rn31584en10gla0 utran capacity

94
7/28/2019 Rn31584en10gla0 Utran Capacity http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 1/94 1 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0 UTRAN Capacity Measurements RANKPI Training

Upload: pedro

Post on 03-Apr-2018

250 views

Category:

Documents


11 download

TRANSCRIPT

Page 1: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 1/94

1 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

UTRAN Capacity Measurements

RANKPI Training

Page 2: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 2/94

2 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Agenda

•RAB resource allocation sequence

 – Power resource measurements

 – Code resource measurement

 – WBTS resource measurement

 – RNC DSP resource measurement

 – Transmission resource measurement

•Further power measurements

•Feature measurement

•Cell availability

Page 3: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 3/94

3 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Capacity Areas in UTRAN

Essential to monitor the available resources in UTRAN

 – Capacity from initial dimensioning phase may no be sufficient anymore

 – Marketing campaigns lead to higher resource utilization

Capacity bottlenecks impact the call setup success rates (CSSR)

 – Mobile user perceives poor setup success rates directly

 – Unsatisfied customers usually seek for better performance in someother network available (churn)

With current NSN measurements network capacity can bemonitored in a proactive mode

 – Traffic increase can be seen from mid or long term graphs

 – Capacity upgrades can be triggered taking into account existing leadtimes HW units, internal procedures like planning or implementation

Page 4: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 4/94

4 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

IuB

 Air Interface WBTS HW Resources Transport

UL interference

DL transmisson power 

DL Codes

FSP/ WSP capacity (N*) E1 capacity / AAL2

Capacity Areas in UTRAN

RLC/MAC

During call set-up [RRC, RAB] several resource areas are checked and

physical / logical resources allocated.

DSP processing

RNC

Page 5: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 5/94

5 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Resource allocation at RRC/RAB setup

 AC

CAC/AAL2

NBAP

1 – Radio

resources

4 – Iub resources, treated

in later LE

2 – WBTS

resources

RM

1a – Code

resources

3 – DMCU

allocation

Page 6: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 6/94

6 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Resource allocation at RAB setup

Radio Link Reconfiguration Commit

 AAL2SIG:ERQ

RAB Assignment Request

Facility

Call Proceeding

Setup

UE RNC MGWNode B

RRC Connection Establishment

Radio Link Reconfigure Prepare

Radio Link Reconfigure Ready

 AAL2SIG:ERQ

 AAL2SIG:ECF

FP: Downlink Sync

FP: Uplink Sync

 AAL2SIG:ECF

Radio Bearer Setup

Radio Bearer Setup Complete

 Authentication & Security mode

1 – AC, RM

3 – DMCU

2 – WBTS

resources

4 - BTS CAC4 – RNC CAC

Page 7: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 7/947 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

RU10 Counters & KPIs

• Capacity Areas in UTRAN

 – Air interface UL / DL M1000

 – Code Tree in Downlink M1000

 – WBTS WSP-C (FSP) baseband processing power M5001

 – Transport Measurements M550 / M800

 – Feature trigger analysis M1000 – DSP Resources in RNC M609

• Supporting measurements for more details

 – Traffic M1002 – L3 on IuB M1005

 – L3 on Iu M1003

Page 8: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 8/948 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

The counters are dependent on the RNP parameters PrxTarget [dB] andPrxOffset [dB].

If PrxNoise autotuning is allowed, you should remember this wheninterpreting measurement results.

If PrxNoise autotuning is not allowed, PrxNoise counters’ values do not

change.

HSUPA (E-DCH) loading is affecting the update of Prx load measurements

UL Power Measurements 

Page 9: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 9/949 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Fractional load

[0..1]

Load curve in UL

PrxTotal [dBm]

PrxTarget [dB] 

PrxTarget [dB]+

PrxOffset [dB]

1

Noise Rise 

NR [dB] 

PrxNoise[dBm]

UL Load Curve

Page 10: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 10/9410 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Autotuning algorithm

The auto-tuning algorithm adjusts

the PrxNoise value, thus moving thereference point of the UL load curve 

and the relevant parameters defining

the thresholds for the UL Admission

Control (see RANPAR material for 

more details).

This means that all the areas can be

shifted up and down and a certain

measured value of PrxTotal may

trigger different areas during the day.

 Autotuning algorithm should be on in

order to combat UL power spikes in

the admission phase.

With default values

WCEL: PrxNoise= -104dBmRNC: PrxNoiseMaxTuneAbsolute= 20dB

thus, the maximum autotuned value is -84dBm

Fractional load[0..1]

0

Load curve in UL

PrxTotal [dBm]

PrxTarget [dB] 

PrxTarget [dB]+PrxOffset [dB]

1

Noise Rise NR [dB] 

PrxNoise[dBm]

PrxNoise +PrxNoiseMaxTuneAbsolute

PrxNoise -PrxNoiseMaxTuneAbsolute

Page 11: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 11/9411 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Prx Total measurements

NBAP: COMMON MEASUREMENT REPORT

PrxTotal, PtxTotal, PrxNonEDPCH, PtxNonHSPA

BTS reports total UL interference (RSSI) with 0.1dB resolution

and range [-112, ...,-50] dBm:RSSI_LEV _000: RSSI < -112.0 dBm

RSSI_LEV _001: -112.0 dBm <= RSSI < -111.9 dBm

RSSI_LEV _002: -111.9 dBm <= RSSI < -111.8 dBm

RSSI_LEV _619: -50.2 dBm <= RSSI < -50.1 dBm

RSSI_LEV _620: -50.1 dBm <= RSSI < -50.0 dBm

RSSI_LEV _621: -50.0 dBm <= RSSI

These are available through M1000C320-C341

The value in dBm can be derived by:

[-112.0+ (RSSI_LEV)/10] dBm

Value mapping according 3GPP TS 25.133

NBAP-PRIVATE: RADIO RESOURCE INDICATION

Page 12: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 12/94

12 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

The BTS reports PrxTotal of each cell to the CRNC periodically in NBAP-

c: RADIO RESOURCE INDICATION message.

When the RRM (Radio Resource Management) in the RNC receives it, the

relevant PrxTotal counters are updated according to the defined 5 UL load

areas. The counters are already averaged values presented in dBm.

PrxTotal measurements

Sample 1 : Unloaded

Sample 2&3 : Feasible load area 1

Sample 4 : Feasible load area 2

Sample 5 : Marginal load area

Sample 6 : Overload area

X = collected sample of PrxTotal measurement 

x xx

xx

x

Page 13: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 13/94

13 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

PrxTotal measurements

Counter 

ID  Counter   Incremented IF M1000C0   AVE_PRXTOT_CLASS_0  (Lrt<=UnloadedRT) AND (Lnrt<=UnloadedNRT) M1000C2   AVE_PRXTOT_CLASS_1  HSUPA disabled: 

(PrxTotal<=PrxTarget –PrxOffset) AND ((Lrt>UnloadedRT) OR (Lnrt>UnloadedNRT)) HSUPA enabled: (PrxNonEDPCH<=PrxTarget –PrxOffset) AND ((Lrt>UnloadedRT) OR

(Lnrt>UnloadedNRT)) M1000C4   AVE_PRXTOT_CLASS_2 

HSUPA disabled: 

(PrxTotal>PrxTarget –PrxOffset) AND (PrxTotal<PrxTarget) AND ((Lrt>UnloadedRT)

