robert a. schoonheydt center for surface chemistry and catalysis k.u. leuven

56
Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven Kasteelpark Arenberg 23, 3001 Leuven Belgium [email protected] ULTRAVIOLET-VISIBLE-NEAR INFRARED (UV-VIS-NIR) SPECTROSCOPY ELECTRON PARAMAGNETIC RESONANCE (EPR) or ELECTRON SPIN RESONANCE (ESR) OF ZEOLITES

Upload: baris

Post on 10-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

ULTRAVIOLET-VISIBLE-NEAR INFRARED (UV-VIS-NIR) SPECTROSCOPY ELECTRON PARAMAGNETIC RESONANCE (EPR) or ELECTRON SPIN RESONANCE (ESR) OF ZEOLITES. Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven Kasteelpark Arenberg 23, 3001 Leuven Belgium - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Robert A. SCHOONHEYDT

Center for Surface Chemistry and CatalysisK.U. LeuvenKasteelpark Arenberg 23, 3001 LeuvenBelgium

[email protected]

•ULTRAVIOLET-VISIBLE-NEAR INFRARED (UV-VIS-NIR) SPECTROSCOPY

•ELECTRON PARAMAGNETIC RESONANCE (EPR) or ELECTRON SPIN RESONANCE (ESR)

OF ZEOLITES

Page 2: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

OUTLINE

1. Principles of UV-VIS-NIR- physical basis- methodology

2. In-situ UV-VIS3. Optical and fluorescence microscopies4. Principles of EPR

- physical basis- methodology

5. In-situ EPR6. Pulse EPR7. Coordination of transition metal ions (TMI) 8. Conclusions

Page 3: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

UV-VIS-NIR

Wavelength nm 200 375 750 2500

Wavenumber cm-1 50000 26664 13300 4000

Frequency Hz 1.5x1015 8x1014 4x1014 1.2x1014

UV VISIBLE NIR

Page 4: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

What do we measure ?

Molecules: unsaturated

* and n * transitionsEnergy level diagramme

Bonding

Bonding

Nonbonding

Antibonding

Antibonding

*

π*

π

π

n

*

*

π π

*

n

π *

Page 5: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Transitions Metal Ions

d – d transitionsLigand- to Metal Charge Transfer(LMCT)

Page 6: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Transitions Metal Ions

d – d transitionsMetal - to Ligand Charge Transfer(MLCT)example: [Cr(benzene)2]+

Page 7: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

UV - VIS - NIR: Methodology

Powdered samples Diffuse Reflectance Spectroscopy (DRS)Principle

x

I

JI + I

J + J

I0

x

J0

Page 8: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Ideal Case: Kubelka – Munck formula

kc

S

K

R

RRF

2

1 2

K : Kubelka-Munck absorption coefficientS : Kubelka-Munck scattering coefficient

scattering intensity from infinitely thick sample

scattering intensity from infinitely thick white standardR∞ =

Page 9: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Conditions for use of K M-formula

•diffuse monochromatic irradiation•isotropic scattering•infinite sample thickness•low concentration of absorbing centers•uniform distribution of absorbing centers•absence of fluorescence

Page 10: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

UV – VIS – NIR: instrumentation

•Every compagny has a UV-VIS-NIR spectrophotometer withtwo sources ( Nerst glower, D2 lamp) and two detectors (PbS, PM).

•Integration sphere for DRS

•White standards: MgO, BaSO4, HALON.

Page 11: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

IN – SITU UV-VIS-NIR

Most sensitive region: VISIBLE low background sensitive detection: PM

Praying Mantis Optical fibre technology

Gas inlet

Gas outlet

h

Optical fiber

GCComputer

Multi-channeldetector

UV-vis sourceOven

Reactor

Catalyst bed

Quartz wool

High-temp. probeFlow in

Flow out

Page 12: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

IN – SITU UV-VIS-NIR

Examples: d d (pseudo)tetrahedral Co2+

O Cr6+ charge transfer (chromate, dichromate)

O Cu2+ bis(µ-oxo)dicopper

Page 13: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

AlPO4-5AFI

OO

O OO OAl AlP

OO OO

-1 +1 -1

OO

O OO OAlP

OO OO

-2 +1 -1

Co2+Isomorphoussubstitution

Co

Microporous crystalline metal-containingAluminiumphosphates:isomorphous substitution

Page 14: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

500 1000 1500 2000 2500

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

24u

16u

0u

25°c

synthesis CoAPO-5

abso

rban

ce

wavelength

Abs

orba

nce

Wavelength (nm)

CoAPO-5: in situ synthesis

Synthesis time

Page 15: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

CoAPO-5 synthesis: spectra at RT

Page 16: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Chromate reduction with CO in zeolite Y

Page 17: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

10000 20000 30000 40000 50000

CZ-31-0.16 CZ-31-0.34 CZ-31-0.58

abso

rptio

n (a

.u.)

wavenumber (cm-1)

bis( µ-oxo )dicopper in ZSM-5

Page 18: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

OPTICAL and FLUORESCENCE MICROSCOPIES

Page 19: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Intergrowth structure of ZSM-5

Accessibility?

