =

∑α0+...+αn=dn+1

an+1,α0,...,αnx0α0. . . xn

αn

f1, . . . , fn+1Z[x ] =⇒ Res(f1, . . . , fn+1) ∈ Z

Carlos D’Andrea

Resultants modulo p

Page 14: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Known case

If d1 = d2 = . . . = dn+1 = 1, then

Res(f1, . . . , fn+1) = det(aij)

1≤i , j≤n+1

Carlos D’Andrea

Resultants modulo p

Page 15: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

A non trivial example

f0 = a00x0 + a01x1 + a02x2f1 = a10x0 + a11x1 + a12x2f2 = a20x0

2 + a21x0x1 + a22x0x2 + a23x12 + a24x1x2 + a25x2

2

Res(f0, f1, f2) = a200a211a25 − a200a11a12a24 + a200a

212a23

−2a00a01a10a11a25 + a00a01a10a12a24 + a00a01a11a12a22−a00a01a212a21 + a00a02a10a11a24 − 2a00a02a10a12a23−a00a02a211a22 + a00a02a11a12a21 + a201a

210a25

−a201a10a12a22 + a201a212a20 − a01a02a

210a24

+a01a02a10a11a22 + a01a02a10a12a21 − 2a01a02a11a12a20+a202a

210a23 − a202a10a11a21 + a202a

211a20

Carlos D’Andrea

Resultants modulo p

Page 16: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

A non trivial example

f0 = a00x0 + a01x1 + a02x2f1 = a10x0 + a11x1 + a12x2f2 = a20x0

2 + a21x0x1 + a22x0x2 + a23x12 + a24x1x2 + a25x2

2

Res(f0, f1, f2) = a200a211a25 − a200a11a12a24 + a200a

212a23

−2a00a01a10a11a25 + a00a01a10a12a24 + a00a01a11a12a22−a00a01a212a21 + a00a02a10a11a24 − 2a00a02a10a12a23−a00a02a211a22 + a00a02a11a12a21 + a201a

210a25

−a201a10a12a22 + a201a212a20 − a01a02a

210a24

+a01a02a10a11a22 + a01a02a10a12a21 − 2a01a02a11a12a20+a202a

210a23 − a202a10a11a21 + a202a

211a20

Carlos D’Andrea

Resultants modulo p

Page 17: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Properties of Res(f1, . . . , fn+1)

It is irreducible

It is homogeneous in each group ofvariables, of degree d1·d2·...dn+1

diIt is invariant under linear changesof coordinates

Carlos D’Andrea

Resultants modulo p

Page 18: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Properties of Res(f1, . . . , fn+1)

It is irreducible

It is homogeneous in each group ofvariables, of degree d1·d2·...dn+1

di

It is invariant under linear changesof coordinates

Carlos D’Andrea

Resultants modulo p

Page 19: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Properties of Res(f1, . . . , fn+1)

It is irreducible

It is homogeneous in each group ofvariables, of degree d1·d2·...dn+1

diIt is invariant under linear changesof coordinates

Carlos D’Andrea

Resultants modulo p

Page 20: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Geometric Properties

Res(f1, . . . , fn+1) = 0 ⇐⇒∃ξ ∈ Pn such thatf1(ξ) = . . . = fn+1(ξ) = 0

Poisson Formula:Res(f1, . . . , fn+1)

=Res(f 01 , . . . , f

0n )dn+1

∏ξ∈V (f 11 ,...,f

1n )fn+1(ξ)

Carlos D’Andrea

Resultants modulo p

Page 21: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Geometric Properties

Res(f1, . . . , fn+1) = 0 ⇐⇒∃ξ ∈ Pn such thatf1(ξ) = . . . = fn+1(ξ) = 0

Poisson Formula:Res(f1, . . . , fn+1)

=Res(f 01 , . . . , f

0n )dn+1

∏ξ∈V (f 11 ,...,f

1n )fn+1(ξ)

Carlos D’Andrea

Resultants modulo p

Page 22: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Geometric Properties

Res(f1, . . . , fn+1) = 0 ⇐⇒∃ξ ∈ Pn such thatf1(ξ) = . . . = fn+1(ξ) = 0

Poisson Formula:Res(f1, . . . , fn+1)

=Res(f 01 , . . . , f

0n )dn+1

∏ξ∈V (f 11 ,...,f

1n )fn+1(ξ)

Carlos D’Andrea

Resultants modulo p

Page 23: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Resolution of systems of polynomials

P(u0, ui) = Res(uix0−u0xi , f1, . . . , fn)

can be used to compute thecoordinates of the (finite) roots of

the systemf1 = 0, . . . , fn = 0

Carlos D’Andrea

Resultants modulo p

Page 24: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Resolution of systems of polynomials

P(u0, ui) = Res(uix0−u0xi , f1, . . . , fn)

can be used to compute thecoordinates of the (finite) roots of

the systemf1 = 0, . . . , fn = 0

Carlos D’Andrea

Resultants modulo p

Page 25: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Computation

Carlos D’Andrea

Resultants modulo p

Page 26: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Resultants modulo p

(Buse-D-Sombra 2016)