OR (Lnrt>UnloadedNRT)) HSUPA enabled: (PrxNonEDPCH>PrxTarget –PrxOffset) AND (PrxNonEDPCH<PrxTarget) AND

((Lrt>UnloadedRT) OR (Lnrt>UnloadedNRT)) M1000C6   AVE_PRXTOT_CLASS_3  HSUPA disabled: 

(PrxTotal>=PrxTarget) AND (PrxTotal<PrxTarget+PrxOffset) AND ((Lrt>UnloadedRT)

OR (Lnrt>UnloadedNRT)) HSUPA enabled: (PrxNonEDPCH>=PrxTarget) AND (PrxNonEDPCH<PrxTarget+PrxOffset) AND

((Lrt>UnloadedRT) OR (Lnrt>UnloadedNRT)) M1000C8   AVE_PRXTOT_CLASS_4  HSUPA disabled: 

(PrxTotal>=PrxTarget+PrxOffset) AND ((Lrt>UnloadedRT) OR (Lnrt>UnloadedNRT)) HSUPA enabled: (PrxNonEDPCH>=PrxTarget+PrxOffset) AND ((Lrt>UnloadedRT) OR

(Lnrt>UnloadedNRT)) 

Page 14: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 14/94

14 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

PrxTotal measurements

• Based on the criteria above, the CLASS is selected and themeasurement result (received by every radio resourceindication, typically every 200 ms) is assigned to thecorresponding counter AVE PRXTOT CLASS X.

• The corresponding PRXTOT_DENOM_X is incremented by 1.

Page 15: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 15/94

15 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Prx Total measurement: Class 0

 According to the criteria

above, selection of class 0 is

driven by load estimation, not

by power measurement.

Due to external and inter-cell

interference the measurementPrxTotal in Class 0 might

result to be higher than that in

the other load classes.

Class 0 is detected when own cell is considered unloaded (or very low load):

LRT  UnloadedRT (2%) and LNRT  UnloadedNRT (1%)

UnloadedRT and UnloadedNRT are RNC internal parameters

X = collected sample of PrxTotal measurement 

   U   N   L

   O   A   D   E   D

   A   R   E   A

Page 16: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 16/94

16 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Average R99 Prx KPI

dBmk  DENOM  PRXTOT 

k  DENOM  PRXTOT k CLASS  PRXTOT  AVE 

Classes All k 

Classes All k 

 _ 

 _ 

 _  _ 

 _  _  _  _  _ 

dBm)(inR99LoadULAvgRNC_101b

uses M1000C0 through C9, see also:

M1000C288 Maximum_Prx Total, M1000C229 Minimum_PrxTotal

This KPI may be used to identify sites which are experiencing:

high uplink traffic load

high background interference

high uplink intercell interference

problems with PrxTotal measurements

The KPI is meaningful only for cell level and on hour basis

Page 17: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 17/94

17 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

UL Noise Rise KPI

If autotuning algorithm is on (and RNC: PrxNoiseMaxTuneAbsolute parameter 

value is set large enough to allow the variation of PrxNoise value), excludingPrxTotal in Class 0 (that is the PrxNoise) from the Ave PrxTotal KPI gives theUL Noise Rise

Load

Prx_total

100%

0 _  _  _  _  _ 

 _  _  _  _  _ 

 _ 

 _ CLASS  PRXTOT  AVE 

k  DENOM  PRXTOT 

k  DENOM  PRXTOT k CLASS  PRXTOT  AVE 

 NR

Classes All k 

Classes All k 

 Load  NR

1

1

dB

Prx_noise

Page 18: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 18/94

18 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Time in Class X KPI

The Time in class X KPI is the percentage of time the cell has been in class X .

This KPI can be used for:

Percentage of time in class 3-4: useful to identify cells which are approaching

the point at which there may be significant rejected capacity requests. This KPImay be use as a trigger for a capacity upgrade process (i.e. by additional carrier)

The KPI is meaningful only for cell level and on hour basis

%100 _  _ 

 _  _ 

 _ 

Classes All k 

k  DENOM  PRXTOT 

 X  DENOM  PRXTOT 

PrxTotal > PrxTarget – PrxOffset

Page 19: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 19/94

19 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Cell Noise 

Page 20: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 20/94

20 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

• In case own cell is considered unloaded (i.e. Lrt<UnloadedRT andLnrt<UnloadedNRT), the received PrxTotal value is used by the autotuningalgorithm to update the PrxNoise value.

• If HSUPA is enabled in the cell, the Watt value updated into AVE_PRXTOTcounters is the estimated Rel99 uplink power PrxNonEDPCH.

• AVE_PRX_NOISE counter is the average (over the measurement period)PrxNoise value used in UL admission control .

• It is updated in every radio resource indication period (typically 200ms). It gets theprevious value if cell load does not fulfill the unloaded conditions above. The realdBm value is obtained when divided by -100.

• PRX_NOISE_DENOM_1 counter is updated on every RRI (Radio Resource

Indication) message received.• It indicates interference when above ~ 100dBm

• The counter/KPI is meaningful only for cell level and on hour basis. Thecounter/KPI is dependent on auto tuning algorithm.

Average PrxNoise, counter and KPI

Page 21: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 21/94

21 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Min and Max PrxNoise (M1000C12&13)

• MAX_PRX_NOISE_VALUE is updated if own cell is unloaded and thevalue of the counter is smaller than the current value of PrxNoise 

• MIN_PRX_NOISE_VALUE  is updated if own cell is unloaded and thevalue of the counter is bigger than the current value of PrxNoise.

• The real dBm value for both counters is obtained when divided by -100.

• The average amplitude of PrxNoise variation (or Average PrxNoise)can be useful to evaluate the nature of the interference, thusdiscriminate between continous/low variation interference andshort/high variation interference (e.g. when above ~5dB).

• The counter/KPI is meaningful only for cell level and on hour basis. Itis useful to detect UL power spikes. 

• The counter/KPI is dependent on auto tuning algorithm.

Page 22: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 22/94

22 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

UL Cell Load estimations 

Page 23: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 23/94

23 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

The received wideband channel interference power of the cell, PrxTotal,can be divided into following components:

• the received power caused by the UEs of the own cell, PrxOwn

•the received powers caused by the UEs of the surrounding cells,PrxOther 

• and the system noise, PrxNoise (depending, for example, on theenvironment and the background noise)

Interference caused by own cell users can be further divided into RTand NRT components:

PrxTotal = PrxOwn + PrxOther + PrxNoise

PrxOwn = PrxRT + PrxNRT

RT and NRT received power 

Page 24: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 24/94

24 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

RT and NRT Load Factor (1/2)

Interference caused by own cell RT users can be expressed as:

where Lrt represents the load factor of the own cell RT users.

Similarly, interference caused by own cell NRT users can be expressedas:

where Lnrt represents the load factor of the own cell NRT users.

Based on definitions, the value of Lrt (or Lnrt) is between [0&1], and Lrt+ Lnrt < 1.

PrxNRT = Lnrt * PrxTotal

PrxRT = Lrt * PrxTotal

Page 25: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 25/94

25 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

The values of load factors are estimates, not the direct measurements,

depending on the Eb/No, , and bit rate, R, of the active users.

RT and NRT Load Factor (2/2)

Usersactivenrt  N 

i

ii

nrt 

 R

W  L

 _  _  _ 

1 1

1

  

Usersactivert  N 

i

ii

rt 

 R

W  L

 _  _  _ 

1 1

1

  

Page 26: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 26/94

26 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

There are specific counters for Lrt and Lnrt for each CLASS (0 … 4).

