rob 1 intro hill cs tunes - the cockcroft institute · nominal lhc parameters beam injection energy...

101
$ %%!38 #0'()3 $ #()'<$'$ #(*)/) '$')9%%!3A$'$99/

Upload: others

Post on 10-Sep-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

≈ ≈ 40 AE

Nominal LHC parametersBeam injection energy (TeV) 0.45Beam energy (TeV) 7.0Number of particles per bunch 1.15 x 1011

Number of bunches per beam 2808Max stored beam energy (MJ) 362Norm transverse emittance ( m rad) 3.75Colliding beam size ( m) 16Bunch length at 7 TeV (cm) 7.55

Ktr =3

2nRT

d

dtm�x = F (�x, �x, t)

F = −kx

F = −kx

md

dtx = −kx

d2x

dt2= − k

mx

x(t) = x0 sin(ωt+ φ0) ω2 =k

m

md

dtx = −mω2x

x(t) = c1 sin(ωt) + c2 cos(ωt)

x(t) = c1 cosh(ωt) + c2 sinh(ωt)

d2x

dt2= +

k

mx

F = +kx

ω2 =k

m

�F = q( �E + �x× �B)

dxi

dt=

∂H

∂pi

dpidt

= −∂H

∂xi

H =p2x2m

+1

2mω2x2

dx

dt=

pxm

dpxdt

= −mω2x

H = T + V

dH

dt=

∂H

∂x

dx

dt+

∂H

∂px

dpxdt

+∂H

∂t

dH

dt=

∂H

∂x

∂H

dpx− ∂H

∂px

∂H

∂x+

∂H

∂t

dH

dt=

∂H

∂t= 0

x(s)′′ +(k(s) +

1

ρ(s)2

)x(s) = 0

x′′ +(k +

1

ρ2

)x = 0

z′′ − kz = 0

d2u

ds2+Ku(x) = 0

�F = q( �E + �x× �B)

FB = q × 3× 108[m/s]× 1[V s/m2]

B = 1T

FB = q × 300[MV/m]

circular coordinate system

ρ

s

θ

z

FB = qvB

F =γmv2

ρ

qB =γmv

ρBρ =

p

q

circular coordinate system

ρ

s

θ

zBρ =p

q

Bρ =p

q→ 1

ρ=

qB

p

B = 8.3T

p = 7000 GeV/c

1

ρ= q

8.3[Vs/m2]

7000× 109[eV/c]=

8.3 s× 3× 108[m/s]

7000× 109[m2]

1

ρ= 0.33

8.3

7000[/m] = 3.9× 10−4[/m]

E0 >> mc2

Bρ[Tm] =E0[eV]

c[m/s]

k0 =q

p0B

Bρ[Tm] = 3.3 p0[GeV/c]

Bz(x) = Bz0 +dBz

dxx+

1

2

d2Bz

dx2x2 +

1

3!

d3Bz

dx3x3 + ...

e

pBz(x) =

e

pBz0 +

e

p

dBz

dxx+

e

p

1

2

d2Bz

dx2x2 +

e

p

1

3!

d3Bz

dx3x3 + ...

e

pBz(x) =

1

ρ+ kx+

1

2mx2 +

1

3!ox3 + ...

circular coordinate system

ρ

s

θ

z

r = ρ+ x

�v = �R

�v = r�x+ r�x+ z�z

�v = r�x+ rθ�s+ z�z

vx = r vy = z vs = rθ

�x = θ�s �s = −θ�x

y s

r = ρ+ x

rθ = vs

d�p

dt= e�v × �B

d�p

dt=

d

dtmγ �R = mγ �R

r − rθ2 = −eBy

mγvs z =

eBx

mγvs

d�p

dt= mγ(r�x+ 2rθ�s+ rθ�s− rθ2�x+ z�z)

ds

dt= vs

ds

dt= vs

ρ

ρ+ x

r =d2r

dt2=

(vsρ

ρ+ x

)2d2x

ds2

r =dr

dt=

vsρ

ρ+ x

dr

ds=

vsρ

ρ+ x

dx

ds

z =

(vsρ

ρ+ x

)2d2z

ds2

r = ρ+ x

d2z

ds2=

eBx

p

d2x

ds2+

x

ρ2= −e(Bz −Bz0)

p

ρ+ x

)2d2x

ds2− 1

ρ+ x= − eBy

mγvs

rθ = vs ΔS = ρΔθ

p = mγv ∼ mγvs

x+ ρ

)2

∼ 1− 2x

ρ+ ...

