review and comparison of dry friction force models

Upload: thomas

Post on 05-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    1/17

    Nonlinear Dyn (2016) 83:1785–1801DOI 10.1007/s11071-015-2485-3

    REVIEW

    Review and comparison of dry friction force models

    Ettore Pennestrì   ·   Valerio Rossi   ·  Pietro Salvini   ·

    Pier Paolo Valentini

    Received: 21 July 2015 / Accepted: 28 October 2015 / Published online: 11 November 2015© Springer Science+Business Media Dordrecht 2015

    Abstract   Friction force models play a fundamentalroleforsimulationofmechanicalsystems.Theirchoiceaffects the matching of numerical results with phys-ically observed behavior. Friction is a complex phe-nomenon depending on many physical parameters andworking conditions, and none of the available mod-els can claim general validity. This paper focuses theattention on well-known friction models and offers areview and comparison based on numerical efficiency.However, it should be acknowledged that each model

    has its own distinctive pros and cons. Suitability of the model depends on physical and operating condi-tions. Features such as the capability to replicate stic-tion, Stribeck effect, and pre-sliding displacement aretaken into account when selecting a friction formula-tion. For mechanical systems, the computational effi-ciency of the algorithm is a critical issue when a fastand responsive dynamic computation is required. Thispaper reports and compares eight widespread engineer-ing friction force models. These are divided into twomain categories: those based on the Coulomb approach

    E. Pennestrì (B) · V. Rossi · P. Salvini · P. P. ValentiniDepartment of Enterprise Engineering, University of RomeTor Vergata, Via del Politecnico 1, Rome, Italye-mail: [email protected]

    V. Rossie-mail: [email protected]

    P. Salvinie-mail: [email protected]

    P. P. Valentinie-mail: [email protected]

    andthoseestablishedon thebristle analogy. Thenumer-ical performances and differences of each model havebeen monitored and compared. Three test cases are dis-cussed:theRabinowicztestandothertwotestproblemscasted for this occurrence.

    Keywords   Friction · Stiction · Stick–slip ·Rabinowicz test · Pre-sliding · Bristle

    1 Introduction

    Friction is a complex phenomenon with a key role inthe study of mechanical systems. Early scientific stud-ies refer to Leonardo da Vinci (1452–1519), Amontons(1663–1705), and Coulomb (1736–1806). The mathe-maticalmodelingofthefrictionforceforthepurposeof dynamic system simulation is crucial for the accuracyand reliability of the results.

    Due to the abundance of excellent bibliographicsources (e.g., [1,38,45]), this paper does not dwell on

    the reasoning and algebraic treatment that brought tothededuction of friction modelsconsidered.This paper,after reporting the main equations, focuses on the com-putational performances of tangent friction force for-mulations for simple numerical test setups.

    The classic Coulomb friction model [17] is hereinadopted as example in the discussion about the macro-scopic effects of friction. This model appears elemen-tary from a mathematical point of view and straight-forward to be implemented into a dynamic simulation

     1 3

    http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-2485-3&domain=pdf

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    2/17

    1786 E. Pennestrì et al.

    environment. In particular, the friction force, tangentto the contacting surface, is analytically expressed asfollows:

    ≤ µs F n   v  = 0= −µd F n sgn(v) v  = 0

      (1)

    where v is the relative velocity between the two bodiesin single contact,  µs  the static friction coefficient,  µd the dynamic friction coefficient, and   F n  is the normalforce. The force plot of the discontinuous Coulombforce function versus velocity is depicted in Fig. 1.

    In our treatment, the normal force  F n  is omitted innotation, and only the dynamic friction force   F d    =µd F n  and the static friction force  F s   =   µs F n  will bementioned. In order to simplify the Coulomb model[55], it is possible to get rid of the static friction forceF s and the Eq. (1) becomes:

    F   = −F d  v|v| (2)

    Friction force is always opposite to the relative velocitywhen the velocity is  v   =  0. This produces numericalissues in terms of computational burden. Due to thediscontinuity of friction force at zero velocity, the clas-sic Coulomb model causes stiff equations of motion.In fact, during numerical integration the exact valuev   =  0 is never exactly matched. Variable step inte-gration routines will reduce time step to account for

     F 

    v0

     F d 

    − F d 

     F  s

    − F  s

    Fig. 1   The Coulomb friction force model

     F 

    v0

     F d 

    − F d 

     F  s

    − F  s

    Fig. 2   Benson exponential friction model

    sudden oscillating velocity values from positive, whenF   =  F d , to negative, when  F  = −F d .

    The classic Coulomb model is not always accurate.Since mechanical contacts with distributed mass andcompliance cannot exhibit an instantaneous change inforce, the discontinuous friction model is a nonphysicalsimplification [6].

    Although not observed by Coulomb, experimental

    evidence demonstrates a variation of friction force withthe relative velocity v. In particular, three main regionscan be identified in a plot of friction force versus   v.The first region, with low   v  values, is well approxi-mated by the Coulomb model. After a certain velocitylimit and within a finite interval, a decrement of force isrecorded. Outside such interval there is a slight increasein the friction force with speed. This dependency hasbeen studied by many investigators [40]. However, theexperimental friction force plots developed by Stribeckallowed to classify the tribology properties of surfaces

    and justify the association of his name with this phe-nomenon.

    Many alternatives have been proposed to includethe Stribeck effect and mitigate the problems linked tothe classic Coulomb model for relative velocity val-ues close to zero. For instance, the Benson frictionmodel [8], depicted in Fig. 2, is available in the com-mercial software COMSOL Multiphysics StructuralMechanics Module [16]. Benson friction force modelis expressed with the following equation:

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    3/17

    Review and comparison of dry friction force models 1787

    F   = −F d  − (F s  − F d )e−c|v| sgn(v)   (3)

    where c is the exponential decay constant.A distinctive feature of friction models is the capa-

    bility to account for stiction. During the stiction phase,there is not relative motion between the bodies at the

    point of contact (v   =  0) [12]. Thoughtful reviews onfriction models (e.g., [5,9,25]), including those withbristle effects [29], are available in technical literature.However, none of them reports on direct comparison of numerical efficiency performances and amount of dis-sipated energy. The monitoringof this physical variableis significant because friction models are often intro-duced toforeseeenergy lossesunderdifferentoperatingconditions [37].