 At the same time as Radio Resource Indication message is received in theRNC, and PrxTotal value is inside CLASS X range, not only AVE PRXTOTCLASS X is updated, but also AVE_LRT_CLASS_X andAVE_LNRT_CLASS_X counters are updated (with the estimated LRT andLNRT values).

Counter values are alreadyaveraged and real % value isobtained when the counter valueis divided by 100.

LRT_DENOM_X and

LNRT_DENOM_X areincremented by 1 at the sametime as PRXTOT_DENOM_X isupdated, when Radio ResourceIndication message arrives.

Useful also to detect hanging

load.

Uplink Lrt & Lnrt estimation

X = collected sample of PrxTotal measurement 

   U   N   L   O

   A   D   E   D

   A   R   E   A

Page 27: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 27/94

27 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

DL Power Measurements 

HSDPA traffic is affecting updating of Ptx measurements

HSDPA power allocation method is affecting updating of Ptx load

counters as well

Page 28: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 28/94

28 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Ptx Total measurements

• BTS reports total DL transmitted power, PtxTotal, periodically (every

200ms, if load is changing), in every Radio Resource Indication message

(at least once per 10 RRI).

• BTS reports PtxTotal as percentage value, the ratio between the total

transmitted power and the maximum transmission power. In the RNC

however, the unit of PtxTotal is 0.01*dBm.• BTS reports PtxNonHSDPA – power used for all services other than

HSDPA

PrxTotal, PtxTotal, PrxNonEDPCH, PtxNonHSPA

NBAP: COMMON MEASUREMENT REPORTNBAP-PRIVATE: RADIO RESOURCE INDICATION

Page 29: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 29/94

29 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

PtxTotal measurements

Ptx CCHs

The BTS reports PtxTotal of each cell to the CRNC periodically in NBAP-c: RADIORESOURCE INDICATION message / 3GPP NBAP: COMMONMEASUREMENTREPORT.

When the RRM (Radio Resource Management) in the RNC receives it, the relevantPtxTotal counters are updated according to the defined 5 DL load areas. The realdBm value is obtained when divided by -100.

Sample 1 : Unloaded

Sample 2 : Feasible load area 1

Sample 3 : Feasible load area 2

Sample 4 : Marginal load area

Sample 5 : Overload area

Page 30: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 30/94

30 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

HSDPA power allocation affects reporting of Ptxpower 

HSDPADynamicResource-

 Allocation 

RNC sends the

PtxMaxHSDPA to BTS

BTS allocates the

available DL power 

dynamically to

HSDPA until

PtxMaxHSDPA

Disabled

BTS allocates the

available DL power dynamically to

HSDPA until Cell max

DL power  

Enabled

RNC schedules NRT DCH

according to HSDPApriority

RNC schedules NRT

DCH using dynamicNRT scheduling 

HSDPA (Static)

Resource Allocation

HSDPA dynamic

Resource Allocation

Page 31: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 31/94

31 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Depending

• a) HSDPA is enabled or not• b) if enabled, which power allocation method is used (static RAS05/05.1]/dynamic)

Rel99

Power 

Rel5

Power 

Max power 

Node-B Tx power 

A

Ptx_off set_HSDPA

PtxnonHSDPA

PtxNC

Ptx_target_HSDPA

B

PtxTotal

Ptx_target

C

PtxMaxHSDPA

Max power -0.8 dB margin

Max power 

Node-B Tx power 

A

Ptx_off set_HSDPA

PtxnonHSDPA

PtxNC

Ptx_target_HSDPA

B

PtxTotal

Ptx_target

C

PtxMaxHSDPA

Max power -0.8 dB margin

 

Max power 

Node-B Tx power 

A

Ptx_offset_HSDPA

PtxnonHSDPA

PtxNC

Ptx_target_HSDPA

B

Ptxtotal

Ptx_target

C

Ptx_offset

PtxMaxHSDPA

Max power -0.8 dB margin

Max power 

Node-B Tx power 

A

Ptx_offset_HSDPA

PtxnonHSDPA

PtxNC

Ptx_target_HSDPA

B

Ptxtotal

Ptx_target

C

Ptx_offset

PtxMaxHSDPA

Max power -0.8 dB margin

Static Resource allocation

HSDPA priority =1

Static Resource allocation

HSDPA priority = 2

HSDPA power allocation affects reporting of Ptxcell power 

Dynamic power allocation (RU10)

Page 32: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 32/94

32 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Dynamic power allocation (RU10)

BTS allocates all unused DL power up to the max cell power, if needed

•  All the power available after DCH traffic, HSUPA control channels andcommon channels can be used for HSDPA

PtxMax is the cellmaximum outputpower defined by

the managementparameter PtxCellMax and theBTS capability(MaxDLPowerCapability)

PtxNC

PtxNRT

PtxHSDPA

PtxMax

PtxNonHSPA

Page 33: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 33/94

33 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Dynamic NRT DCH scheduling

With no active HSDPA users:

1) NRT DCH scheduling to the

PtxTarget+PtxOffset  &RT DCHadmission to PtxTarget

With active HSDPA users:

2) NRT DCH scheduling toPtxTargetPS

3) RT DCH admission to PtxTarget HSDPA activeNo HSDPA users No HSDPA users

PtxTarget 

+PtxOffset 

PtxMax 

PtxTargetPS

PtxNC

PtxNRT

PtxHSDPA

1

2

3

PtxNonHSPA

PtxTotal

Page 34: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 34/94

34 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

HSPA power and Ptx_Target_PS counters

• Minimum, maximum and average value of HSPA power can be followed up by:

• M1000C236 MIN_HSPA_DL_POWER [dBm]

• M1000C237 MAX_HSPA_DL_POWER [dBm]

• M1000C238 AVE_HSPA_DL_POWER [dBm]

• M1000C239 HSPA_DL_POWER_SAMPLES (The number of samples for the

target threshold HSPA power measurement)

• Minimum, maximum and average value of Ptx_Target_PS can be followed up by:

• M1000C232 MIN_PTX_TARGET_PS [dBm]

• M1000C233 MAX_PTX_TARGET_PS [dBm]

• M1000C234 AVE_PTX_TARGET_PS [dBm]

• M1000C235 PTX_TARGET_PS_DENOM (The number of samples for the

target threshold PtxTargetPS measurement)

Page 35: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 35/94

35 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

PtxTotal measurements

Class  Counter   Incremented IF M1000C14  AVE_PTXTOT_CLASS_0 No calls allocated in the cell.

