results of experiments in akeno kenji shinozaki max-planck-institut für physik...

53

Upload: earl-harrington

Post on 13-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik
Page 2: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Results of Experiments in AkenoResults of Experiments in Akeno

Kenji SHINOZAKIKenji SHINOZAKI

Max-Planck-Institut fMax-Planck-Institut füür Physikr Physik (Werner-Heisenberg-Institut)(Werner-Heisenberg-Institut)Munich, GermanyMunich, Germany

on behalf of AGASA Collaboration

2nd International Workshop on Ultra-high-energy cosmic rays and their sources14 – 16 April, 2005 @INR Moscow

Page 3: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

• Institute for Cosmic Ray Research, University of Tokyo (Kashiwa)

– Masaki Fukushima, Naoaki Hayashida, Hideyuki Ohoka, Satoko Osone,Masahiro Takeda, Reiko Torii

• Kinki University (Osaka)– Michiyuki Chikawa

• University of Yamanashi (Kofu)– Ken Honda, Norio Kawasumi,

Itsuro Tsushima• Saitama University (Saitama)

– Naoya Inoue • Musashi Institute of Technology (Tokyo)

– Kenji Kadota• Tokyo Institute of Technology (Tokyo)

– Fumio Kakimoto• Nishina Memorial Fundation (Tokyo)

– Koichi Kamata• Hirosaki University (Hirosaki)

– Setsuo Kawaguchi• Osaka City University (Osaka)

– Saburo Kawakami

• RIKEN (Wako)– Yoshiya Kawasaki, Hirohiko M. Shimizu Chiba Unive

rsity (Chiba) – Keiichi Mase, Nobuyuki Sakurai,

Shigeru Yoshida• Ehime University (Matsuyama)

– Satoko Mizobuchi, Hisashi Yoshi• Fukuki University of Technology (Fukui)

– Motohiko Nagano• Aoyama Gakuin University (Sagamihara)

– Naoto Sakaki• National Maritine Research Institute (Sagamihara)

– Masahiko Sasano• Max-Planck-Institute for Physics (Munich, GER)

– Kenji Shinozaki, Masahiro Teshima • National Institute of Radiological Sciences (Chiba)

– Yukio Uchihori • University of Chicago (Chicago, USA)

– Tokonatsu Yamamoto

AGASA Collaborators

Page 4: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Physics motivation• Understanding nature & origin of UHECRs

(>1019eV)– Energy spectrum– Arrival direction distribution– Chemical composition

• Super GZK particlesincl. highest energy cosmic rays (>1020eV) – Bottom-up scenarios

• AGNs / GRBs / Collinding galactic etc. ⇒ Hadronic primaries predicted

– Top-Down scenarios• Topological defects• Super heavy dark matter • Z-burst

⇒ Gamma-ray + nucleon 1ries predicted

• Source location still not identified,pUHECR γCMB → N π+

(E0 ~5x1019eV)

Page 5: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Air shower development & observation techniques

• Surface array observation (eg. AGASA)– Sampling particles in shower front reaching ground

• Measurement of particle distribution (electron/muon)

• Fluorescence technique (eg. HiRes, EUSO)– Imaging fluorescence light emitted along air shower track

• Measurement of longitudinal development (Track length; Xmax)

• Hybrid measurement (eg. Auger, Telescope Array)

Page 6: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Outline• Physics motivation & observation principle

• Activities at Akeno Observatory

• Energy determination & spectrum– Shower properties & analysis– Systematic error in energy estimation

• UHECR Anisotropy – 1018eV energies– 1019eV energy and Super-GZK

• Muon component & chemical composition

• Summary & outlook

Page 7: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Pre-AGASA

AGASA

Page 8: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

AGASA era

AGASA

Page 9: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

AGASA (Akeno Giant Air Shower Array)• Detector station

– 111 surface detectors• Effective area ~100km2

• Optical fibre cable connection to observatory

• Triggered by 5-neighbouringhit detector within 25s

– 27 muon detectors• Southern region

~30km2 coverage • Operation

– Feb. 1990–Dec.19954 separate-array operation

– Dec. 1995–Jan.2004 Unified operation

SB

NB

AB

TB

Page 10: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

• Surface detector– 5cm thick plastic scintillator– Hamamatsu 5” R1512 PMT

• Muon detectors (2.8–10m2;south region)