    There is abundance of contributions regarding theimprovement in the Coulomb friction model by mak-

    ing use of valuable mathematical algorithm. A reliablenumerical tool proved to be the linear complementar-ity problem (LCP) [4,26,34,48,57], where a set of dif-ferential equations and inequalities are simultaneouslysolved. Nevertheless, LCP, currently not widespreadin multibody dynamics commercial simulation codes,requires the availability of the full set of equations of motionfortheentiremechanicalsystem. This conditionis critical for recursive dynamic formulations. Otherresearchers [61] add a constraint equation to deal withfriction force and stiction (commercial code LMS Vir-

    tual.Lab Motion [36]).In high-precision pointing and tracking operations,

    where small displacements and velocities are simu-lated, an accurate motion analysis during the stictionphase is a requirement. The macroscopic definition of stiction is a regime of several microns of motion wherethe friction force is mainly a function of displacement[5]. During this state, called pre-sliding displacement,some motion is possible even when a mechanism isstuck under the static friction force. However, the pre-sliding behavior is reproduced by some of the friction

    force models herein investigated.The paper is organized in three main parts. In Sect. 2

    the following friction models are discussed: the smoothCoulomb model, the velocity-based model (commer-cial code MSC Adams friction model), the Karnoppmodel, different variants of bristle models, such asthe Dahl, LuGre, stick–slip model (embodied in thecommercial code FunctionBay Recurdyn  TM ), elasto-plastic, and finally the Gonthier model. Section   3describes the test cases adopted: the Rabinowicz test

     F 

    v

     F d 

    − F d 

    vd 

    −vd 

    Fig. 3   Smooth Coulomb friction model

    case, a test case with three bodies and multiple con-tacts and a test for proving pre-sliding model capabil-ities. Each of them can highlight the pros and cons of the tested friction models. Finally, in Sect. 4 the resultsare discussed and some elements for the choice of thefriction model provided.

    2 Friction models

    Inthissectionananalyticdescriptionoffrictionmodelsis reported.

    2.1 Smooth Coulomb model

    The smooth Coulomb friction model, known also ascontinuous model [32], is a variation of the classicCoulomb model. It has been introduced to avoid thecomputational burden caused by the force discontinu-ity. As shown in Fig.  3, a smooth curve replaces the

    discontinuity aroundv  = 0. Severalsmootheningfunc-tions [33] can be adopted to achieve the sought effect:linear [50], exponential [59] or trigonometric [20]. Inthis paper only the hyperbolic tangent smootheningfunction [42] will be investigated. Hence, the smoothCoulomb model can be formulated as

    F   = −F d  tan h(v/vd )   (4)

    where vd  is the velocity tolerance. Since at zero veloc-ity the force is null, this model cannot reproduce stic-tion. The main advantage is the gain in computational

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    4/17

    1788 E. Pennestrì et al.

    stability which depends now on the chosen value of vd . This is the friction model available in commercialcodes such as DCAP [46] and SimPack [56].

    2.2 Velocity-based model

    The velocity-based friction model shares a similarityof approach with the previous one. There is only a dif-ferent variation of the friction force with respect to thevelocity. Within the interval including the zero velocity,an additional curve is introduced in an effort to mimicstiction. Figure 4 depicts the plot of the friction forceversus velocity, where   F d  denotes the dynamic fric-tion force,  F s  the static friction force,  vd  the dynamicvelocity tolerance and  vs  the static velocity tolerance.The curve is a piecewise assembly of trigonometricfunctions with  F d ,  F s ,  vd  and vs  as parameters. How-ever, this model is far from reproducing stiction at zerovelocity. Nevertheless, thanks to the friction force  F s ,the relative velocity is reduced mainly with respectto the smooth Coulomb friction model. This frictionmodel is available in the commercial code MSCAdams[43].

    Some authors (e.g., [60]) hinted the use of the singleexpression:

    F  = −F s sin C  tan−1( B · v)− E 

    ( B · v) − tan−1( B · v)

      (5)

     F 

    v

     F d 

    − F d 

     F  s

    − F  s

    vd 

    −vd    −v s

    v s

    Fig. 4   Velocity-based friction model

    where the shape of the function can be adjusted varyingthe parameters C ,  B, and  E  in order to match experi-ments.

    2.3 Karnopp model

    The Karnopp friction model [30] is pictorially repre-sented in Fig. 5. This model somewhat can managethe stiction phenomenon [53]. Within the dead band|v|   < vd  stiction is assumed and the velocity is con-sidered null. There are different ways to analyticallyexpress the Karnopp model [5]. In this paper we willadopt the one due to Borello and Dalla Vedova [11]:

    F   =

    − min

    max(−F s , F ext), F s

      |v| ≤ vd 

    −F d  sgn(v)   |v| > vd (6)

    where  F ext is the resultant of the active external forces.Within the tolerance region, the friction force is alwaysless or equal, and opposite, to the resultant of the activeexternal forces. This friction model can simulate stic-tion and is very convenient from a computational pointof view. The main drawback is the need to know theresultant of the external forces   F ext. In a mechanicalsystem with more than one contact per body, the evalu-ation of  F ext is not an easy task. A distinction betweenseveral cases is needed, as explained by Karnopp [30].The identification of the model parameters is also of interest [54].

     F 

    v

     F d 

    − F d 

    vd 

    −vd 

    Fig. 5   Karnopp friction model

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    5/17

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    6/17

    1790 E. Pennestrì et al.

    2.6 Elasto-plastic model

    The elasto-plastic friction model [21,22] is consideredan enhancement of the LuGre model.

    Stiction can be described as the condition where themicro displacement   z   is less than a breakaway dis-

    placement   | z|   <   zba . In this case the only possiblemotion of the surface consists entirely of elastic dis-placement, which is called pre-sliding displacement.This is analogous to the elastic deformation observedin a stress–strain curve. The breakaway displacementcan be associated with the strain at which plastic defor-mation begins. The friction force follows from the oneof the LuGre model

    F   = σ 0 z + σ 1 ˙ z + σ 2v   (13)

    but the derivative of the state variable is

    ˙ z  = v ·

    1 − α( z, v)σ  z

    g(v)sgn(v)

      (14)

    where α( z, v) isanadditionalparameterusedtoincludepre-sliding displacement and stiction. If sgn(v)   =sgn(˙ z), then the α( z, v) parameter takes the followingvalues, as shown in Fig. 7:

    α( z, v)

    =

    0   | z|

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    7/17

    Review and comparison of dry friction force models 1791

     x

    h1

     x0   x10

     y

    Fig. 8   Behavior of the step function   y   =   step(| x |, x 0,h0, x 1, h1)

    The stick–slip friction model is implemented inthe multibody commercial software FunctionBay Rec-urdynTM [23].