M1000C16  AVE_PTXTOT_CLASS_1 No HSDPA users in cell:  

((PtxPrimaryCCPCH + PtxPrimaryCPICH) < PtxTotal) AND (PtxTotal < (PtxTarget-PtxOffset)) AND

“Cell not empty” 

At least one HSDPA user in cell and static resource allocation in use:  ((PtxPrimaryCCPCH + PtxPrimaryCPICH) < PtxNonHSPA) AND

(PtxNonHSPA < (PtxTargetHSDPA-PtxOffsetHSDPA))

At least one HSDPA user in cell and dynamic resource allocation in use: ((PtxPrimaryCCPCH + PtxPrimaryCPICH) < PtxNonHSPA) AND (PtxNonHSPA < (PtxTargetPS-

PtxOffset))

M1000C18  AVE_PTXTOT_CLASS_2 No HSDPA users in cell:  (PtxTotal >= (PtxTarget-PtxOffset)) AND (PtxTotal < PtxTarget) AND

“Cell not empty” At least one HSDPA user in cell and static resource allocation in use:  

(PtxNonHSPA >= (PtxTargetHSDPA-PtxOffsetHSDPA)) AND (PtxNonHSPA < PtxTargetHSDPA)

At least one HSDPA user in cell and dynamic resource allocation in use: (PtxNonHSPA >= (PtxTargetPS-PtxOffset)) AND (PtxNonHSPA < PtxTargetPS)

M1000C20  AVE_PTXTOT_CLASS_3 No HSDPA users in cell:  (PtxTotal >= (PtxTarget)) AND (PtxTotal < PtxTarget+PtxOffset) AND “Cell not empty” 

At least one HSDPA user in cell and static resource allocation in use:  

(PtxNonHSPA >= PtxTargetHSDPA) AND (PtxNonHSPA < PtxTargetHSDPA+PtxOffsetHSDPA)At least one HSDPA user in cell and dynamic resource allocation in use: 

(PtxNonHSPA >= PtxTargetPS) AND (PtxNonHSPA < PtxTargetPS+PtxOffset)

M1000C22  AVE_PTXTOT_CLASS_4 No HSDPA users in cell:  PtxTotal > (PtxTarget+PtxOffset)

At least one HSDPA user in cell and static resource allocation in use:  

(PtxNonHSPA>=(PtxTargetHSDPA+PtxOffsetHSDPA))At least one HSDPA user in cell and dynamic resource allocation in use: 

(PtxNonHSPA>=(PtxTargetPS+PtxOffset))

Page 36: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 36/94

36 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

PtxTotal measurements

• Based on the these criteria above, the CLASS is selected

and the measurement result (received by every radioresource indication, typically every 200 ms) is assigned tothe corresponding counter AVE PTXTOT CLASS X.

• The corresponding PTXTOT_DENOM_X is incrementedby 1.

Average R99 Ptx KPI

Page 37: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 37/94

37 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Average R99 Ptx KPI

The Average R99Ptx KPI is the average R99 downlink transmitted power.

This KPI may be used to identify sites which are experiencing:

need for WPA expansion

need for carriers expansion

high DL path loss/ interference (check AC failures)

distant traffic

Note that DL Power is linked to user mobility.

The KPI is meaningful only for cell level and on hour basis

dBmk  DENOM  PTXTOT 

k  DENOM  PTXTOT k CLASS  PTXTOT  AVE 

Classes All k 

Classes All k 

 _ 

 _ 

 _  _ *100

 _  _  _  _  _ 

RNC_102b

 Average done in Watt!

uses M1000C14 through C23, see also:

M1000C230 Maximum_PtxTotal, M1000C231 Minimim_PtxTotal

A DL i ll

Page 38: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 38/94

38 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Average DL power in a cell

Important indication for available DL power for Rel99 and HSPA

Page 39: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 39/94

39 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Downlink Cell Power Online Monitoring

Measurement: Cell Resource M1000

N i t t RU10 t

Page 40: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 40/94

40 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

New important RU10 counters

• M1000C342-C352 for Transmitted Carrier Power in absolute units,

classification depends on cell size setting via PRACHDelayRange

Ti i Cl X KPI

Page 41: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 41/94

41 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Time in Class X KPI

The Time in class X KPI is the percentage of time the cell has been in class X

.

This KPI can be used to measure the percentage of time in class 3-4, to detectcell overload problems.

It has to be reminded that Class 0 means power for DL common channels, andit has an impact on the KPI.

Nevertheless, Class 0 is not triggered if BTS is not active.

The KPI is meaningful only for cell level and on hour basis

%100 _  _ 

 _  _ 

 _ 

Classes All k 

k  DENOM  PTXTOT 

 X   DENOM  PTXTOT 

Page 42: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 42/94

42 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Code Tree

Code occ panc in a cell (ma min)

Page 43: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 43/94

43 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Code occupancy in a cell (max, min)

% max

min

Example from Rel99 only network

Downlink Spreading Code availability

Page 44: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 44/94

44 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Downlink Spreading Code availability

DL spreading codes are used to separate user data in a cell

The code pool can run out of codes depending on:

• Rel99 services allocated

• HSDPA allocation (NxSF16 codes out of 15 max, 5 min)

Resource blocking is more combinatory rather than numeric.

Code Measurements on WCEL level

Page 45: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 45/94

45 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Code Measurements on WCEL level

Following DL spreading code measurements are performed:

Code occupancy

 –  Ave, Min, Max usage

Code blocking – No codes available SF4, 8, 16, 32, 64, 128, 256

 – Successful code allocations

Number of code requests – SF4, 8, 16, 32, 64, 128, 256

HSDPA code usage – Duration of allocation 5, 6, 7, 8, 9. 10, 11, 12, 13, 14, 15 codes of SF 16

 – 1 second interval sampling

HSDPA code downgrades – Triggered by RT call request

 – Triggered by NRT call request

M1000C72, M1000C74, M1000C75

M1000C76-M1000C82

M1000C83

M1000C259-M1000C265

M1000C248-M1000C258

M1000C266

M1000C267

No codes available for SF 8 & SF 16

Page 46: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 46/94

46 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

No codes available for SF 8 & SF 16

No Codes available SF 8, SF 16

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

time (hour)

    n    u    m     b

    e    r

no codes SF 16no codes SF 8

Measurement: Cell Resource M1000

one day data

Code Tree usage no codes available SF x

Page 47: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 47/94

47 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Code Tree usage  – no codes available SF x

0

200

400

600

800

1000

1200

1400

1600

1800

  0  1 .  0  4 .

  0  8

   0  0  :  0  0

  0  1 .  0  4 .

  0  8

   0  2  :  0  0

  0  1 .  0  4 .

  0  8

   0  4  :  0  0

  0  1 .  0  4 .

  0  8

   0  6  :  0  0

  0  1 .  0  4 .

  0  8

   0  8  :  0  0

  0  1 .  0  4 .

  0  8

   1  0  :  0  0

  0  1 .  0  4 .

  0  8

   1  2  :  0  0

  0  1 .  0  4 .

  0  8

   1  4  :  0  0

  0  1 .  0  4 .

  0  8

   1  6  :  0  0

  0  1 .  0  4 .

  0  8

   1  8  :  0  0

  0  1 .  0  4 .

  0  8

   2  0  :  0  0

  0  1 .  0  4 .

  0  8

   2  2  :  0  0

  0  2 .  0  4 .

  0  8

   0  0  :  0  0

  0  2 .  0  4 .

  0  8

   0  2  :  0  0

  0  2 .  0  4 .

  0  8

   0  4  :  0  0

  0  2 .  0  4 .

  0  8

   0  6  :  0  0

  0  2 .  0  4 .

  0  8

   0  8  :  0  0

  0  2 .  0  4 .

  0  8

   1  0  :  0  0

  0  2 .  0  4 .

  0  8

   1  2  :  0  0

  0  2 .  0  4 .

  0  8

   1  4  :  0  0

  0  2 .  0  4 .

  0  8

   1  6  :  0  0

  0  2 .  0  4 .

  0  8

   1  8  :  0  0

  0  2 .  0  4 .

  0  8

   2  0  :  0  0

  0  2 .  0  4 .