– 14–20 Proportional counters– Shielded by 30cm Fe or 1m concrete

• Threshold energy: 0.5GeVxsecθ– Triggered by accompanying surface detector

Page 11: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik
Page 12: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Event sample & observables

4.11x1019eV

• Energy estimator (charged particle density @600m): S(600)

E0 = 2.0 × 1017 S(600) for vertical showers → less dependent of 1ries or interaction models

• Primary mass estimator (muon density@1000m): ρμ(1000)

600m 1000m

S(600)

ρμ(1000)

Page 13: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Event reconstruction

1. Centre of gravity in ρch distribution →a priori core location

2. Arrival direction optimisation (fitting shower front structure)

3. Core location estimation (fitting lateral distribution)

4. Iterative recalculation of Steps 2 & 3

5. Sθ (600)→S0 (600) translation

6. Energy estimation by S0 (600) vs. E0 relation

Page 14: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Shower front structure (empirical)

• Modified from Linsley formula – Delay time behind shower plane

Td(R)[ns] = 2.6 ( 1 + R/30[m] )1.5 ρ(R) -0.5

– Shower front thicknessTs(R)[ns] = 2.6 ( 1 + R/30[m] )1.5 ρ(R) -0.3

Page 15: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Lateral distribution (empirical)

• Modified Linsley formula ρ(R) = C (R/RM) –α (1+R/RM) –(η–α) {1+(R/1000)2} –δ

• C: Normalisation constant, α=1.2, δ=0.6• RM: Moliere unit @ Akeno (=91.6m)• η = (3.97±0.13) – (1.79±0.62) (secθ – 1)

• Fluctuation of observed particle number σρ2 = ρ + 0.25 ρ2 + ρ (= σscin2 + σrest2 + σstat2)

secθ≤1.1

S(600)=10,30[m2]

Page 16: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Energy estimating relationships• Energy vs. S(600) for vertical showers

– Dai et al.’s MC result by COSMOS+QCDJET (1988)

E0 [eV] = 2.03×1017 S0 (600)

• S(600) Attenuation curve

– Empirical relationship (equi-intensity cut method)

Sθ (600)=S0 (600) ・exp{–X0 / Λ1 (secθ–1) –X0 / Λ2 (secθ–1)2}

• X 0: Atmospheric depth @ AKeno (920 g/cm2)

• Λ 1 = 500 g/cm2

• Λ 2 = 594 g/cm2

2×1019eV1×1019eV

Page 17: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Event selection criteria (standard)

Dataset: February 1990 – January 2004

1. Energy: ≥1017eV (≥1018.5eV for spectrum)

2. Zenith angle: ≤45°

3. Core location: inside AGASA boundary

4. Number of hit detector ≥ 6

5. Good reconstruction χ2 ≤5 for arrival direction fitting

χ2 ≤1.5 for core location fitting

Page 18: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Reconstruction accuracy (Energy resolution, Angular resolution)

• Energy resolution– ΔE0/E0=±30% @1019.5eV– ΔE0/E0=±25% @1020eV

• Angular resolution– Δθ=2.0º @1019.5eV– Δθ=1.3º @1020eV

ΔLog(Energy[eV]) –1.0 0.0 –1.0 0.0 1.0

20

15

10

5

0

Cou

nts

[%/b

in]

8

6

4

2

018 19 20

Log(Energy[eV])

90%

68%

Ope

n an

gle

Δθ[

º]

Page 19: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Exposure (up to May 2003)

• AGASA Exposure – 5.8x1016 m2 sec sr above ~1019eV within θ<45º– AGASA has higher exposure than HiRes below ~3x1019eV

Page 20: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Core location distribution (>1018.5eV)Before & after unification

Aperture: ~110km2sr extended to ~160 km2sr

’95.12—’04.01

’90.2—’95.12

Page 21: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Energy spectrum (θ<45º)

• Super GZK-particles exist

– 11events above 1020eV

• Expected 1.9 event on GZK assumption for uniform sources

Page 22: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Detector calibration