    2.8 Gonthier model

    In the Gonthier friction model [27], the relationshipbetween static friction and the time of contact is a vari-ant of the LuGre model. The Gonthier model reliesagain upon the bristle approach. A physical time lageffect, called dwell time, is introduced. The frictionforce is estimated by means of the formula

    F br   = σ 0 z + σ 1 ˙ z   (20)

    where the   σ 0   and   σ 1  have the same meaning of theLuGre model parameters, as reported in Sect. 2.5. Thestate variable z  is composed of two contributions

    ˙ z  = s ˙ zst  + (1 − s)˙ zsl   (21)

    where  ˙ zst  and  ˙ zsl  refer to the sticking and sliding con-dition, respectively. The variable   s, which allows asmooth transition between the friction regimes, is com-puted by means of the formula

    s  = e−v2/v2Stribeck   (22)

    where vStribeck is theStribeck velocity. The sticking andsliding terms are defined as follows

    ˙ zst   =v   (23)

    ˙ zsl   =1

    σ 1F c −

    σ 0

    σ 1 z   (24)

    where  F c is

    F c  =  F d   · dir(v,vt )   (25)

    and the function dir(v,vt )

    dir(v,vt ) =

    v

    |v||v| ≥ vt 

    v

    vt 

    3

    2

    |v|

    vt −

    1

    2

    |v|

    vt 

    3|v| < vt 

    (26)

    The expression of the maximum stiction force isF max  =  F d  + (F s  − F d )sd w   (27)

    where  sd w  is the internal state variable introduced tomodel the dwell-time effect. This variable follows fromnumerical integration of 

    ṡd w  =

    1

    τ d w(s − sd w) (s − sd w) ≥ 0

    1

    τ br (s − sd w) (s − sd w)  F max

    (30)

    The Gonthier friction model requires the definition

    of the following parameters:   F d ,   F s ,  σ 0,  σ 1,  σ 2,  τ d w,vStribeck. The author recommends that the parameter vt should be at least one-tenth of  vStribeck [27].

    3 Numerical simulations

    Table 2 summarizes the parameters required by each of the friction models discussed.A MATLAB code has been developed to compare thefriction models previously discussed. Three test cases

    have been considered to gather direct experience andcompare the performances of each model under differ-ent operating conditions.

    Three numerical integration routines of the standardMATLABODESolverslibraryhavebeentestedincon- junction with the friction models discussed:

    –   ode45: explicit variable step Runge–Kutta fourth-and fifth-order method;

    –   ode113: multistep solver with a variable orderAdams–Bashforth–Moulton PECE algorithm;

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    8/17

    1792 E. Pennestrì et al.

    Table 2   Summary of model parameters and state variables

    Model Parameters State variable

    Coulomb   F d ,vd Velocity based   F d ,  F s , vd , vsKarnopp   F d ,  F s , vd 

    Stick–slip   F d ,  F s , vt , ∆maxDahl   F d , σ 0, α   z

    LuGre   F d ,  F s , σ 0, σ 1, σ 2, vStribeck,γ 

     z

    Elasto-plastic   F d ,  F s , σ 0, σ 1, σ 2, vStribeck,γ , zba

     z

    Gonthier   F d ,  F s , σ 0, σ 1, σ 2, vStribeck,vt , τ d w

     z, sd w

    m

    v

     x

     F 

    Fig. 9   Rabinowicz test case

    –   ode15s: multistep solver with a variable ordersolver based on the numerical differentiation for-

    mulas, suitable for stiff problems.Different relative errors tolerances RelTol have beenused. In particular, the followings have been set as inte-grator options: 10−4, 10−6 and 10−8.

    It should be acknowledged that the friction parame-ters affect efficiency and accuracy of the models hereinconsidered. With the purpose of a comparison on a sim-ilar basis, whenever possible, the same numerical para-meters have been used.

    3.1 Rabinowicz test case

    The Rabinowicz test case [51] is one experiment aimedto study the stick–slip behavior in a mechanical system.Different contributions [3,24,39,41,58] agree to con-sider it as a benchmark for the evaluation of frictionforce models.

    With reference to the scheme of Fig. 9, a spring of stiffness k  connects a body of mass  m  to the inertialreference frame. A slab below the body is translating

    0 5 10 15 20 25 30 35 40 45 500

    2

    4

    6

    8

    10

    12

    14

    Time[s]

        D    i   s   p    l   a   c   e   m   e   n    t    [   m    ]

    AnalyticCoulombVelocity-basedDahlLuGreStick-SlipKarnoppElasto-PlasticGonthier 

    24 26 28 30 32 34 36 38 40

    8

    9

    10

    11

    12

    Time[s]

        D    i   s   p    l   a   c   e   m   e   n    t    [   m    ]

    Fig. 10   Displacement of the body for the Rabinowicz test case

    at a constant velocity  v . A friction force  F  originatesat interface between the slab and the body. Initiallythe body is dragged along the moving slab. The springdoes not hold back the body until the spring pull equalsthe static friction force. At this point, the body beginsto slip on the moving surface and the friction force(dynamic friction force) is lower than the one recordedat the previous state. After a while, the mass motion ishalted. The static friction force takes over and the body

    sticks to the surface of the slab. The process repeats forthe length of the simulation.

    The assigned parameter values are:   m   =   20kg,k   =  10 N/m and  v   =  0.5 m/s. A Coulomb dynamicfriction coefficient of  µd   = 0.5 and a Coulomb staticfriction coefficient of   µs   =   0.6 produce the follow-ing friction forces:   F d   =  98.1N and  F s   =  117.72N.The parameters for the Dahl, LuGre, elasto-plastic,and Gonthier models, assumed proportional to the fric-tion force, are   σ 0   =   98,100N/m,   σ 1   =   780Ns/m,σ 2   =  0 Ns/m and  α   =   γ   =  1. The stick–slip model

    parameters are  vt    =   0.05 m/s and   ∆max   =  10−4 m,while  zba   =  10−4 m is adopted for the simulation of the elasto-plastic model. The following velocity toler-ances have been used:  vd   =  vStribeck   =  0.05 m/s andvs   = 0.01 m/s. The parameters vt   = 5×10−4 m/sandτ d w  = 0.1 s have been adopted for the Gonthier model.