  0  8

   2  2  :  0  0

  0  3 .  0  4 .

  0  8

   0  0  :  0  0

  0  3 .  0  4 .

  0  8

   0  2  :  0  0

  0  3 .  0  4 .

  0  8

   0  4  :  0  0

  0  3 .  0  4 .

  0  8

   0  6  :  0  0

  0  3 .  0  4 .

  0  8

   0  8  :  0  0

  0  3 .  0  4 .

  0  8

   1  0  :  0  0

  0  3 .  0  4 .

  0  8

   1  2  :  0  0

  0  3 .  0  4 .

  0  8

   1  4  :  0  0

  0  3 .  0  4 .

  0  8

   1  6  :  0  0

  0  3 .  0  4 .

  0  8

   1  8  :  0  0

  0  3 .  0  4 .

  0  8

   2  0  :  0  0

  0  3 .  0  4 .

  0  8

   2  2  :  0  0

No Code SF4 No Code SF8 No Code SF16 No Code SF32

No Code SF64 No Code SF128 No Code SF256

Feature on Feature off  Feature on

Throughput Based Optimisation of Packet Scheduler Algorithms feature

RRM Feature impact

Code Tree Occupancy KPI

Page 48: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 48/94

48 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Code Tree Occupancy KPI

 A single downlink scrambling code supports an OVSF (Orthogonal Variable SpreadingFactor) code tree containing 508 codes, based upon spreading factors from 4 to 256.

The Average Code Tree Occupancy KPI provides an indication of the percentage of codes which are either used or blocked by used codes.

Both counters are updated every 20 s.

The KPI is meaningful only for cell level and on hour basis

Counters for Min and Max Code Tree Occupancy already in percentage.

Max code occupancy can be used to detect busy hour.

 % _CAPACITY  DENOM_CODE 

 ITY CODE_CAPAC  RNC_113a

Code Blocking KPI

Page 49: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 49/94

49 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Code Blocking KPI

There are counters triggered when no codes of SF X (X=4,8,… 256) areavailable.

There is a counter incremented when the code is successfully allocated

The KPI is meaningful only for cell level and on hour basis 

%100

 _  _  _ 

 _  _  _  _ 

 _  _  _ 

256

4

256

4

 

 

 

 

 x

 x

SFx AVAILABLE CODES  NO

 ALLOTREE CODE SUCC  NBR

SFx AVAILABLE CODES  NO

Duration of SF 16 codes allocated for HSDPA

Page 50: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 50/94

50 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Duration of SF 16 codes allocated for HSDPA

The following counters are available to analyze code capacity allocations for 

HSDPA

M1000C248 Duration of HSDPA 5 Codes Reservation

M1000C249 Duration of HSDPA 6 Codes Reservation

M1000C250 Duration of HSDPA 7 Codes Reservation

M1000C251 Duration of HSDPA 8 Codes Reservation

M1000C252 Duration of HSDPA 9 Codes Reservation

M1000C253 Duration of HSDPA 10 Codes Reservation

M1000C254 Duration of HSDPA 11 Codes Reservation

M1000C255 Duration of HSDPA 12 Codes Reservation

M1000C256 Duration of HSDPA 13 Codes Reservation

M1000C257 Duration of HSDPA 14 Codes Reservation

M1000C258 Duration of HSDPA 15 Codes Reservation

1 second sampling interval

NBAP: Physical Shared channel reconfiguration

NBAP: Physical Shared channel reconfiguration Resp

Page 51: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 51/94

51 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

WBTS Baseband Resources

Counters

Page 52: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 52/94

52 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Counters

M5001 WBTS Baseband processing

M1005 L3 on IuB

M1005C0 : RL_STP_ATT_FOR_FIRST_RL

M1005C5 : RL_STP_SUCC_FOR_FIRST_RL

M1005C179: SETUP_FAIL_FIRST_RL_MISC

 _CE  MAX_AVAIL M5001C0

 _CE  MIN_AVAIL M5001C1

CE  AVE_AVAIL_  M5001C2

 E_DL MAX_USED_C  M5001C3

CE_UL MAX_USED_  M5001C4

 E_DL MIN_USED_C  M5001C5

CE_UL MIN_USED_  M5001C6 

 E_DL AVG_USED_C  M5001C7 

 E_UL AVG_USED_C  M5001C8

WBTS BB Capacity (Absolute # of CE) avg values

Page 53: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 53/94

53 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

WBTS BB Capacity (Absolute # of CE) avg values

Measurement: M5001 WBTS HW Resources

WBTS BB Capacity (Absolute # of CE) max values

Page 54: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 54/94

54 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

WBTS BB Capacity (Absolute # of CE) max values

Measurement: M5001 WBTS HW Resources

WBTS BB Capacity (Traffic Mix Analysis)

Page 55: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 55/94

55 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

WBTS BB Capacity (Traffic Mix Analysis)

Measurement: M1000 WBTS HW Resources

 Analyzing the service traffic mix which is supported by WBTS Base Band

Radio Link Setup fail due to WBTS BB Resources

Page 56: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 56/94

56 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Radio Link Setup fail due to WBTS BB Resources

Processing power limitation starts here

Please note: NSN Nokia WBTS maps WSP shortage to failure cause “MISC” 

L3 IuB measurements indicate resource blocking in WBTS baseband

M1005 Layer 3 on IuB interface

Page 57: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 57/94

57 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Measuring DSP resources in RNC

DSP Processing Resources in RNC

Page 58: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 58/94

58 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

DSP Processing Resources in RNC

Like WBTS, RNC allocates DSP resources to support calls.

DMCU-0

DMPG-1

DMPG-2

DMPG-0

DSP-0

DSP-7

DMPG-3

RNC Block Diagram

Page 59: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 59/94

59 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

RNC Block Diagram

CentralizedSPRM sw

Distributed

SPRM sw

not present in RNC2600

DSP Resource Measurements in RU10

Page 60: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 60/94

60 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

DSP Resource Measurements in RU10

The M613 measurements are no longer available in RU10

release• The M613 table is replaced with tables :

 – M609 DSP Service Statistics Measurement and

 – M615 DSP Resource Utilisation Measurements

•  Additionally there are two new tables : – M612 DSP State Change Measurements and

 – M617 DSP Load Measurements

M609Service Type

M615DSP Pool

M617DMPG level

M609 DSP Service Statistics Measurement

Page 61: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 61/94

61 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

M609 DSP Service Statistics Measurement

The DSP service statistics measurement provides information

on the resource allocation for each DSP service type• This measurement can be used, for example, to evaluate the

number of simultaneous HSDPA users in RNC level

The object of the measurement is one of the DSP service

names presented in table in the next slide (i.e. DSP reservationstatistics are shown for each service type separately)

M609 DSP Service Statistics Measurement

Page 62: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 62/94

62 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

M609 DSP Service Statistics MeasurementService name  Description 

 AMR Real time speech service.

CCH Common channel service.

HSCCH HSDPA common channel service.

 ALLHSDPA Sum of all HSDPA services. Includes both HSDPA NRT and HSDPA RT. HSUPA call does not update counters for this object even if it usesHSDPA in downlink.

HSDPA_NR HSDPA NRT service. HSUPA call does not update counters for this object even if it uses HSDPA in downlink.

HSDPA_RT HSDPA RT service. HSUPA call does not update counters for this object even if it uses HSDPA in downlink.

