review for final exam systems of equations. martin-gay, developmental mathematics 2 7.1 – solving...

35
Review for Final Exam Systems of Equations

Upload: julia-terry

Post on 24-Dec-2015

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Review for Final Exam

Systems of Equations

Page 2: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 2

7.1 – Solving Systems of Linear Equations by Graphing

7.2 – Solving Systems of Linear Equations by Substitution

7.3 – Solving Systems of Linear Equations by Elimination

Chapter Sections

Page 3: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

§ 7.1

Solving Systems of Linear Equations by Graphing

Page 4: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 4

Systems of Linear Equations

A system of linear equations consists of two or more linear equations.

This section focuses on only two equations at a time.

The solution of a system of linear equations in two variables is any ordered pair that solves both of the linear equations.

Page 5: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 5

Determine whether the given point is a solution of the following system.

point: (– 3, 1)

system: x – y = – 4 and 2x + 10y = 4•Plug the values into the equations.

First equation: – 3 – 1 = – 4 true

Second equation: 2(– 3) + 10(1) = – 6 + 10 = 4 true

•Since the point (– 3, 1) produces a true statement in both equations, it is a solution.

Solution of a System

Example

Page 6: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 6

Determine whether the given point is a solution of the following system

point: (4, 2)

system: 2x – 5y = – 2 and 3x + 4y = 4

Plug the values into the equations

First equation: 2(4) – 5(2) = 8 – 10 = – 2 true

Second equation: 3(4) + 4(2) = 12 + 8 = 20 4 false

Since the point (4, 2) produces a true statement in only one equation, it is NOT a solution.

Solution of a System

Example

Page 7: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 7

• Since our chances of guessing the right coordinates to try for a solution are not that high, we’ll be more successful if we try a different technique.

• Since a solution of a system of equations is a solution common to both equations, it would also be a point common to the graphs of both equations.

• So to find the solution of a system of 2 linear equations, graph the equations and see where the lines intersect.

Finding a Solution by Graphing

Page 8: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 8

Solve the following system of equations by graphing.

2x – y = 6 and

x + 3y = 10x

y

First, graph 2x – y = 6.

(0, -6)

(3, 0)

(6, 6)

Second, graph x + 3y = 10.

(1, 3)

(-2, 4)(-5, 5)

The lines APPEAR to intersect at (4, 2).

(4, 2)

Finding a Solution by Graphing

Example

Continued.

Page 9: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 9

Although the solution to the system of equations appears to be (4, 2), you still need to check the answer by substituting x = 4 and y = 2 into the two equations.

First equation,

2(4) – 2 = 8 – 2 = 6 true

Second equation,

4 + 3(2) = 4 + 6 = 10 true

The point (4, 2) checks, so it is the solution of the system.

Finding a Solution by Graphing

Example continued

Page 10: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 10

Solve the following system of equations by graphing.

– x + 3y = 6 and

3x – 9y = 9

x

y

First, graph – x + 3y = 6.

(-6, 0)

(0, 2)

(6, 4)

Second, graph 3x – 9y = 9.

(0, -1)

(6, 1)(3, 0)

The lines APPEAR to be parallel.

Finding a Solution by Graphing

Example

Continued.

Page 11: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 11

Although the lines appear to be parallel, you still need to check that they have the same slope. You can do this by solving for y.

First equation, –x + 3y = 6

3y = x + 6 (add x to both sides)

3

1 y = x + 2 (divide both sides by 3)

Second equation,3x – 9y = 9

–9y = –3x + 9 (subtract 3x from both sides)

3

1y = x – 1 (divide both sides by –9)

3

1Both lines have a slope of , so they are parallel and do not intersect. Hence, there is no solution to the system.

Finding a Solution by Graphing

Example continued

Page 12: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 12

Solve the following system of equations by graphing.

x = 3y – 1 and

2x – 6y = –2

x

y

First, graph x = 3y – 1.

(-1, 0)

(5, 2)

(7, -2)

Second, graph 2x – 6y = –2.

(-4, -1)

(2, 1)

The lines APPEAR to be identical.

Finding a Solution by Graphing

Example

Continued.