1

ρ+ x∼ 1

ρ− x

ρ2+ ...

d2z

ds2− g

Bρz = 0

d2x

ds2+

(g

Bρ+

1

ρ2

)x = 0

�B = Bz0�z + g(z�x+ x�z)

d2z

ds2− g

Bρz = 0

d2x

ds2+

(g

Bρ+

1

ρ2

)x = 0

d2u

ds2+Ku(x) = 0

ρ = const

k = constx(s)′′ +(k(s) +

1

ρ(s)2

)x(s) = 0

d2u

ds2+Ku(x) = 0

B × leff =

∫ lmag

0

Bds

x′′ +K · x = 0

x(s) = c1 cos(√Ks) + c2 sin(

√Ks)

x′(s) = −c1ω sin(√Ks) + c2ω cos(

√Ks)

x′′(s) = −c1ω2 cos(

√Ks)− c2ω

2 sin(√Ks) = −ω2x(s)

x′′ +(k +

1

ρ2

)x = 0

z′′ − kz = 0

K = k K = k +1

ρ2

K > 0√K = ω

x(0) = x0 → c1 = x0

x′(0) = x′0 → c2 =

x′0√K

K > 0 x(s) = x0 cos(√Ks) + x′

0

1√K

sin(√Ks)

x′(s) = −x0

√K sin(

√Ks) + x′

0 cos(√Ks)

√K = ω

(xx′

)1

= Mquad ·(

xx′

)0

Mfoc quad =

(cos(

√Ks) 1√

Ksin(

√Ks)

−√K sin(

√Ks) cos(

√Ks)

)

s = s0s = s1

Mdefoc quad =

(cosh(

√|K|s) 1√|K| sinh(

√|K|s)+√|K| sinh(√|K|s) cosh(

√|K|s)

)

x′′ −K · x = 0

f(x) = cosh(x) f ′(x) = sinh(x)

x(s) = c1 cosh(√

|K|s) + c2 sinh(√

|K|s)s = s1s = 0

x′′ +(k +

1

ρ2

)x = 0

z′′ − kz = 0

e

p

dBz

dx=

g

Bρ= k

x(s) = x0 + x′0 · L

x′(s) = x′0

Mdrift =

(1 L0 1

)

Mfoc quad =

(cos(

√Ks) 1√

Ksin(

√Ks)

−√K sin(

√Ks) cos(

√Ks)

)

Mthin =

(1 0− 1

f 1

) 1

f= Klq

Mthin =

(1 0− 1

f 1

)

Mfoc quad =

(cos(

√Ks) 1√

Ksin(

√Ks)

−√K sin(

√Ks) cos(

√Ks)

)

Mdefoc quad =

(cosh(

√|K|s) 1√|K| sinh(

√|K|s)+√|K| sinh(√|K|s) cosh(

√|K|s)

)

Mdrift =

(1 L0 1

)

Mcell = MQF ·Mbend ·MQD ·Mdrift ·MQF(xx′

)s=1

= M(s = 1, s = 0) ·(

xx′

)s=0

Q

Mthin =

(1 0− 1

f 1

)

Mfoc quad =

(cos(

√Ks) 1√

Ksin(

√Ks)

−√K sin(

√Ks) cos(

√Ks)

)

Mdefoc quad =

(cosh(

√|K|s) 1√|K| sinh(

√|K|s)+√|K| sinh(√|K|s) cosh(

√|K|s)

)

Mdrift =

(1 L0 1

)

Mfoc quad =

(cos(

√Ks) 1√

Ksin(

√Ks)