If dim(Vp(f1, . . . , fn+1)

)≤ 0

Np := deg(Vp(f1, . . . , fn+1)

)pNp|Res(f1, . . . , fn+1)

Carlos D’Andrea

Resultants modulo p

Page 27: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Resultants modulo p

(Buse-D-Sombra 2016)

If dim(Vp(f1, . . . , fn+1)

)≤ 0

Np := deg(Vp(f1, . . . , fn+1)

)

pNp|Res(f1, . . . , fn+1)

Carlos D’Andrea

Resultants modulo p

Page 28: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Resultants modulo p

(Buse-D-Sombra 2016)

If dim(Vp(f1, . . . , fn+1)

)≤ 0

Np := deg(Vp(f1, . . . , fn+1)

)pNp|Res(f1, . . . , fn+1)

Carlos D’Andrea

Resultants modulo p

Page 29: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Corollary

pNp|Res(f1, . . . , fn+1)

The factorization of the resultantactually bounds the (finite) zeroes

modulo p for all prime p !

Carlos D’Andrea

Resultants modulo p

Page 30: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Corollary

pNp|Res(f1, . . . , fn+1)

The factorization of the resultantactually bounds the (finite) zeroes

modulo p

for all prime p !

Carlos D’Andrea

Resultants modulo p

Page 31: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Corollary

pNp|Res(f1, . . . , fn+1)

The factorization of the resultantactually bounds the (finite) zeroes

modulo p for all prime p !

Carlos D’Andrea

Resultants modulo p

Page 32: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

The CantabrianTheorem revisited

deg(gcd(f1 mod p, f2 mod p))=Np

=deg(Vp(f1, f2))

(Gomez-Gutierrez-Ibeas-Sevilla 2009)Carlos D’Andrea

Resultants modulo p

Page 33: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Remarks

Still the result works under the(generic) hypothesis of finitenessmodulo p

the “gap” in the bound can belargeNot a clear “algorithm” fordim

(Vp(f1, . . . , fn+1)

)> 0

Carlos D’Andrea

Resultants modulo p

Page 34: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Remarks

Still the result works under the(generic) hypothesis of finitenessmodulo pthe “gap” in the bound can belarge

Not a clear “algorithm” fordim

(Vp(f1, . . . , fn+1)

)> 0

Carlos D’Andrea

Resultants modulo p

Page 35: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Remarks

Still the result works under the(generic) hypothesis of finitenessmodulo pthe “gap” in the bound can belargeNot a clear “algorithm” fordim

(Vp(f1, . . . , fn+1)

)> 0

Carlos D’Andrea

Resultants modulo p

Page 36: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Idea of our proof

“Remove” all the zeroes from the infinite

(linearchange of coordinates)

Apply Poisson formula

Get a “determinantal” version of Poissonmodulo p

Compute the dimension of the Nullspace of thedeterminantal matrix

Carlos D’Andrea

Resultants modulo p

Page 37: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Idea of our proof

“Remove” all the zeroes from the infinite (linearchange of coordinates)

Apply Poisson formula

Get a “determinantal” version of Poissonmodulo p

Compute the dimension of the Nullspace of thedeterminantal matrix

Carlos D’Andrea

Resultants modulo p

Page 38: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Idea of our proof

“Remove” all the zeroes from the infinite (linearchange of coordinates)

Apply Poisson formula

Get a “determinantal” version of Poissonmodulo p

Compute the dimension of the Nullspace of thedeterminantal matrix

Carlos D’Andrea

Resultants modulo p

Page 39: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Idea of our proof

“Remove” all the zeroes from the infinite (linearchange of coordinates)

Apply Poisson formula

Get a “determinantal” version of Poissonmodulo p

Compute the dimension of the Nullspace of thedeterminantal matrix

Carlos D’Andrea

Resultants modulo p

Page 40: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Idea of our proof

“Remove” all the zeroes from the infinite (linearchange of coordinates)

Apply Poisson formula

Get a “determinantal” version of Poissonmodulo p

Compute the dimension of the Nullspace of thedeterminantal matrix

Carlos D’Andrea

Resultants modulo p

Page 41: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Generalizations and Extensions

One could get a refinement of the exponent bytaking into account the valuation mod p of theroots (Smirnov’s Theorem)

Slight generalization to sparse resultants understronger hypothesis

The result holds for any domain, for instancepolynomials with coefficients in R[y1, . . . , yl ]

Carlos D’Andrea

Resultants modulo p

Page 42: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Generalizations and Extensions

One could get a refinement of the exponent bytaking into account the valuation mod p of theroots (Smirnov’s Theorem)

Slight generalization to sparse resultants understronger hypothesis

The result holds for any domain, for instancepolynomials with coefficients in R[y1, . . . , yl ]

Carlos D’Andrea

Resultants modulo p

Page 43: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Generalizations and Extensions