Page 13: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 13

Although the lines appear to be identical, you still need to check that they are identical equations. You can do this by solving for y.

First equation, x = 3y – 1

3y = x + 1 (add 1 to both sides)

Second equation,2x – 6y = – 2 –6y = – 2x – 2 (subtract 2x from both sides)

The two equations are identical, so the graphs must be identical. There are an infinite number of solutions to the system (all the points on the line).

3

1 y = x + (divide both sides by 3)3

1

3

1 y = x + (divide both sides by -6)3

1

Finding a Solution by Graphing

Example continued

Page 14: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

§ 7.2

Solving Systems of Linear Equations by Substitution

Page 15: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 15

The Substitution Method

Another method (beside getting lucky with trial and error or graphing the equations) that can be used to solve systems of equations is called the substitution method.

You solve one equation for one of the variables, then substitute the new form of the equation into the other equation for the solved variable.

Page 16: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 16

Solve the following system using the substitution method.3x – y = 6 and – 4x + 2y = –8

Solving the first equation for y, 3x – y = 6

–y = –3x + 6 (subtract 3x from both sides)

y = 3x – 6 (multiply both sides by – 1)

Substitute this value for y in the second equation. –4x + 2y = –8 –4x + 2(3x – 6) = –8 (replace y with result from first equation)

–4x + 6x – 12 = –8 (use the distributive property)

2x – 12 = –8 (simplify the left side)

2x = 4 (add 12 to both sides)

x = 2 (divide both sides by 2)

The Substitution Method

Example

Continued.

Page 17: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 17

Substitute x = 2 into the first equation solved for y.

y = 3x – 6 = 3(2) – 6 = 6 – 6 = 0

Our computations have produced the point (2, 0).

Check the point in the original equations.

First equation,

3x – y = 6

3(2) – 0 = 6 true

Second equation,

–4x + 2y = –8

–4(2) + 2(0) = –8 true

The solution of the system is (2, 0).

The Substitution Method

Example continued

Page 18: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 18

Solving a System of Linear Equations by the Substitution Method

1) Solve one of the equations for a variable.2) Substitute the expression from step 1 into the

other equation.3) Solve the new equation.4) Substitute the value found in step 3 into

either equation containing both variables.5) Check the proposed solution in the original

equations.

The Substitution Method

Page 19: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 19

Solve the following system of equations using the substitution method.

y = 2x – 5 and 8x – 4y = 20

Since the first equation is already solved for y, substitute this value into the second equation.

8x – 4y = 20

8x – 4(2x – 5) = 20 (replace y with result from first equation)

8x – 8x + 20 = 20 (use distributive property)

20 = 20 (simplify left side)

The Substitution Method

Example

Continued.

Page 20: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 20

When you get a result, like the one on the previous slide, that is obviously true for any value of the replacements for the variables, this indicates that the two equations actually represent the same line.

There are an infinite number of solutions for this system. Any solution of one equation would automatically be a solution of the other equation.

This represents a consistent system and the linear equations are dependent equations.

The Substitution Method

Example continued

Page 21: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 21

Solve the following system of equations using the substitution method.

3x – y = 4 and 6x – 2y = 4Solve the first equation for y.

3x – y = 4 –y = –3x + 4 (subtract 3x from both sides)

y = 3x – 4 (multiply both sides by –1)

Substitute this value for y into the second equation. 6x – 2y = 4

6x – 2(3x – 4) = 4 (replace y with the result from the first equation)

6x – 6x + 8 = 4 (use distributive property)

8 = 4 (simplify the left side)

The Substitution Method

Example

Continued.

Page 22: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 22

When you get a result, like the one on the previous slide, that is never true for any value of the replacements for the variables, this indicates that the two equations actually are parallel and never intersect.

There is no solution to this system.

This represents an inconsistent system, even though the linear equations are independent.

The Substitution Method

Example continued

Page 23: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

§ 7.3

Solving Systems of Linear Equations by Elimination

Page 24: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 24

The Elimination Method

Another method that can be used to solve systems of equations is called the addition or elimination method.