HS_16_H HSDPA 16 kbps uplink return channel, high HS-DSCH peak rate.

HS_16_L HSDPA 16 kbps uplink return channel, low HS-DSCH peak rate.

HS_64_H HSDPA 64 kbps uplink return channel, high HS-DSCH peak rate.

HS_64_L HSDPA 64 kbps uplink return channel, low HS-DSCH peak rate.

HS_128_H HSDPA 128 kbps uplink return channel, high HS-DSCH peak rate.

HS_128_L HSDPA 128 kbps uplink return channel, low HS-DSCH peak rate.

HS_384_H HSDPA 384 kbps uplink return channel, high HS-DSCH peak rate.

HS_384_L HSDPA 384 kbps uplink return channel, low HS-DSCH peak rate.

HSPASWI HSUPA and HSDPA service used temporarily during channel type switching. Includes both NRT and RT.

 ALLHSUPA Sum of all HSUPA services. Includes both HSUPA NRT and HSUPA RT.

HSUPA_NR HSUPA NRT service

HSUPA_RT HSUPA RT service

IPIUAMR IP based Iu interface real time speech service.

IPIURTCS IP based Iu interface real time circuit switched data service.

NRTPSR99 Rel99 non real time packet switched data service. Does not include HSDPA uplink return channel.

RTCSDATA Real time circuit switched data service.

RTHSDPA HSDPA real time packet switched data service. HSUPA call does not update counters for this object even if it uses HSDPA in downlink.

RTHSPASW Real-time HSUPA and HSDPA service used temporarily during channel type switching.

RTPSR99 Rel99 real time packed switched data service. Does not include HSDPA uplink return channel.

SL Signalling link service.

M609 DSP Service Statistics Measurement

Page 63: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 63/94

63 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

M609 DSP Service Statistics Measurement

M609C0 DSP_SERVICE_CURR_RES_ALLOC

• The current number of resources allocated for a specific DSP service type

• Counter incremented at the end of the measurement period

M609C1 DSP_SERVICE_PEAK_RES_ALLOC

• The peak number of resources allocated for a specific DSP service type

• Counter incremented at the end of the measurement period with the peak value

M609C2 DSP_SERVICE_SUCC_RES_ALLOC

• The total cumulative number of the resources allocated for a specific DSP servicetype

• Counter is updated when the DSP resource is successfully allocated

M609C3 DSP_SERVICE_FAIL_RES_ALLOC

• The number of DSP resource allocation failures

• Counter is updated when the DSP resource allocation failsM609C4 DSP_SERVICE_FAIL_RES_MODIFY

• The number of DSP resource modification failures

• Counter is updated when the DSP resource modification fails

Page 64: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 64/94

64 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

AAL2 Transport Resources

Page 65: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 65/94

65 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Time /sec

traffic rate [cells/sec.]

Configured PCR of VCC

VCC load estimated by CAC

Shared HSDPA AAL2 allocation size 

= sampled values

1 23

Real traffic load of ATM VCC

AAL2 Path Related Counters (M550)

Each sample for the total reserved capacity (blue line in figure) is summed together for the whole measurementperiod. The result is show in counters:

• SUM_RESERVED_CELL_RATE (M550C1)

• NBR_SAMPLES (M550C7)

The same is done for the shared HSDPA allocation size (grey line in figure) and the related counter is:

• SHARED_HSDPA_AAL2_ALLOCATION (M550C16)

1

Page 66: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 66/94

66 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Time /sec

traffic rate [cells/sec.]

Configured PCR of VCC

VCC load estimated by CAC

Shared HSDPA AAL2 allocation size 

= sampled values

1 23

Real traffic load of ATM VCC

The peak and minimum sampled values for measurement period update the following counters:

MIN_RESERVED_CELL_RATE (M550C2)

MAX_RESERVED_CELL_RATE (M550C3)

2

AAL2 Path Related Counters (M550)

Page 67: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 67/94

67 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Time /sec

traffic rate [cells/sec.]

Configured PCR of VCC

VCC load estimated by CAC

Shared HSDPA AAL2 allocation size 

= sampled values

1 23

Real traffic load of ATM VCC

The peak cell rate of AAL2 path is given as a reference in counter:

 AAL2_PATH_GUAR_CELL_RATE (M550C0)

3

AAL2 Path Related Counters (M550)

Page 68: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 68/94

68 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

M550 Examples

M550 – CAC AAL2 Path Measurements

Page 69: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 69/94

69 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

M550   CAC AAL2 Path Measurements2 VCs with 8250 cells per second per VC on 1 IMA group

max

min

M550 measurement to track allocation of AAL2 bandwidth in a VC c

M550 Path CAC (1 IMA Group, 2 VCs)

Page 70: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 70/94

70 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

( p, )

Measurement: M550 User Plane CAC Path

Reserved Bandwidth

Free Bandwidth

Configured Bandwidth

M550 CAC Path Measurements (IuR interface, 1VC)

Page 71: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 71/94

71 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

( , )

M550 AAL2 Path CAC Resource Measurements

Page 72: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 72/94

72 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

M550 Counters (AAL2 Connections allocation) :

• M550C4 SUM_AAL2_CONNECTIONS

• M550C5 MIN_AAL2_CONNECTIONS

• M550C6 MAX_AAL2_CONNECTIONS

• M550C11 SUM_AAL2_CONNECTIONS_HSDPA

• M550C12 MIN_AAL2_CONNECTION_HSDPA• M550C13 MAX_AAL2_CONNECTIONS_HSDPA

• M550C7 NBR_SAMPLES (per measurement interval)

Numer of Channel Ids required

on IuB interface for specific service

Service Type NBR of CIds

RRC 1

 AMR, Video call,

NRT Packet Call

(Rel99)

2

HSDPA,

HSPA call

3

M550  – CAC AAL2 Path Measurements (Channel Ids)

Page 73: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 73/94

73 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

2 VCs on 1 IMA group

Less than 248 Channel Identifiers used in each VC

(Rel99 call needs 2 CIds, HSDPA call needs 3 CIds on IuB interface)

M550 measurement to track allocation of AAL2 Channel Ids in a VC

Page 74: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 74/94

74 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

M1000 power counters not directly related tocapacity

Page 75: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 75/94

75 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

In Uplink:

• load estimation, Lrt&Lnrt, allows better understanding of the loadingstatus of a cell than power measurements since there’s no dependencyon PrxNoise level

• load measurements are more appropriate for Busy Hours detection

In Downlink:

• power measurements provide proper indication of cell load

• however, PtxRT&NRT measurements allow distinction of RT and NRTtraffic

• both power measurements might be used for Busy Hours detection

DL Radio Link Power Measurements, RT & NRT 

Ptx RT & Ptx NRT calculation

Page 76: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 76/94

76 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

BTS periodically (typically every 500ms) reports the transmittedpower, P tx_average , per every radio link by using a dedicated NBAP-d /RADIO LINK MEASUREMENT REPORT-message.

RNC (AC/PS) is able to identify to service (RT or NRT, or multi) thePtx_average values belongs.