    Figure 10 reports the plots of body displacementversus time. The first item in the legend representsthe closed-form solution computed assuming an har-monic oscillator subjected to Coulomb friction (e.g.,

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    9/17

    Review and comparison of dry friction force models 1793

    0 5 10 15 20 25 30 35 40 45 50−2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    Time [s]

        V   e    l   o   c    i    t   y    [   m    /   s    ]

    AnalyticCoulombVelocity-basedDahlLuGreStick-SlipKarnoppElasto-PlasticGonthier 

    20 21 22 23 24 25 26 27 28 29 30

    −2

    −1.5

    −1

    −0.5

    0

    Time [s]

        V   e    l   o   c    i    t   y    [   m    /   s    ]

    Fig. 11   Relative velocity of thebody with respect to the slab forthe Rabinowicz test case

    0 5 10 15 20 25 30 35 40 45 500

    20

    40

    60

    80

    100

    120

    Time[s]

        F   r    i   c    t    i   o   n    [    N    ]

    AnalyticCoulombVelocity-basedDahlLuGreStick-SlipKarnoppElasto-PlasticGonthier 

    28 29 30 31 32 33 34 35 36 37 38 39

    70

    80

    90

    100

    110

    120

    Time[s]

        F   r    i   c    t    i   o   n

        [    N    ]

    Fig. 12   Friction force for the Rabinowicz test case

    [52]). Although the analytic solution is consistent froma mathematical point of view with the classic Coulombmodel, not necessarily represents the most appropri-

    ate simulation of the physical phenomenon. Since theycannot account for any static friction force, the smoothCoulomb model and the Dahl model have a distinctbehavior. The plot of the relative velocity between thebody and the slab versus time is depicted in Fig.  11.The stiction phase can be identified observing the flatzones of the plot.

    Finally, the friction force magnitude and systemkinetic and potential energy plots, for each frictionmodel, are respectively summarized in Figs. 12 and 13.

    0 5 10 15 20 25 30 35 40 45 500

    200

    400

    600

    800

    Time[s]

        M   e   c    h   a   n    i   c   a    l    E   n   e   r   g   y    [    J    ]

    AnalyticCoulombVelocity-basedDahlLuGreStick-SlipKarnoppElasto-PlasticGonthier 

    30 32 34 36 38 40

    300

    400

    500

    600

    700

    Time[s]

        M   e   c    h   a   n    i   c   a    l    E   n   e   r   g   y    [    J    ]

    Fig. 13   System kinetic and potential energy for the Rabinowicztest case

    The LuGre model shows sharp oscillations thatcould be smoothed by means of parameters tuning.For this test case, and with the exception of smoothCoulomb and Dahl models, the system energy plotsfor the models under test are almost overlapped. Thisdemonstrates a substantial equivalence of the amountof dissipated energy.

    Computing time has been measured with tools avail-

    able in the MATLAB environment. This time maychange due to simultaneous background tasks of theoperating system. For this reason, average values havebeen herein reported. Table 3 compares the normalizedΨ i computing time needed by each friction model. Thefollowing relation is adopted

    Ψ i   =T i

    T max· 100 (31)

    T i   is the computing time needed to simulated theobserved friction model and  T max the maximum of theT 

    i’s.Tables 4 and 5 summarize the numerical differences

    between each friction model and the analytic solution.These differences ξ i  and Γ i  are computed as follows:

    ξ i   = max

     x i  −  x an x i · 102

    Γ i   =1

    n

    n j=1

     x i j   −  x an j x i j · 102 (32)

    where

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    10/17

    1794 E. Pennestrì et al.

    Table 3   Normalized computing time  Ψ  [%] for the Rabinowicz test case

    Model Solver

    ode45 ode113 ode15s

    10−4 10−6 10−8 10−4 10−6 10−8 10−4 10−6 10−8

    Coulomb 7 4 4 7 6 6 7 3 3

    Velocity based 100 86 88 77 81 77 4 5 5Dahl 26 26 26 29 30 30 3 19 20

    LuGre 25 24 25 28 28 28 4 6 7

    Stick–slip 26 27 27 26 28 28 2 4 4

    Karnopp 2 2 2 2 2 2 2 3 3

    Elasto-plastic 31 28 29 31 31 31 4 6 6

    Gonthier 10 11 11 10 11 11 10 11 11

    Table 4  Maximum relative difference  ξ  [%] of each friction model compared to the analytic solution for the Rabinowicz test case

    Model Solver

    ode45 ode113 ode15s

    10−4 10−6 10−8 10−4 10−6 10−8 10−4 10−6 10−8

    Coulomb 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3

    Velocity based 12.5 12.5 12.5 12.5 12.5 12.5 12.4 12.5 12.5

    Dahl 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6

    LuGre 3.8 4.0 4.0 3.8 4.0 4.0 4.6 4.0 4.0

    Stick–slip 4.4 3.9 4.0 4.3 4.0 4.2 1824 3.9 4.0

    Karnopp 1.9 2.1 2.1 2.1 2.1 2.1 2.0 2.1 2.1

    Elasto-plastic 9.4 9.5 9.5 9.4 9.5 9.5 9.0 9.5 9.5

    Gonthier 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0

    Table 5   Average relative difference Γ  [%] of each friction model compared to the analytic solution for the Rabinowicz test case

    Model Solver

    ode45 ode113 ode15s

    10−4 10−6 10−8 10−4 10−6 10−8 10−4 10−6 10−8

    Coulomb 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9

    Velocity based 2.7 2.7 2.7 2.7 2.7 2.7 2.6 2.7 2.7

    Dahl 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9

    LuGre 0.7 0.8 0.8 0.7 0.8 0.8 0.9 0.8 0.8

    Stick–slip 0.8 0.8 0.8 0.8 0.8 0.8 99.0 0.8 0.8

    Karnopp 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

    Elasto-plastic 1.8 1.9 1.9 1.8 1.9 1.9 1.8 1.8 1.8

    Gonthier 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8

    –   x i  is the generic displacement value for the givenfriction model;

    –   x an is the displacement for the analytic solution of the Coulomb model;

    –   j  is the array index and  n  the computed displace-ment array length.

    It should be observed that Tables 4 and 5 summarizethe quantitative differences between models in terms

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    11/17

    Review and comparison of dry friction force models 1795

    of maximum mass displacement. The term “error” hasbeen avoided in favor of the term “difference.” Forthe comparison, the analytic solution of the Coulombmodel has been arbitrarily chosen as reference and notbecause it is the most accurate representation of theactual friction.