• PWD monitored every RUN (~10h)– Information taken into account in analysis

• Stability of detector– Gain variation (peak of PWD) :±0.7%

– Linearity variation (slope of PWD) :±1.6%

Linearity variation (11yr)

Pulse width distri. (~10hr) Gain variation (11yr)

a: Slope

t1:Peak

Cf. Δτ/<τ>=–Δa/<a>

Channel [0.5ns]

Page 23: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Detector simulation (GEANT)

• Detector container (0.4mm iron roof)

– Detector box (1.6mm iron)

• Scintillator (5cm thick)

• Earth (backscattering)

Detector response understood at ±5% accuracy

Page 24: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Energy conversion

Muon / neutrino

Ele. Mag

90%

• 90% primary energy carried by EM component– primary particle & model ~a few % dependence

• S(600) depending less on primary particle / model

AIRES + QGSJET98 / SIBYLL for p & FeEnergy dispersion in atmosphere

Page 25: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Energy conversion factor

Ref. Model 1ry a b

Dai et al. ’88 COSMOS QCDJET p 2.03 1.02

Single=electron (900m)

Nagano et al. ’99 (CORSIKA5.621) QGSJET98 p 2.07 1.03

Single= PH peak (900m) Fe 2.34 1.00

SIBYLL1.6 p 2.30 1.03

Fe 2.19 1.03

Sakaki et al. ’01 (AIRES2.2.1) QGSJET98 p 2.17 1.01

Single= PW peak (667m) Fe 2.15 1.03

SIBYLL1.6 p 2.34 1.04

Fe 2.24 1.02

E0 = a [1017eV]x S(600) b

• Presently assigned primary energy: – 10% ±1 2%– Most conservative (We need to push up current energy)

Page 26: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

S(600) attenuation curve

45º

20.0

19.5

19.0

18.5

18.0

AIRES code + QGSJET / SIBYLL model for p / Fe

• S(600) attenuating rather slowly– Correction factor less than 2 up to 45º zenith angle

• S(600) attenuation curve consistent between data & MC– Depending less on 1ry particles or interaction models– Error on energy estimation: ± 5%

45º

Page 27: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Shower phenomenology effects(shower front thickness/ delaying particles)

Shower front thicknessParticle arrival time distri. @2km (2x1020eV)

Delaying particles

• Overestimation effects – Important far away from core

• Data between several 100m – 1kmdominant in energy estimation

– Effect of shower front thickness± 5%

– Effect of delaying particles± 5%

Page 28: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Major systematics in AGASA energy

Detector

Absolute gain ± 0.7%

Linearity ± 7%

Detector response (container, box backscattering)

± 5%

Energy estimator S(600)

Interaction model, primary particles, altitude ± 12%

Shower Phenomenology

Lateral distribution ± 7%

S(600) attenuation ± 5%

Shower front structure ± 5%

Late arriving particles ± 5%

Total ± 18%

Systematics is energy independent above 1019eV

Feature of spectrum can hardly change that extends beyond GZK cutoff.

Page 29: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Consistency check in different aperture

Inside array

Well inside array

(~2/3 AGASA)

• No systematic found in different apertures• EHECR spectrum extension beyond GZK cut-off

Page 30: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Comparison of Ne vs. S(600) in Akeno 1km2 array

• E0 = 8.5×1018 [eV] – by Ne = 5.13×109

• E0 = 9.3×1018 [eV]

– by S(600) = 45.7 [/m2 ]

• E0 [eV] = 3.9×1015(Ne/106) 0.9

– Derived from attenuation curve comparison with Chacalaya (5200m; 540g/cm2) experiment

Fairly good agreement between experiment & MC

Page 31: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

AGASA vs. A1 comparison

Page 32: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Cosmic ray propagation in Galaxy

• ~1018eV– Well trapped in Galaxy

• >1019eV– Sources extragalactic– >1020eV: Deflection angle ~a few deg.