Ptx_RT & Ptx_NRT calculation

NBAP-D: DEDICATED MEASUREMENTREPORT

PtxAverage

Value mapping for DL code power measurements

Page 77: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 77/94

77 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Value mapping according 3GPP TS 25.133

CRNC-CC-IDs-InformationItem-RL-

MeasurementsReport

- extension flag: 0

- preamble: 0

- cRNC-CommunicationContextID: 1462

- length (in bits): 01

- padding: 0000

- contents: 05 B6

reported-RL-Information-RL-Meas-Rep

- length (in bits): 00000

Reported-RL-InformationItem-RL-Meas-Rep- extension flag: 0

- preamble: 00

- rL-ID: 1

- contents (in bits): 00001

measurement-1-Avail-Ind

- extension flag: 0

- choice index: 0

measurement-Available

- extension flag: 0

- average-DL-TransmittedPower: 50

NetHawk IuB log

New important RU10 counters

Page 78: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 78/94

78 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

• M1000C353-C362 for Transmitted Code Power in absolute units,classification depends on cell size setting via PRACHDelayRange

Classification example: Code power 

Page 79: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 79/94

79 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Counter #  Counter name/Class  PRACHDelayRangesetting (5 km range):

PRACHDelayRang

e setting (10 kmrange):

PRACHDelayRange

setting (20 kmrange):

PRACHDelayRange

setting (60 kmrange):

PRACHDelayRange

setting (180 kmrange):

M1000C353 TX_CODE_PWR_CLASS_ 

0

0<=TxCdPwr<5dBm 0<=TxCdPwr<5 0<=TxCdPwr<5 0<=TxCdPwr<5 0<=TxCdPwr<6

M1000C354 TX_CODE_PWR_CLASS_ 1

5<=TxCdPwr<10dBm 5<=TxCdPwr<10 5<=TxCdPwr<10 5<=TxCdPwr<10 6<=TxCdPwr<12

M1000C355 TX_CODE_PWR_CLASS_ 2

10<=TxCdPwr<15dBm 10<=TxCdPwr<15 10<=TxCdPwr<15 10<=TxCdPwr<15 12<=TxCdPwr<17

M1000C356 TX_CODE_PWR_CLASS_ 3

15<=TxCdPwr<19dBm 15<=TxCdPwr<19 15<=TxCdPwr<20 15<=TxCdPwr<20 17<=TxCdPwr<22

M1000C357 TX_CODE_PWR_CLASS_ 4

19<=TxCdPwr<23dBm 19<=TxCdPwr<23 20<=TxCdPwr<24 20<=TxCdPwr<25 22<=TxCdPwr<27

M1000C358 TX_CODE_PWR_CLASS_ 5

23<=TxCdPwr<27dBm 23<=TxCdPwr<27 24<=TxCdPwr<28 25<=TxCdPwr<30 27<=TxCdPwr<32

M1000C359 TX_CODE_PWR_CLASS_ 6

27<=TxCdPwr<30dBm 27<=TxCdPwr<31 28<=TxCdPwr<32 30<=TxCdPwr<34 32<=TxCdPwr<36

M1000C360 TX_CODE_PWR_CLASS_ 7

30<=TxCdPwr<33dBm 31<=TxCdPwr<35 32<=TxCdPwr<36 34<=TxCdPwr<38 36<=TxCdPwr<40

M1000C361 TX_CODE_PWR_CLASS_ 8

33<=TxCdPwr<36dBm 35<=TxCdPwr<38 36<=TxCdPwr<40 38<=TxCdPwr<42 40<=TxCdPwr<44

M1000C362 TX_CODE_PWR_CLASS_ 9

36<=TxCdPwr 38<=TxCdPwr 40<=TxCdPwr 42<=TxCdPwr 44<=TxCdPwr 

Ptx RT & Ptx NRT measurements

Page 80: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 80/94

80 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Ptx_RT & Ptx_NRT measurements

The counter for specific CLASS is updated at the same time as AVE PTXTOT

CLASS X counter i.e. when Radio Resource Indication message arrivesWhen the PtxTotal value is inside CLASS X range, the AVE_PTXRT_CLASS_X and AVE_PTXNRT_CLASS_X counters are updated with the estimated PTX RTand NRT values

This counter is a sum over a measurement period divided by a denominator, andit is an average value.

Real dBm value is obtained when divided by 100

Ptx CCHs

PTXRT_DENOM_X and

PTXNRT_DENOM_X are

incremented by 1 at the same time

as PTXTOT_DENOM_X is updated,

when Radio Resource Indication

message arrives.

The KPI is meaningful only for celllevel and on hour basis

Average DL Power for RT and NRT KPIs

Page 81: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 81/94

81 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

dBm

i

i

4

0OM_iPTX_RT_DEN

4

0OM_iPTX_RT_DEN _CLASS_iAVE_PTX_RT

 _RT AVE_DL_PTX

dBm

i

i

4

0 NOM_iPTX_NRT_DE

4

0 NOM_iPTX_NRT_DET_CLASS_iAVE_PTX_NR 

 _NRT AVE_DL_PTX

The KPI is meaningful only for cell level and on hour basis

 Average done in Watt!

 Average done in Watt!

Load Based AMR Codec Mode Selection M1000

Page 82: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 82/94

82 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Load Based AMR Codec Mode Selection M1000

Threee different Load thresholds monitored by RNC on 10s intervals : Tx Power (e.g. Non Controllable Tx

Power) usage, DL Channelisation Code usage and Iub transmission capacity

Parameters below define 3 thresholds (under load, target load and over load) which are also used to

increment different counters as on next slide:

WCEL: AMRUnderTxNC, AMRUnderSC, AMRUnderTransmission

WCEL: AMRTargetTxNC, AMRTargetSC, AMRTargetTransmission

WCEL: AMROverTxNC, AMROverSC, AMROverTransmission

Load

Maximum load

Overload threshold

Target threshold

Underload threshold

If at least one load indicator exceeds its

own overload threshold, then the AMRcodec mode set {12.2, 7.95, 5.9, 4.75} is

downgraded to the mode set {5.9, 4.75}

If at least one load indicator exceeds its

own overload threshold, then the AMRcodec mode set {12.2, 7.95, 5.9, 4.75} is

downgraded to the mode set {5.9, 4.75}

If no load indicator exceeds the underload

threshold, then the AMR codec mode set

{5.9, 4.75} is upgraded to the mode set

{12.2, 7.95, 5.9, 4.75}

If no load indicator exceeds the underload

threshold, then the AMR codec mode set

{5.9, 4.75} is upgraded to the mode set

{12.2, 7.95, 5.9, 4.75}

New calls use low codec modesNew calls use low codec modes

New calls use high codec modesNew calls use high codec modes

Counters for Load Based AMR Codec Mode Selection

Page 83: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 83/94

83 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Load

Maximum load

Overload threshold

Target threshold

Underload threshold

M1000C289 AMR_TXPOW_LOAD_BELOW_TARGETThe number of times when (TxPower) < (target load threshold, AMRTargetTxNC)

M1000C290 AMR_TXPOW_LOAD_OVER_TARGETThe number of times when (TxPower) >= (target load threshold, AMRTargetTxNC) 

M1000C291 AMR_TXPOW_LOAD_OVERLOADThe number of times when (TxPower) >= (over load threshold, AMROverTxNC)

M1000C288AMR_TXPOW_LOAD_UNDERLOADThe number of times when (TxPower) < (under load threshold, AMRUnderTxNC)

• Same set of counters exists for Code and transmission resources:

• Code: M1000C292-295

• Transmission: M1000C296-299

• M1002C561-C562 count LC proposals to use lower codec on

SF128/256

Page 84: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 84/94

84 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Measuring Radio Resource Management Features