    Regarding computing efficiency, from Table 3  onecan observe that:

    – the velocity-based, Dahl, LuGre, stick–slip, andelasto-plastic models should be used with a stiff solver such as   ode15s;

    – with the stiff solver, the Dahl model seems affectedalso by the value of the   RelTol parameter;

    – Karnopp and Gonthier models are not apparentlyinfluenced by the solver.

    From Tables 4 and 5 onecaninferthatmostofthemod-

    els are not affected by the choice of the ODE solverand   RelTol   parameter. However, according to ourexperience, it is not recommended the use of the stick–slip model in conjunction with a stiff solver and a lowRelTol parameter.

    3.2 3-DOF test case

    Figure 14 shows the topology of the proposed test case,herein named 3-DOF. Three bodies are stacked one on

    top of the other. Dry friction force is assumed in thecontacts between the bodies. This test is useful to ascer-tain how a friction model handles the case of multiplefriction forces acting on the same body.

    Initially, the body 1 has an offset of 1 m with respectto the rest position. The spring has a stiffness of  k   =30 N/m and all the bodies have the same mass  m 1   =

    m1

    m2

    m3

     x

     F 1

     F 2

     F 3

    Fig. 14  3DOF test case

    0 1 2 3 4 5 6 7 8 9 10−1

    −0.5

    0

    0.5

    1

    Time [s]

         D     i   s   p     l   a   c   e   m   e   n    t     [   m     ]

    CoulombVelocity-basedDahlLuGreStick-SlipElasto-PlasticGonthier 

    3 4 5 6 7 8 9 10−0.07

    −0.06

    −0.05

    −0.04

    −0.03

    −0.02

    −0.01

    0

    0.01

    Time [s]

         D     i   s   p     l   a   c   e   m   e   n    t     [   m     ]

    Fig. 15   Displacement of the first body for the 3-DOF test case

    m2  = m3  = 2 kg. The parameter values are reported inarray notation for the three bodies in the system. Thefriction forces are

    F d   =

    9.81 3.92 11.77T

    N

    F s   =

    14.71 5.88 17.66T

    N

    The parameters for the Dahl, LuGre, elasto-plastic, andGonthier models, assumed proportional to the friction

    forces, areσ 0  =

    98100 39200 117700

    TN/m

    σ 1  =

    49 20 59T

    Ns/m

    and  σ 2   =  0 Ns/m,  α   =   γ   =  1 for all contacts. Thestiffness parameters are assumed proportional to thedynamic friction force acting on each contact. Simi-larly, for all contacts, the stick–slip model parametersare   vt    =   0.1 m/s and   ∆max   =   10−4 m. The elasto-plasticmodelbreakawaydeformationis  zba   = 10−4 m.The friction models set  vd   =   vStribeck   =  0.1 m/s andvs   = 10−2 m/s as velocity thresholds. The parametersvt   =  0.1 m/s and  τ d w   =  0.1 s have been adopted forthe Gonthier model.

    For this test case, the Karnopp friction model hasnot been investigated because the determination of theresultant of applied forces is demanding and not conve-nient for a case of multiple contacts on the same body.

    Figure 15 shows the displacement of the first body.After the first oscillation, the stiction phase begins atthe lower body. In a smooth Coulomb friction model,

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    12/17

    1796 E. Pennestrì et al.

    0 1 2 3 4 5 6 7 8 9 10−15

    −10

    −5

    0

    5

    10

    15

    Time[s]

         F   r     i   c    t     i   o   n     1     [     N     ]

    CoulombVelocity-basedDahlLuGreStick-SlipElasto-PlasticGonthier 

    4 5 6 7 8 9 10−3

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    Time[s]

         F   r     i   c    t     i   o   n     1     [     N     ]

    Fig. 16   Friction force  F 1 for the 3-DOF test case

    0 1 2 3 4 5 6 7 8 9 10−6

    −4

    −2

    0

    2

    4

    6

    Time [s]

        F   r    i   c    t    i   o   n    2    [    N    ]

    CoulombVelocity-basedDahlLuGreStick-SlipElasto-PlasticGonthier 

    4 5 6 7 8 9 10−2.5

    −2

    −1.5

    −1

    −0.5

    0

    Time [s]

        F   r    i   c    t    i   o   n    2

        [    N    ]

    Fig. 17   Friction force  F 2 for the 3-DOF test case

    since there is no stiction force, the body slowly goesback to the rest position.

    Figures 16, 17 and 18 report the friction forces  F 1,F 2   and   F 3. The critical phase of the simulation, foreach friction model, is after the first 3 s when the bod-ies are stacked on top of each other. The Dahl frictionmodel presents an oscillatory behavior with respect totheLuGrefrictionmodelduetolackofadampingterm.The stick–slip friction model is indeed sensitive to theparameter values and after a certain amount of time adrift is observed. Figure 19 plots the system kinetic andpotential energy versus time. Also for this test case, the

    0 1 2 3 4 5 6 7 8 9 10−10

    −5

    0

    5

    10

    Time [s]

        F   r    i   c    t    i   o   n    3    [    N    ]

    CoulombVelocity-basedDahlLuGreStick-SlipElasto-PlasticGonthier 

    4 5 6 7 8 9 10−2.5

    −2

    −1.5

    −1

    −0.5

    0

    Time [s]

        F   r    i   c    t    i   o   n    3    [    N    ]

    Fig. 18   Friction force  F 3 for the 3-DOF test case

    0 1 2 3 4 5 6 7 8 9 100

    5

    10

    15

    Time [s]

        M   e   c    h   a   n    i   c   a    l    E   n   e   r   g   y    [    J    ]

    CoulombVelocity-basedDahlLuGreStick-SlipElasto-PlasticGonthier 

    3 4 5 6 7 8 9 100

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    Time[s]

        M   e   c    h   a   n    i   c   a    l    E   n   e

       r   g   y    [    J    ]

    Fig. 19   System kinetic and potential energy for the 3DOF testcase

    energyplots,withtheexceptionofthestick–slipmodel,can be almost overlapped.Table 6 reports the normalized computing time  Ψ .

    Regarding computing efficiency for this test case:

    – the use of the velocity-based model witha stiff ODEsolver is recommended;

    – all the models, with the exception of the velocity-based model, are not apparently affected by thechoice of the ODE solver and   RelTol parameter.

