reverse phenotyping - cragenomica.es

35
Reverse Phenotyping Towards an integrated (epi)genomic approach to complex phenotypes and common disease Stephan Beck Medical Genomics UCL Cancer Institute University College London [email protected] next-gen GWAS

Upload: others

Post on 06-May-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reverse Phenotyping - cragenomica.es

Reverse Phenotyping Towards an integrated (epi)genomic approach to complex phenotypes and common disease

Stephan Beck Medical Genomics

UCL Cancer Institute University College London

[email protected]

next-gen GWAS

Page 2: Reverse Phenotyping - cragenomica.es

1

2

5%

95%

Effect Size

Page 3: Reverse Phenotyping - cragenomica.es
Page 4: Reverse Phenotyping - cragenomica.es

rare variation

Page 5: Reverse Phenotyping - cragenomica.es

ON OFF

5-Hydroxymethylcytosine

epigenetic variation

Page 6: Reverse Phenotyping - cragenomica.es

“needle-in-a-haystack” problem

the challenge

Genotype ______________________________________

•  10-15 M SNPs

•  1 M tagSNPs

Epigenotype __________________________________________________

•  30 M MVPs (28,112,194 NCBI36)

•  3 M tagMVPs (?)

Page 7: Reverse Phenotyping - cragenomica.es

Genome

Coverage (0.1-1%)

candidate approach

‘Bis-seq’ bisulphite sequencing e.g. ABI-3700 platform

Coverage (1-10%)

genome-wide approach

‘MeDIP-chip’ immunoprecipitation & chip

e.g. Nimblegen platform

Coverage (10-100%)

whole-genome approach

‘MeDIP-seq’ immunoprecipitation & sequencing

e.g. Solexa platform

methylation profiling approaches

Page 8: Reverse Phenotyping - cragenomica.es

Eckhardt et al. 2006 Nature Genet 38:1379-85

Genome

methylation profiling approaches

Coverage (0.1-1%)

candidate approach

‘Bis-seq’ bisulphite sequencing e.g. ABI-3700 platform

Page 9: Reverse Phenotyping - cragenomica.es

methylation profile of chr 22

CpG density

Eckhardt et al. Nature Genet 2006 38:1379-85 Methylation

Page 10: Reverse Phenotyping - cragenomica.es

tissue-specific methylation

Eckhardt et al. 2006 Nature Genet 38:1379-85

Page 11: Reverse Phenotyping - cragenomica.es

5’-UTR; mean: 0.363 intragenic; mean: 0.753

distribution

Rakyan et al. 2004 PLoS Biol 2(12):e405 Eckhardt et al. 2006 Nature Genet 38:1379-85

Page 12: Reverse Phenotyping - cragenomica.es

target sites

Eckhardt et al. 2006 Nature Genet 38:1379-85

Page 13: Reverse Phenotyping - cragenomica.es

Genome

Coverage (1-10%)

genome-wide approach

‘MeDIP-chip’ immunoprecipitation & chip

e.g. Nimblegen platform

methylation profiling approaches

Coverage (0.1-1%)

candidate approach

‘Bis-seq’ bisulphite sequencing e.g. ABI-3700 platform

Page 14: Reverse Phenotyping - cragenomica.es

Weber et al. 2005 Nat Genet. 37:853-862

genome-wide MeDIP-chip assay

MeDIP Input

Methylation enriched

Methylation depleted

Page 15: Reverse Phenotyping - cragenomica.es

BATMAN (Bayesian Tool for Methylation Analysis)

Down et al. Nature Biotech 2008 26:779-85

DNA Methylation

0 100

Page 16: Reverse Phenotyping - cragenomica.es

BATMAN performance

Down et al. Nature Biotech, July 8, 2008

Page 17: Reverse Phenotyping - cragenomica.es

genome-wide methylation profiles

Rakyan et al., Genome Res, 2008 18:1518-29

Page 18: Reverse Phenotyping - cragenomica.es

Genome

Coverage (1-10%)

genome-wide approach

‘MeDIP-chip’ immunoprecipitation & chip

e.g. Nimblegen platform

Coverage (10-100%)

whole-genome approach

‘MeDIP-seq’ immunoprecipitation & sequencing

e.g. Solexa platform

methylation profiling approaches

Coverage (0.1-1%)

candidate approach

‘Bis-seq’ bisulphite sequencing e.g. ABI-3700 platform

Page 19: Reverse Phenotyping - cragenomica.es

whole-genome MeDIP-seq assay

www.illumina.com Weber et al. 2005 Nat Genet. 37:853-862

Page 20: Reverse Phenotyping - cragenomica.es

methylome of human male germline

Down et al. Nature Biotech 2008 26:779-85

Methylation

Page 21: Reverse Phenotyping - cragenomica.es

methylation [%] 0 100

Page 22: Reverse Phenotyping - cragenomica.es

methylome on a chip

27K array is equivalent of 10K SNP chip

Epigenomics October 2 2009, Vol. 1, No. 1, Pages 177-200

Page 23: Reverse Phenotyping - cragenomica.es
Page 24: Reverse Phenotyping - cragenomica.es