You multiply both equations by numbers that will allow you to combine the two equations and eliminate one of the variables.

Page 25: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 25

Solve the following system of equations using the elimination method.

6x – 3y = –3 and 4x + 5y = –9Multiply both sides of the first equation by 5 and the second equation by 3.

First equation,5(6x – 3y) = 5(–3) 30x – 15y = –15 (use the distributive property)

Second equation,3(4x + 5y) = 3(–9) 12x + 15y = –27 (use the distributive property)

The Elimination Method

Example

Continued.

Page 26: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 26

Combine the two resulting equations (eliminating the variable y).

30x – 15y = –15 12x + 15y = –27 42x = –42

x = –1 (divide both sides by 42)

The Elimination Method

Example continued

Continued.

Page 27: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 27

Substitute the value for x into one of the original equations.

6x – 3y = –3

6(–1) – 3y = –3 (replace the x value in the first equation)

–6 – 3y = –3 (simplify the left side)

–3y = –3 + 6 = 3 (add 6 to both sides and simplify)

y = –1 (divide both sides by –3)

Our computations have produced the point (–1, –1).

The Elimination Method

Example continued

Continued.

Page 28: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 28

Check the point in the original equations.First equation,

6x – 3y = –3

6(–1) – 3(–1) = –3 true

Second equation,

4x + 5y = –9

4(–1) + 5(–1) = –9 true

The solution of the system is (–1, –1).

The Elimination Method

Example continued

Page 29: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 29

Solving a System of Linear Equations by the Addition or Elimination Method

1) Rewrite each equation in standard form, eliminating fraction coefficients.

2) If necessary, multiply one or both equations by a number so that the coefficients of a chosen variable are opposites.

3) Add the equations.4) Find the value of one variable by solving equation from

step 3.5) Find the value of the second variable by substituting the

value found in step 4 into either original equation.6) Check the proposed solution in the original equations.

The Elimination Method

Page 30: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 30

Solve the following system of equations using the elimination method.

24

1

2

12

3

4

1

3

2

yx

yx

First multiply both sides of the equations by a number that will clear the fractions out of the equations.

The Elimination Method

Example

Continued.

Page 31: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 31

Multiply both sides of each equation by 12. (Note: you don’t have to multiply each equation by the same number, but in this case it will be convenient to do so.)

First equation,

2

3

4

1

3

2 yx

2

312

4

1

3

212 yx (multiply both sides by 12)

1838 yx (simplify both sides)

The Elimination Method

Example continued

Continued.

Page 32: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 32

Combine the two equations.

8x + 3y = – 18

6x – 3y = – 24

14x = – 42

x = –3 (divide both sides by 14)

Second equation,2

4

1

2

1 yx

2124

1

2

112

yx (multiply both sides by 12)

(simplify both sides)2436 yx

The Elimination Method

Example continued

Continued.

Page 33: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 33

Substitute the value for x into one of the original equations.

8x + 3y = –188(–3) + 3y = –18

–24 + 3y = –18

3y = –18 + 24 = 6

y = 2

Our computations have produced the point (–3, 2).

The Elimination Method

Example continued

Continued.

Page 34: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 34

Check the point in the original equations. (Note: Here you should use the original equations before any modifications, to detect any computational errors that you might have made.)

First equation,

2

3

4

1

3

2 yx

2 1 3( ) ( )3 4 2

3 2

2

3

2

12 true

Second equation,

24

1

2

1 yx

1 1( ) ( ) 22 4

3 2

22

1

2

3 true

The solution is the point (–3, 2).

The Elimination Method

Example continued

Page 35: Review for Final Exam Systems of Equations. Martin-Gay, Developmental Mathematics 2 7.1 – Solving Systems of Linear Equations by Graphing 7.2 – Solving

Martin-Gay, Developmental Mathematics 35

In a similar fashion to what you found in the last section, use of the addition method to combine two equations might lead you to results like . . .

5 = 5 (which is always true, thus indicating that there are infinitely many solutions, since the two equations represent the same line), or

0 = 6 (which is never true, thus indicating that there are no solutions, since the two equations represent parallel lines).

Special Cases