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    13/17

    Review and comparison of dry friction force models 1797

    Table 6   Normalized computing time  Ψ  [%] for the 3DOF test case

    Model Solver

    ode45 ode113 ode15s

    10−4 10−6 10−8 10−4 10−6 10−8 10−4 10−6 10−8

    Coulomb 3 1 1 2 2 1 3 1 1

    Velocity based 99 97 100 77 78 75 5 4 4Dahl 5 5 5 6 6 6 7 8 8

    LuGre 4 4 4 4 4 4 3 4 4

    Stick–slip 6 6 6 6 6 6 3 4 4

    Elasto-plastic 5 5 5 5 5 5 3 4 4

    Gonthier 3 4 4 3 4 4 3 4 4

    m

     x

     F 

     F ext 

    Fig. 20   Pre-sliding test case topology

    0 2 4 6 8 10 120

    0.5

    1

    1.5

    2

    Time[s]

        F   o   r   c   e    [    N    ]

    Fig. 21   Pre-sliding external applied force

    3.3 Pre-sliding test case

    To study the pre-sliding properties of each model, aninterestingtesthasbeenproposedbyDupontetal.[22].

    Figure 20 shows the simple single-degree-of-freedomsystem where a body is in contact with the ground andis excited by an external force.

    The external force is a particular function which hasaninitialsuddenpeakof2Nandthenisharmonicwithamean value of 0.5 N and a frequency of 2Hz, as shownin Fig.  21.  The body has a mass of   m   =   1kg andthe dynamic and static friction forces are   F d    =   1 Nand   F s   =  1.1 N, respectively. After the first peak theexternal force has a magnitude smaller than the static

    0 2 4 6 8 10 120

    0.02

    0.04

    0.06

    0.08

    0.1

    Time [s]

        D    i   s   p    l   a   c   e   m   e   n

        t    [   m    ]

    CoulombVelocity-basedDahlLuGreStick-SlipKarnopp

    Elasto-PlasticGonthier 

    Fig. 22   Displacement plot of the body for the pre-sliding testcase

    friction force. Hence, the only movement allowed is thepre-sliding displacement.

    The prescribed parameters for the Dahl, LuGre,elasto-plastic, and Gonthier models, assumed propor-tional to the friction force, are  σ 0   =  100N/m,  σ 1   =2 Ns/m,   σ 2   =   0 Ns/m and   α   =   γ    =   1. Thestick–slip model parameters are   vt    =   0.01 m/s and∆max   = 0.01m while  z ba   = 0.01m is adopted in theelasto-plastic model. The following velocity thresholdshave been set:   vd    =   vStribeck   =   0.01 m/s and   vs   =10−4 m/s. The parameters  vt   = 10−4 m/s and τ d w   =0.01 s have been adopted for the Gonthier model.

    Figures 22 and 23 show the body displacement plots

    for all friction models herein discussed. A pronounceddrift due to the lack of the stiction force is observedfor the smooth Coulomb friction model. The velocity-based friction model exhibits a good behavior due tothe small tolerance on the static velocity  vs . The Dahland LuGre friction models have a tendency to drifteven if they show a characteristic pre-sliding trend. TheKarnopp model does not display any tendency to driftbut is unable to simulate the pre-sliding displacement.The stick–slip friction model drifts like the smooth

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    14/17

    1798 E. Pennestrì et al.

    0 2 4 6 8 10 12−0.05

    0

    0.05

    0.1

    0.15

    0.2

    Time [s]

         V   e     l   o   c     i    t   y     [   m     /   s     ]

    CoulombVelocity-basedDahlLuGreStick-SlipElasto-PlasticGonthier 

    10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

    −0.01

    −0.005

    0

    0.005

    0.01

    Time [s]

         V   e     l   o   c     i    t   y     [   m     /   s     ]

    Fig. 23   Velocity plot of the body for the pre-sliding test case

    0 2 4 6 8 10 12

    −1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    Time [s]

        F   r    i   c    t    i   o   n    [     N    ]

    CoulombVelocity-basedDahlLuGreStick-SlipElasto-PlasticGonthier 

    10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

    −0.55

    −0.5

    −0.45

    Time[s]

         F   r     i   c    t     i   o

       n     [     N     ]

    Fig. 24   Friction force plot for the pre-sliding test case

    Coulomb model. Finally, for this kind of simulation,good performances of the elasto-plastic and Gonthierfriction models are observed. Figures 24 and 25 report

    respectively the friction force and the system kineticand potential energy. Macroscopic differences of thesystem energy plots can be observed for this test case.Duetothedifferencesrecordedinfrictionforcesampli-tudes and displacements, this behavior was somewhatexpected.

    Table 7 compares the ratio Ψ . Regarding computingefficiency for this test case:

    – the use of the velocity-based and stick–slip modelswith a stiff ODE solver is advised;

    0 2 4 6 8 10 120

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    Time [s]

        M   e   c    h   a   n    i   c   a    l    E   n   e   r   g   y    [     J    ]

      CoulombVelocity-basedDahlLuGreStick-SlipElasto-PlasticGonthier 

    10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

    0

    2

    4

    6

    8  x 10

    −5

    Time [s]

        M   e   c    h   a   n    i   c   a    l    E   n   e   r   g   y    [     J    ]

    Fig. 25   System kinetic and potential energy for the pre-slidingtest case

    – thesolver ode15s isunabletomeettheintegrationtolerance for the Karnopp friction model;

    – Coulomb, Dahl, LuGre, elasto-plastic, and Gon-thier models are not apparently affected by thechoice of the ODE solver and   RelTol parameter.

    4 Conclusions

    A review of eight friction models has been presented.The smooth Coulomb, velocity-based, and Karnoppmodels are based on the Coulomb friction model,whereas the Dahl, LuGre, stick–slip, elasto-plastic,and Gonthier models are established on the bris-tle approach. The capability of these friction modelsto mimic physical macroscopic phenomena, such asStribeck effect, stiction, and pre-sliding displacement,has been herein tested. Some computational issuesassociated have been also reported.

    In particular, three significant test cases have beenanalyzed in order to compare the performances of thefriction models in terms of computational efficiency.Each friction model discussed handles the singularityof the classical Coulomb model at zero relative veloc-ity. Table 8 hasbeencompiledasasummaryofthemainfeatures of each friction model, such as the number of parameters, the capability of simulating stiction, eval-uation of static force, and the presence of pre-slidingdisplacement.