Trends in Genetics 2008 Vol 25 No 5 Beck & Rakyan

Page 25: Reverse Phenotyping - cragenomica.es

NIH Epigenome Roadmap: $190M for 5 years (2008-2013)

5 Awards for Epigenome Mapping/Coordination Centres 9 Awards for Technology Development in Epigenetics 7 Awards for Discovery of Novel Epigenetic Marks 22  Awards for Epigenomics of Human Health and Disease Cancer, Alzheimer's, Atherosclerosis, Autism, Hypertension, Bipolar Disorder, Asthma, Lupus Erythematosus, Schizophrenia, Kidney Disease, Muscular Dystrophy and others

Page 26: Reverse Phenotyping - cragenomica.es

genome-wide association studies

• Type 1 Diabetes • Type 2 Diabetes • Inflammatory Bowel Disease

• Cancer (Sarcomas, NET, etc)

WTCCC

Page 27: Reverse Phenotyping - cragenomica.es

integrated (epi)genetic approach

reverse phenotyping

Page 28: Reverse Phenotyping - cragenomica.es

Genome

tag SNPs

HapMap

WGAmap

DeepSeq

phen SNPs

BisSeq

DMRmap

phen MVPs

candidate ‘hepitype’

integrated (epi)genomic approach

Page 29: Reverse Phenotyping - cragenomica.es

examples . . .

Page 30: Reverse Phenotyping - cragenomica.es

Neurofibroma

•  common type of benign tumours affecting NF1 patients •  progression to malignant form is rare •  mechanism unknown, no molecular markers

Study Design

–  pooled samples stratified for NF1 mutations –  control (n = 6, pooled) –  benign (n = 10, pooled) –  malignant (n = 10, pooled) –  Approach: MeDIP-seq

cancer methylome project Andrew Feber

Page 31: Reverse Phenotyping - cragenomica.es

Feber et al. unpublished

NF methylome – CpG coverage

Page 32: Reverse Phenotyping - cragenomica.es

T2D IBD T1D

MeDIP-chip / 27K Infinium

DMR analysis

disease-associated DMRs

common diseases

Page 33: Reverse Phenotyping - cragenomica.es

T2D IBD T1D

MeDIP-chip

DMR analysis

disease-specific DMRs

Bäckdahl et al, unpublished

common diseases

Page 34: Reverse Phenotyping - cragenomica.es

conclusions

  Technologies for DNA methylation analysis are available and working

  DNA methylation is stable, specific and ‘essentially’ binary

  Disease-associated DMRs exist in cancer and common disease and can be identified in tissue and blood

  Case for integrated (epi)genomic GWA studies

Page 35: Reverse Phenotyping - cragenomica.es

Technology

UCL-CI Lee Butcher Pawan Dhami Andrew Feber Andrew Teschendorff Chrissie Thirlwell Gareth Wilson

ICMS Vardhman Rakyan

Gurdon Thomas Down

EBI Paul Flicek

Sanger Dan Turner

CRI Simon Tavaré

Illumina Gary Schroth Zhang Lu

A c

k n

o w

l e d

g e

m e

n t s

HEP (FP5)

T1D

Vardhman Rakyan Huriya Beyan Mohammed Hawa Thomas Down Siarhei Maslau David Leslie

NET

Chrissie Thirlwell Martyn Caplin Brian Davidson Tim Meyer Tom Kurzawinski Steve Periera Andrew Teschendorff Daniel Hochhauser

T2D

Chris Bell Sarah Finer Cecilia Lindgren Gareth Wilson Andrew Teschendorff Graham Hitman Vardhman Rakyan Panos Deloukas Pelin Akan Andrew Hattersley Tim Frayling Mark Walker Mike Sampson Ian Morison Mark McCarthy

IBD

Liselotte Bäckdahl Philip Rosenstiel Gareth Wilson Andrew Teschendorff Thomas Down Robert Haesler Stefan Schreiber

NF

Andrew Feber Nadege Presneau Bernadine Idowu Gareth Wilson Adrienne Flanagan