Load Based AMR Codec Mode Selection M1002

Page 85: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 85/94

85 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

• M1002C563-567 provide measurements for up/downgrade successes and

failures

• Triggered only in the cell that triggered the changeUE Node B RNC

NBAP: RL Reconfiguration Prepare

BRM/UER proposes AMR bit rate change

 ALCAP:ERQ

NBAP: RL Reconfiguration Ready

 ALCAP:ECF

NBAP: Radio Link Reconfiguration Commit

[DCH] RRC: Transport Channel Reconfiguration

Complete

MGW

[DCH] RRC: Transport Channel Reconfiguration

Rate Control

Rate Control ACK

M1002 counters

triggered here

Tracking RRM Features

Page 86: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 86/94

86 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Counters per RRM Feature available to check the performance

• Radio Bearer downgrades

 – due to Throughput based Optimisation feature

 – due to Pre-Emption

• Radio Bearer releases – due to Throughput based Optimisation feature

 – due to Pre-Emption

• Overload Control – Transport Format Combination Control (TFCC)

• Dynamic Link Optmisation (DyLO)

Radio Bearer downgrade causes

Page 87: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 87/94

87 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

RB downgrade causes

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

time (hours on 23.01.2008)

    n    u

    m     b    e    r

DyLO TFCC Pre-Emp_BTS_BB

Matching RL setup failure rate

Radio Bearer downgrade / release (Counters)

Page 88: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 88/94

88 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

M1000C150 Radio Bearer downgrade by Pre-Empt ion due to AAL2 congestion

M1000C151 Radio Bearer downgrade by Pre-Emption due to WBTS congestion

M1000C152 Radio Bearer downgrade by Pre-Empt ion due to Interference congestion

M1000C153 Radio Bearer downgrade by Pre-Empt ion due to Spreading Code congestion

M1000C142 Radio Bearer downgrade by Enhanced Overload Cont rol using TFCsubset

M1000C154 Radio Bearer downgrade by Enhanced Overload Control using RL reconfigurations

M1000C162 Radio Bearer release by Pre-Empt ion due to AAL2 congestion

M1000C163 Radio Bearer release by Pre-Empt ion due to WBTS congestionM1000C164 Radio Bearer release by Pre-Empt ion due to Interference congestion

M1000C165 Radio Bearer release by Pre-Empt ion due to Spreading Code congestion

UTRAN Capacity Resource constraints

Page 89: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 89/94

89 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

The following UTRAN capacity resource constraints can trigger specific features tocope with overload

• Downlink power 

• Uplink interference

• Downlink spreading code

• BTS HW (WSP)

• Iub AAL2 transmission

Priority based Scheduling and overload control feature counters:M1000C145 Radio Bearer dow ngrade by PBS due to AAL2 congest ion

M1000C146 Radio Bearer donw grade by PBS due to WBTS congest ion

M1000C147 Radio Bearer dow ngrade by PBS due to interference congestion

M1000C148 Radio Bearer dow ngrade by PBS due to Spreading Code congestion

M1000C142 Radio Bearer downgrade by Enhanced Overload Cont rol using TFCsubset

M1000C154 Radio Bearer dow ngrade by Enhanced Overload Control using RL reconfigurations

M1000C157 Radio Bearer release by PBS due t o AAL2 congest ion

M1000C158 Radio Bearer release by PBS due t o WBTS congest ion

M1000C159 Radio Bearer release by PBS due t o Interference congest ion

M1000C160 Radio Bearer release by PBS due t o Spreading Code congestion

Modification of user bitrates with RL Reconfiguration

Page 90: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 90/94

90 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

NBAP: Radio Link Reconfiguration Prepare

NBAP: Radio Link Reconfiguration Ready

NBAP: Radio Link Reconfiguration Commit

 AAL2 resource change req

 AAL2 resource change resp

RRC: Radio Bearer Reconfiguration

RRC: Radio Bearer Reconfiguration Complete

DCH downgrade

 AAL2 CAC

M1005C133 RL RECONF SYNCH FOR DCH MOD DUE TO DYN LINK OPT ON SRNC

M1005C142 RL RECONF SYNCH FOR DCH MOD ON SRNC DUE TO CM

M1005C153 RL RECONF PREP SYNCH FOR DCH DEL DUE TO PRIORITY BASED SCHEDULING

M1005C154 RL RECONF PREP SYNCH FOR DCH DELETION DUE TO PRE-EMPTIONM1005C156 RL RECONF PREP SYNCH FOR DCH DEL DUE ENHANCED OVERLOAD CONTROL

M1005C158 RL RECONF PREP SYNCH FOR DCH MOD DUE PBSDOWNGRADINGM1005C159 RL RECONF PREP SYNCH FOR DCH MOD DUE PRE-EMPTION DOWNGRADING

M1005C239 RL RECONF PREP SYNCH FOR DCH MOD DUE THROUGHPUT BASED OPTIMISATION

M1005C240 RL RECONF PREP SYNCH FOR DCH DEL DUE THROUGHPUT BASED OPTIMISATION

Feature trigger 

Page 91: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 91/94

91 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

Cell Availability

Cell Availability

Page 92: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 92/94

92 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

M1000C178 AVAILABILITY WCELL IN WORKING STATE

• # of samples when WCELL is in WO State. Counter M1000C180 is always updated along with this counter 

• Counter is updated with the value 1 once in approx. 5 seconds when the WCELL is in WO State

M1000C180 AVAILABILITY WCELL EXIST IN RNW DATABASE

• # of samples when WCELL is configured in the database. This counter is used as a denominator for cell availability calculation

• Counter is updated with the value 1 one in approx. 5 seconds when the WCELL is configured in the radio network database

It is important to make sure that cells within the cluster are in normalworking order. Missing cells may have negative impact to the analysisprocess and optimisation decisions

Prior to RAS51, Cell availability counters was based on monitoring theCode tree. From RAS51 onwards, the Cell Availability counters are basedon availability of the WCELs under a Controlling RNC.

RNC_183c Cell Availability KPI counts Cell availability from user point of 

view

 DB RNW  IN  EXIST WCELL AVAIL sum

STATE WO IN WCELL AVAIL sumty AvailabiliCell 

 _  _  _  _  _ 

 _  _  _  _ *100 _ 

Cell Availability

Page 93: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 93/94

93 © Nokia Siemens Networks RANKPI /BAs / 05.05.2009 RN31584EN10GLA0

There is also Optional Cell availability KPI (RAN5.1), which counts Cell Availability from network point of view. Situation where WCELL is blockedby User are excluded from the formula.

RNC_727a Cell Availability, excluding blocked by user state (BLU) KPICounts Cell availability from network point of view

  

  

USER BY  BLOCKEDWCELL AVAIL DB RNW  IN  EXIST WCELL AVAIL sum

STATE WO IN WCELL AVAIL sum

 _  _  _  _  _  _  _  _  _ 

 _  _  _  _ *100U_statecluding_BLability_exCell_Avail

M1000C179 AVAILABILITY WCELL BLOCKED BY USER

• # of samples when WCELL is BLU State. Counter M1000C180 is always updated along with this counter 

• Counter is updated with the value 1 once in approx. 5 seconds when the WCELL is in BLU state

Page 94: Rn31584en10gla0 Utran Capacity

7/28/2019 Rn31584en10gla0 Utran Capacity

http://slidepdf.com/reader/full/rn31584en10gla0-utran-capacity 94/94

Thank You !