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    15/17

    Review and comparison of dry friction force models 1799

    Table 7   Normalized computing time  Ψ  [%] for the pre-sliding test case

    Model Solver

    ode45 ode113 ode15s

    10−4 10−6 10−8 10−4 10−6 10−8 10−4 10−6 10−8

    Coulomb 10 7 7 7 5 5 9 5 5

    Velocity based 94 100 95 77 75 76 6 4 4Dahl 4 4 4 4 5 5 6 6 6

    LuGre 4 4 4 5 5 5 7 7 8

    Stick–slip 13 15 14 11 11 11 4 4 4

    Karnopp 1 1 1 1 1 1 * * *

    Elasto-plastic 4 4 4 3 3 3 5 5 5

    Gonthier 6 10 11 6 10 10 6 10 10

    Table 8   Summary of the main features for each friction model

    Model No. parameters Stiction Static force Pre-sliding

    Coulomb 2

    Velocity based 4

    Karnopp 3  

    Dahl 3  

    LuGre 7  

    Stick–slip 4  

    Elasto-plastic 8  

    Gonthier 8  

    Stick–slip, elasto-plastic, and Gonthier models req-

    uire the definition of many parameters. On the contrary,the smooth Coulomb, velocity-based, and Karnoppmodels need a minimum set of parameters and pro-gramming skills. The calibration of the model and theidentificationofthebristleparameters σ 0, σ 1, σ 2 requirethe availability of experimental data.

    As it is well known, the smooth Coulomb modelis not able to reproduce the stiction phenomenon andthe velocity-based model does not produce any forceat zero relative velocity. This last model approximatesstiction by reducing considerably the relative veloc-

    ity. The bristle-based models can simulate the pre-sliding effect. However, only the elasto-plastic and theGonthier models do not introduce any drift.

    Onthebasisoftheexperiencegatheredinthenumer-ical tests herein reported:

    – the velocity-based model demonstrated to be sen-sitive to the choice of the ODE solver. A stiff solver, such as the Matlab   ode15s, considerablyimproves its computational efficiency;

    – the Gonthier and Karnopp models had a low depen-

    dency from the ODE solver and   RelTol value;– althoughitsimplementationforthecaseofmultiple

    contacts is not straightforward, due to the requiredevaluation of the external forces acting on eachbody, the Karnopp model demonstrated excellentcomputational performances;

    – the LuGre and Gonthier models exhibited a goodtrade-off between the capability of reproducingmeaningful friction effects and computational bur-den for the test cases discussed.

    References

    1. Al-Bender, F.: Fundamentals of frictionmodeling. In: ASPESpring Topical Meeting on Control of Precision Systems(2010)

    2. Altpeter, F.: Friction Modeling, Identification and Compen-sation. Ph.D. thesis, École Polytechnique Fédérale de Lau-sanne (1999)

    3. Andreaus, U., Casini, P.: Dynamics of friction oscillatorsexcited by a moving base and/or driving force. J. SoundVib. 245(4), 685–699 (2001)

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    16/17

    1800 E. Pennestrì et al.

    4. Anitescu, M., Potra, F.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear com-plementarity problems. Nonlinear Dyn.   14(93), 231–247(1997)

    5. Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C.: Asurvey of models, analysis tools and compensation methodsfor the control of machines with friction. Automatica  30(7),

    1083–1138 (1994)6. Armstrong-Hélouvry, B., Canudas de Wit, C.: Friction mod-eling and compensation. In: The Control Handbook. CRCPress, Boca Raton (1995)

    7. Åström, K.J., Canudas De Wit, C.: Revisiting the LuGreModel stick–slip motion andrate dependence. IEEE ControlSyst. 28(6), 101–114 (2008)

    8. Benson, D.J., Hallquist, J.O.: A single surface contact algo-rithm forthe post-buckling analysis ofshell structures. Com-put. Method Appl. Mech. Eng. 78, 141–163 (1990)

    9. Berger, E.: Friction modeling for dynamic system simula-tion. Appl. Mech. Rev. 55(6), 535 (2002)

    10. Bliman, P.A., Sorine, M.: Easy-to-use realistic dry frictionmodelsforautomaticcontrol.In:3rdEuropeanControlCon-

    ference, Rome (Italy), pp. 3788–3794 (1995)11. Borello, L., Dalla Vedova, M.D.L.: Dry friction discontin-

    uous computational algorithms. Int. J. Eng. Innov. Technol.3(8), 1–8 (2014)

    12. Bowden, F.P., Leben,L.: Thenature of sliding and the analy-sis of friction. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.169(938), 371–391 (1939)

    13. Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky,P.: A new model for control of systems with friction. IEEETrans. Automat. Control 40(3), 419–425 (1995)

    14. Cha, H.Y., Choi, J., Ryu, H.S., Choi, J.H.: Stick–slip algo-rithm in a tangential contact force model for multi-bodysystem dynamics. J. Mech. Sci. Technol.  25(7), 1687–1694(2011)

    15. Chou, D.: Dahl Friction Modeling. Ph.D. thesis, Massa-chusetts Institute of Technology (2004)

    16. COMSOL: TheStructural Mechanics Module. User’s GuideVersion 4.3 (2012)

    17. Coulomb, P.C.A.: Theorie des machines simples. Bachelier(1821)

    18. Dahl, P.R.: Solid friction damping of mechanical vibrations.AIAA J. 14(12), 1675–1682 (1976)

    19. Do,T.N., Tjahjowidodo,T.,Lau,M.W.S., Phee, S.J.: Nonlin-ear modeling and parameter identification of dynamic fric-tionmodel in tendon sheath for flexible endoscopicsystems.In: 10th International Conference on Informatics in Control,Automation and Robotics, pp. 5–10 (2013)

    20. Duan, C., Singh, R.: Dynamics of a 3dof torsional systemwith a dry friction controlled path. J. Sound Vib. 289, 657–688 (2006)

    21. Dupont, P., Armstrong, B., Hayward, V.: Elasto-plastic fric-tionmodel:contact compliance andstiction. In:Proceedingsof the2000 American Control Conference, vol. 2, pp. 1072–1077 (2000)

    22. Dupont, P., Street, C., Hayward, V., Armstrong, B.: Singlestate elasto-plastic models for friction compensation. IEEETrans. Automat. Control 47(5), 787–792 (1999)

    23. FunctionBay Inc: RecurDyn Solver Theoretical Manual(2012)

    24. Galvanetto,U.: Bifurcations and chaos system with dry fric-tion. J. Sound Vib.  204(4), 690–695 (1997)

    25. Geffen, V.V.: A Study of Friction Models and Friction Com-pensation. Technische Universiteit Eindhoven, TechnicalReport (2009)

    26. Glocker, C., Pfeiffer, F.: Multiple impacts with friction inrigid multibody systems. Nonlinear Dyn. 7, 471–497 (1995)