−√K sin(

√Ks) cos(

√Ks)

)

K =1

ρ2

θ = l/ρ

1

f=

1

f1+

1

f2− d

f1f2

X(s1) = M(s1|s0)X(s0)

M(s2|s0) = M(s2|s1)M(s1|s0)

M(s+ C|s)

M(s+ C|s)N

20 25[ km ]

IP6 IP7 IP8 IP

Horizontal trajectory

Injected beam + beam after one turn on screen

k(s+ L) = k(s)

x(s)′′ +(k(s) +

1

ρ(s)2

)x(s) = 0

x(s) =√ε β(s) cos(ψ(s) + ψ0)

  

β(s+ L) = β(s)

1

2(ββ′′ − 1

2β′2)− β2ψ2 + β2k = 0

β′ψ′ + βψ′′ = 0

β′ψ′ + βψ′′ = (βψ′)′

βψ′ = 1

ψ(s) =

∫ s

0

ds

β(s)

1

2ββ′′ − 1

4β′2 + β2k = 1

α(s) = −1

2

dβ(s)

dsγ(s) =

1 + α2(s)

β(s)

x(s) =√

ε β(s) cos(ψ(s) + ψ0)

x′(s) = −√ε√β

[α(s) cos(ψ(s) + ψ0) + sin(ψ(s) + ψ0)

]

βx′ + αx = −√

εβ sin(ψ + ψ0)

x2 + (βx′ + αx)2 = εβ

γx2 + 2αxx′ + βx′2 = ε

0

γx2 + 2αxx′ + βx′2 = ε

γx2 + 2αxx′ + βx′2 = ε

A = πε

= 55 cm = 16 m; D = 0m

R. Tomàs

β(0) = β0 α(0) = α0 ψ(0) = 0

c1 =x0√β0

c2 =√

β0x′0 +

α0√β0

x0

x(s) =

√β(s)

β0[cosψ(s) + α0 sinψ(s)]]x0 +

√β0β(s)x

′0 sinψ(s)

x(s) =

√β(s)

β0[cosψ(s) + α0 sinψ(s)]]x0 +

√β0β(s)x

′0 sinψ(s)

(x(s1)x′(s1)

)= M(s1|s0)

(x(s0)x′(s0)

)

ψ = ψ(s1)− ψ(s0)

M(s+ L|s) =(

cosΨ + α sinΨ β sinΨ−γ sinΨ cosΨ− α sinΨ

)

ψ1 − ψ0 = Ψ

β1 = β0 = β α1 = α0 = α γ1 = γ0 = γ

γ(s) =1 + α2(s)

β(s)

Ψ = arccos

(m11 +m22

2

)

β =m12

sinΨα =

m11 −m22

2 sinΨγ = − m21

sinΨ

|TrM | ≤ 2

M =

(m11 m12

m21 m22

)

γ(s) =1 + α2(s)

β(s)

M(s′ + C|s′) = M(s′|s) ·M(s+ C|s) ·M−1(s′|s)

M =

(m11 m12

m21 m22

)

⎛⎝ α1

β1

γ1

⎞⎠ =

⎛⎝ m11m22 +m12m21 −m11m21 −m12m22

−2m11m12 m211 m2

12

−2m21m22 m221 m2

22

⎞⎠

⎛⎝ α0

β0

γ0

⎞⎠

M(s′ + C|s′) = M(s′|s) ·M(s+ C|s) ·M−1(s′|s)

M(s+ L|s) =(

cosΨ + α sinΨ β sinΨ−γ sinΨ cosΨ− α sinΨ

)

Mdrift =

(1 L0 1

)

m11 = 1 m12 = L m21 = 0 m22 = 1

α1 = α0 − γ0L

β1 = β0 − 2α0L+ γ0L2

γ1 = γ0

x(L) = x0 + Lx′0

x′(L) = x′0

Ψ =

∫ s+L

s

ds

β(s)

ν =Ψ

2π=

∫ s+C

s

ds

β(s)