• Very likely to point back birthplace

1019eV 1020eV1018eV

Page 33: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Anisotropy around 1018eVSignificance map of event density in 20ºΦ along equi-declination

• Large scale anisotropy clearly found– ~4σ excess @~Galactic Centre – ~4σ deficit @~anti-Galactic Centre

• Evidence of Galactic cosmic rays presence up to 1018eV

Page 34: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Arrival direction distribution (>1019eV; θ<50º)

• No large scale anisotropy

:>1020eV:1019 – 4x1019eV :4x1019 – 1020eV

Page 35: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Arrival direction distribution (>4x1019eV; θ<50º)

:4x1019 – 1020eV :>1020eV

• Small scale anisotropy– Event clustering (>4x1019eV within 2.5º)

1 triplet (○) & 6 doublets (○) observed

Page 36: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Arrival direction distribution (>4x1019eV; θ<50º)

• Small scale anisotropy– Event clustering (>4x1019eV within 2.5º)

1 triplet (○) & 6 doublets (○) observed

– Applying loose criteria (>3.9x1019eV within 2.6º)

2 triplet (doublet → triplet) & 6 doublets (new doublet) observed

:4x1019 – 1020eV :>1020eV

Page 37: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Arrival direction distribution (>4x1019eV; θ<50º)

• Small scale anisotropy– Event clustering (>4x1019eV within 2.5º)

6 doublets (○) &1 triplet (○) observed • Against expected 2.0 doublets (Pch <0. 1%)• There must be ~ a few x 100 EHECR sources

:4x1019 – 1020eV :>1020eV

Page 38: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Space angle [º] Space angle [º]

Log E>19.03.4σ

Space angle distribution of events

0 20 40 60

Even

t den

sity

[a.u

.]

0 20 40 60

Even

t den

sity

[a.u

.]

Space angle [º]0 20 40 60

Even

t den

sity

[a.u

.]

Space angle [º]

• Significant peak @ 0 degree– implying presence of compact EHECR sources

Log E>19.23.0σ

Log E>19.42.0σ

Log E>19.64.4σ

0 20 40 60

Even

t den

sity

[a.u

.]

Page 39: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

2D-plots on galactic coordinates

Modelled by Stanev

• Hot region elongating along ~40º tilting from Δb direction– Consistent with Galactic magnetic field structure behind our FOV

Log E >19.0 Log E >19.2

Log E >19.4 Log E >19.6

ΔΔllIIII

ΔΔbbIIII90º<l<180º; –60<b<+60º

Page 40: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Cluster component

dJ/dE0∝E0–1.8±0.5

Integral EHECR spectrum(Ordinary EHECR vs. cluster comp.)

• Harder spectrum of cluster component

– Scattering lower energy EHECRs

– Watching spectrum at nearby sources?

• Extrapolation meeting highest energy cosmic ray flux @~1020eV

Page 41: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Chemical composition study

UHECR composition is key discriminator of models ⇒ Muons in giant air shower are key observable for AGASA

• Presence of Super-GZK particles– No location identified as their sources– Possibilities of Top-down models (TDs, Z-burst, SHDM…)

Page 42: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Gamma-ray shower properties• Fewer muon content (photoproduced muon)• Landau-Pomeranchuk-Migdal (LPM) effect (>~3x1019eV)

– ‘Slowing down’ shower development• Interaction in geomagnetic field (>several x 1019eV)

– ‘Accelerating’ shower development– LPM effect extinction– Incident direction dependence

2000 g/cm2 0 g/cm2

1020eV Gamma-ray (geomag. Interacted)

1020eV Proton

1020eV Gamma-ray (LPM effect)

1000 g/cm2

Simulated with MC by Stanev & Vankov

Page 43: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Average S(600) vs. energy relationship for gamma-rays (Akeno)

• Gamma-rayenergy underestimation

– 30% @~1019 eV

– 50% @~1019.5 eV(Maximum LPM effct)

– 30% @~1020 eV(Recovered by geomag. effect)

Page 44: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

(R)=C(R/R0)-1.2(1+R/R0)-2.52(1+(R[m]/800)3)-0.6 ,E0=1017.5–1019eV

R0: Characteristic distance (280m @=25o)

Lateral distribution function obtained by A1 Experiment (Hayashida et al. 1995)

Lateral distribution of muons

No significant change in shape of LDM up to 1020eV

Page 45: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Empirical formulae

Primary mass estimator

Lateral distribution

SAMPLE

Charged particle:

Muon:

• Muon density at 1000m(1000)

– Fitting muon data in R=800-1600m to LDM

– Error~±40%

E0=1.8x1020eV(1000)=2.4[/m2]

Page 46: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Analysis

• Dataset (After unification in 1995)– E0≥1019eV

– Zenith angle: ≤36º– Normal event quality cuts

– ≥ 2 muon detectors in R=800m–1600m ⇒ (1000)

– Statistics129 events above 1019eV

19 events above 1019.5eV

Page 47: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Simulations

• Proton / iron primaries (AIRES2.2.1+QGSJET98)

• Gamma-ray primaries (Geomag. + AIRES +LPM)– Geomagnetic field effect

• Significant above 1019.5eV• Code by Stanev &Vankov

– LPM effect• Significant above 1019.0eV • Included in AIRES

• Detector configuration & analysis process

Page 48: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

(1000) distribution (E0>1019eV)

Consistent with proton dominant component

Average relationship (1000)[m−2]= (1.26±0.16)(E0[eV]/1019)0.93±0.13

19 19.5 20 20.5

Log(Energy [eV])

−2

−1

0

1

Log(

Muo

n de

nsity

@10

00m

[m–2

])

Page 49: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Akeno 1km2 (A1): Hayashida et al. ’95 (Interpretation by AIRES+QGSJET)

Haverah Park (HP): Ave et al. ’03Volcano Ranch (VR): Dova et al. (present conf.)HiRes (HiRes): Archbold et al. (present conf.)

Present result (@90% CL)Fe frac.: <35% (1019 –1019.5 eV) <76% (above 1019.5eV)

Iron fraction(p+Fe 2comp. assumption)

A1: PRELIMINARY

Gradual decrease of Fe fraction

between 1017.5 & 1019eV

A1: Preliminary

Page 50: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Compilation by Anchordoqui et al. 2004

Fly’s Eye Xmax

MOCCA SIBYLL

Akeno1 μMOCCA + SIBYLL

Volcano R. Lat.QGSJET98

Haverah P T50QGSJET01

HiRes Xmax

CORSIKA QGSJET

AGASA μAIRES QGSJET98

Akeno1 μAIRES + QGSJET98

HiRes-MIA Xmax

CORSIKA QGSJET

Haverah P. Lat.QGSJET98

Page 51: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Limits on gamma-ray fraction

• Gamma-ray fraction upper limits (@90%CL)

to observed events

– 34% (>1019eV)(/p<0.45)

– 56% (>1019.5eV)(/p<1.27)

Topological defects (Sigl et al. ‘01) (Mx=1016[eV]; flux normalised@1020eV )

Z-burst model(Sigl et al. ‘01)(Flux normalised@1020eV)

SHDM-model (Berezinski ‘03) (Mx=1014[eV]; flux normalised@1020eV )

Assuming 2-comp. (p+gamma-ray) primaries

SHDM-model (Berezinski et al. ‘98) (Mx=1014[eV]; flux normalised@1019eV )

Page 52: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Summary• Energy Spectrum

– 11 events observed >1020eV against 1.9 on GZK assumption – Energy spectrum remains extending beyond GZK cut-off

Conventional GZK mechanism can hardly explain!!

• Arrival direction distribution– Signature of compact EHECR sources

• 6 doublets & 1 triplet in 2.5º above 4x1019eV (θ<50 º)– Feature of charged EHECRs deflection in GMF

• Chemical composition– Gradual lightening between 1017.5 & 1019eV– Light component favoured @1019eV (AIRES+QGSJET)– Gamma-ray dominance negative at highest energies

Fraction of gamma-rays <56% @90%CL (> 1019.5eV)

Page 53: Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik

Outlook (what’s gonna come to India)

• Energy spectrum – Data analysis up to 60º zenith angle– Improved energy estimation

• Arrival direction distribution– Data analysis up to 60º zenith angles– Improved understanding shower front stucture– Detailed features in anisotropy

• Chemical composition– Interpretation using latest MC simulations

• Akeno 1km2 data – Data interpretation of old Akeno 1km2 data by latest MCs– Energy spectrum & chemical composition in 1016—1018eV en

ergies