    27. Gonthier, Y., McPhee, J., Lange, C., Piedbœuf, J.C.: A regu-larized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn.  11(3), 209–233 (2004)

    28. Hayward, V., Armstrong, B.: A new computationalmodel of friction applied to haptic rendering. In:Experimental Robot-ics VI, vol. 250, pp. 403–412. Springer, London (2000)

    29. Hinrichs, N., Oestreich, M., Popp, K.: On the modelling of friction oscillators. J. Sound Vib.  216(3), 435–459 (1998)

    30. Karnopp, D.: Computer simulation of stick slip friction inmechanical dynamic systems. J. Dyn. Syst. Meas. Control107, 100–103 (1985)

    31. Kermani, M., Patel, R., Moallem, M.: Friction identifica-tionin robotic manipulators: case studies. In:Proceedings of 

    IEEE Conference on Control Applications, pp. 1170–1175(2005)

    32. Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fuji-moto, H.: Fixed-step friction simulation: from classicalcoulomb model to modern continuous models. IEEE Int.Conf. Intel. Robot Syst. 1, 1009–1016 (2005)

    33. Kim, T.C., Rook, T.E., Singh, R.: Effect of smoothen-ing functions on the frequency response of an oscillatorwith clearance non-linearity. J. Sound Vib. 263(3), 665–678(2003)

    34. Lacoursière, C., Linde, M., Lu, Y., Trinkle, J.: A frameworkfor data exchange and benchmarking of frictional contactsolvers in multibody dynamics. In: ECCOMAS ThematicConference on Multibody Dynamics, pp. 2–3. Barcelona

    (2015)35. Liu, H., Song, X., Nanayakkara, T.: Friction estimation

    based object surface classification for intelligent manipula-tion.In:IEEEICRA2011WorkshoponAutonomousGrasp-ing (2011)

    36. LMS International:LMS Virtual. Lab Motion. User’s Guide(2012)

    37. López, I., Busturia, J., Nijmeijer, H.: Energy dissipation of a friction damper. J. Sound Vib. 278(3), 539–561 (2004)

    38. Marchi, J.A.D.: Modeling of Dynamic Friction , ImpactBacklash andElastic Compliance Nonlinearities in MachineTools , with Applications To Asymmetric Viscous andKinetic Friction Identification. Ph.D. thesis, RensselÃęr

    Polytechnic Institute (1998)39. Marques, F., Flores, P., Lankarani, H.M.: On the frictionalcontacts in multibody system dynamics. In: ECCOMASThematic Conference on Multibody Dynamics (2015)

    40. Márton, L., Kutasi, N.: Practical identification method forstriebeck friction. In: Proceedings of the 6th InternationalSymposium of Hungarian Researchers, pp. 425–436 (2005)

    41. McMillian,A.J.: A non-linearfriction model forself-excitedvibrations. J. Sound Vib. 205(3), 323–335 (1997)

    42. Mostaghel,N.: A non-standard analysis approach to systemsinvolving friction. J. Sound Vib. 284, 583–595 (2005)

    43. MSC.Software: Adams/View help (2012)

     1 3

  • 8/16/2019 Review and Comparison of Dry Friction Force Models

    17/17

    Review and comparison of dry friction force models 1801

    44. Muvengei, O.: Computational implementation of LuGrefriction law in a revolute joint with clearance. In: Proceed-ings of the 2012 Mechanical Engineering Conference onSustainable Research and Innovation, vol. 4, pp. 99–108(2012)

    45. Olsson, H., Åström, K.J., Canudas De Wit, C., Gäfvert, M.,Lischinsky, P.: Friction models and friction compensation.

    Eur. J. Control 4, 176–195 (1998)46. Pennestrì, E., Toso, M., Rossi, V.: ESA multibody simulatorfor spacecrafts’ ascent and landing in a microgravity envi-ronment. CEAS Space J. (2015)

    47. Pennestrì, E., Valentini, P.P., Vita, L.: Multibody dynamicssimulation of planar linkages with Dahl friction. MultibodySyst. Dyn. 17, 321–347 (2007)

    48. Pfeiffer, F., Glocker,C.: Multibody dynamics withunilateralcontact. Wiley-VCH Verlag GmbH & Co., KGaA, Germany(2004)

    49. Piatkowski, T.: Dahl and lugre dynamic friction models—the analysis of selected properties. Mech. Mach. Theory 73,91–100 (2014)

    50. Qi, Z., Xu, Y., Luo, X., Yao, S.: Recursive formulations

    for multibody systems with frictional joints based on theinteraction between bodies. Multibody Syst. Dyn. 24, 133–166 (2010)

    51. Rabinowicz, E.: Stick and slip. Sci. Am. 194(5), 109–119(1956)

    52. Rao, S.S.: Mechanical Vibrations. Addison-Wesley Long-man Incorporated, USA (1986)

    53. Richard, C., Cutkosky, M., MacLean, K.: Friction identifi-cation for haptic display. Proc. ASME Dyn. Syst. ControlDiv. 67, 327–334 (1999)

    54. Romano, R.A., Garcia, C.: Karnopp friction model identifi-cation for a real control valve. In: Proceedings of the 17thWorld Congress of The International Federation of Auto-matic Control, vol. 17, pp. 14906–14911 (2008)

    55. Rooney, G., Deravi, P.: Coulombfriction in mechanism slid-ing joints. Mech. Mach. Theory 17(3), 207–211 (1982)56. Simpack: SIMPACK Documentation (2013)57. Tasora, A.: An iterative fixed-point method for solving large

    complementarity problems in multibody systems. In: Pro-ceedings of XVI GIMC, Bologna (2006)

    58. Thomsen, J.J., Fidlin, A.: Analytical approximations forstick–slip vibration amplitudes. Int. J. Nonlinear Mech.  38,389–403 (2003)

    59. Threlfall, D.: The inclusion of Coulomb friction in mecha-nisms programs with particular reference to DRAM. Mech.Mach. Theory 13(4), 475–483 (1978)

    60. Wang, D., Rui, Y.: Simulation of the stick–slip frictionbetween steering shafts using ADAMS. In: International

    ADAMS User Conference, pp. 1–11 (2000)61. Wu, S.C., Yang, S.M., Haug, E.J.: Dynamics of mechanical

    systems with Coulomb friction, stiction, impact and con-straint addition–deletion. Mech. Mach. Theory  21(5), 417–425 (1986)

     1 3