One could get a refinement of the exponent bytaking into account the valuation mod p of theroots (Smirnov’s Theorem)

Slight generalization to sparse resultants understronger hypothesis

The result holds for any domain, for instancepolynomials with coefficients in R[y1, . . . , yl ]

Carlos D’Andrea

Resultants modulo p

Page 44: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Applications

Finding points in varieties modulo p(Shparlinski)

The “Generalized Characteristic Polynomial”revisited! (Mourrain)

“Extraneous factors” in the Computation of the“Salmon Polynomial”(Buse-Chardin-D-Sombra-Weimann)

Carlos D’Andrea

Resultants modulo p

Page 45: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Applications

Finding points in varieties modulo p(Shparlinski)

The “Generalized Characteristic Polynomial”revisited! (Mourrain)

“Extraneous factors” in the Computation of the“Salmon Polynomial”(Buse-Chardin-D-Sombra-Weimann)

Carlos D’Andrea

Resultants modulo p

Page 46: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Applications

Finding points in varieties modulo p(Shparlinski)

The “Generalized Characteristic Polynomial”revisited! (Mourrain)

“Extraneous factors” in the Computation of the“Salmon Polynomial”(Buse-Chardin-D-Sombra-Weimann)

Carlos D’Andrea

Resultants modulo p

Page 47: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Computation of the Salmon Polynomial

(Buse-Chardin-D-Sombra-Weimann)

Z ↔ C[x , y , z , h]/〈f (x , y , z , h)〉

p ↔ h

Carlos D’Andrea

Resultants modulo p

Page 48: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Salmon’s polynomial

A point b in a surface S ⊂ C3 iscalled flex (or inflection) of S

if thereexists a line passing through b having

contact order at least 3 with S

Carlos D’Andrea

Resultants modulo p

Page 49: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Salmon’s polynomial

A point b in a surface S ⊂ C3 iscalled flex (or inflection) of S if thereexists a line passing through b having

contact order at least 3 with SCarlos D’Andrea

Resultants modulo p

Page 50: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Theorem (Salmon, 1862)

If S = V (f (x , y , z)) ⊂ C3 of degreed , and not ruled, there is

Ff (x , y , z) ∈ C[x , y , z ] of degree≤ 11d − 24 such that

Flex(S) = V (f (x , y , z), Ff (x , y , z))

Carlos D’Andrea

Resultants modulo p

Page 51: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Computing Ff (x , y , z)

f ((x , y , z) + t(u, v ,w)) =

f (x , y , z) + t f1(x , y , z ; u, v ,w) +t2 f2(x , y , z ; u, v ,w) +

t3 f3(x , y , z ; u, v ,w) +O(t4)

Carlos D’Andrea

Resultants modulo p

Page 52: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Computing Ff (x , y , z)

f ((x , y , z) + t(u, v ,w)) =f (x , y , z) + t f1(x , y , z ; u, v ,w) +

t2 f2(x , y , z ; u, v ,w) +t3 f3(x , y , z ; u, v ,w) +O(t4)

Carlos D’Andrea

Resultants modulo p

Page 53: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Computing Ff (x , y , z)

The “candidate” for Ff (x , y , z)should be the resultant in (u, v ,w) of

f1(x , y , z ; u, v ,w)

f2(x , y , z ; u, v ,w)

f3(x , y , z ; u, v ,w)

Carlos D’Andrea

Resultants modulo p

Page 54: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Janos Kollar (Adv. Math. 2015)

“I get a polynomial of degree11d − 18. Salmon claims that in fact

the degree should be 11d − 24. Ihave not checked this”

Carlos D’Andrea

Resultants modulo p

Page 55: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Terence Tao (blog, 2014)

“The original proof of theCayley-Salmon theorem, dating back

to at least 1915, is not easilyaccessible and not written in modern

language”

Carlos D’Andrea

Resultants modulo p

Page 56: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Our Result

(Buse-Chardin-D-Sombra-Weimann)

Modulo f (x , y , z , h), if we set h = 0we get a nontrivial solution of the

system of multiplicity 6

Res(f1, f2, f3)=

h6 · Ff (x , y , z) mod f (x , y , z , h)

Carlos D’Andrea

Resultants modulo p

Page 57: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Our Result

(Buse-Chardin-D-Sombra-Weimann)

Modulo f (x , y , z , h), if we set h = 0we get a nontrivial solution of the

system of multiplicity 6

Res(f1, f2, f3)=

h6 · Ff (x , y , z) mod f (x , y , z , h)

Carlos D’Andrea

Resultants modulo p

Page 58: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Thanks!

Carlos D’Andrea

Resultants modulo p

Page 59: Resultants modulo p · 02x 2 f 1 = a 10x 0 + a 11x 1 + a 12x 2 f 2 = a 20x 0 2 + a 21x 0x 1 + a 22x 0x 2 + a 23x 1 2 + a 24x 1x 2 + a 25x 2 2 Res(f 0;f 1;f 2) = a2 00 a 2 11 a 25

Thanks!Carlos D’Andrea

Resultants modulo p