Page 20: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Applications

Oligomerization of furfurylalcohol in ZSM-5 and mordenite

Page 21: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Applications

Oligomerization of styrene in ZSM-5

R R

R

R

R R

R R

R R

H++

A

Trimetric ologomers

E

+

+ +

B

B D

Page 22: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

oligomerization of styrene: absorption spectra

Page 23: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Decomposition of template molecules in CrAPO-5

Page 24: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Decomposition of template molecules and intergrowth structures

CrAPO-5 SAPO-34 SAPO-5 ZSM-5

Page 25: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

ELECTRON PARAMAGNETIC RESONANCE

magnetic moment of the unpaired elelctron

= dimensionless spin angular momentum vector of the electronS2 = s(s+1) s = ½SZ =ms ms = 1/2, -1/2

= Borhmagneton

g, spectroscopic splitting factor = 2.0023ħ = h/2πγ = gyromagnetic ratio

S

zShzSgzµ

ShSgµ

2

2

124102741,92

JTxem

he

Page 26: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

ZEEMAN INTERACTIONZEEMAN INTERACTION

EZ = -µZB0 = gβB0ms

ms = ½: 1/2g βB0

ms = -½: -1/2g βB0

Resonance condition: hν = E = gβB0

ms = 1/2

ms = - 1/2

E = gβB0

E

B0

Page 27: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

EPR: powder spectraEPR: powder spectra

All possible orientations of the spins Each orientation has its own resonance condition Spectra are superpositions of all those individual spectra

isotropic

axially symmetric

orthorhombic

Page 28: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

EPR: Measurement of g valuesEPR: Measurement of g values

measurement at constant frequency and varying magnetic field

g = = 7,145x10-9 ν/B0 to be measured with gaussmeter

to be read from microwave bridge

reference: DPPH gr = 2,0036 (diphenylpicrylhydrazine)

0B

Bgg r

r

Band name band range, GHz

L 1.5S 2.6-4C 4-6X 8.2-12.4K 18-26.5Q 33-50V 50-75W 75-100

0B

h

rrBgBgh

0

Page 29: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Resonance cavities

EPR: METHODOLOGIES

Page 30: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

-Hyperfine interaction: unpaired electron-nuclear spin: I mI = I, I - 1,…..,- I each energy level of the electron is split according to m I

selection rule for EPR: ms = 1: mI = 0

- S > ½ more than one unpaired electron: ZERO FIELD SPLITTING

- QUADRUPOLAR INTERACTION: nuclear spins with I > 1/2

EPR: Spin Hamiltonian

-SPIN HAMILTONIAN

IPISDSIASBgSH .......

Page 31: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

EPR: Quantitative

)1(

)1(

SS

SS

g

g

I

INN rrr

rr

Page 32: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

In situ EPR

Set-up

Page 33: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

FeAPO-5

Example: calcination of FeAPO-5

Page 34: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

PULSE EPR

D. Goldfarb, Weizmann Institute, Israel

ESEEM: electron spin echo envelope modulation

ENDOR: electron nuclear double resonance

Examples:

1. Interaction of Cu2+ with Al nuclei in the zeolite lattice

2. Copper –histidine complexes in supercages of zeolite Y.

Page 35: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Copper – histidine complexes in supercages of zeolite Y

gا gاا Aاا(mT) d – d (cm-1)

A 2.054 2.31 15.8 15200

B 2.068 2.25 18.3 15600

Page 36: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

TRANSITION METAL IONS IN ZEOLITES

Page 37: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Coordination to lattice oxygens

Characteristics•Low coordination number

•Free coordination sites

•Low symmetry

Examples: Cu2+, Co2+

Page 38: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Cu2+: DRS + EPR

ZSM-5 Zeolite A

Page 39: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Zeolite g A/mT g A/mT

mordenite 2.327 15.42 2.062 1.49

ZSM 5 2.277 16.82 2.057 1.19

A, X, Y 2.387 12.20 2.069 1.34

Y, chabasite 2.336 15.85 2.070 1.93

d-d transitions/cm-1

mordenite 12500 13700 14800

ZSM 5

A, X, Y 10400 12300 14800

Y, chabasite 10800 12900 14800

Cu2+: Summary of EPR parameters and d – d transitions

Page 40: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Coordination of Co2+ and Cu2+ to sixrings: LF or AOM

Fixed oxygens: Cu2+/Co2+ in the center of the six- ring on trigonal axis

Cu2+: doubly degenerate ground-state Jahn-Teller distorsion

Co2+: off-axial displacement by 0.078 – 0.104nm

Page 41: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Coordination to six-rings in LTA and FAUCu2+

Page 42: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Cu2+:orbital interactions between d(Cu2+) and p(0)

Page 43: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

T5 T11

T1 T4

O3T2 T8

O1

O2

O5

O4

O6

T7

2.02

2.13

2.90

3.211.98

3.09

2.12

2.41

Al

AlAl

Al

3.602.90

2.06

3.40

3.24

2.88

1.98

1.96

Al

Al

3.042.42

2.07

3.142.46

3.19

1.94

2.00

Al

2.00

3.26

2.06

2.08

3.15

2.00

2.27 3.46

Al

2.16

3.41

2.92

2.32

1.98

3.40

2.62

1.98

0 1 2

binding energyg-factors

-6512.29 2.10 2.05

-6382.29 2.09 2.05

2' 3 4

-6352.33 2.10 2.05

-4982.31 2.08 2.07

-4812.33 2.08 2.07

Cu2+in ZSM-5: α sites with zero, one and two Al’s

Page 44: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

O1

O2

O3

O4

O5

O6T5

T4

T7T11

T10

T1

Al Al

3.53

1.89

3.50

1.961.89

1.98Al

Al

3.55

1.87

3.36

2.08

2.11

1.88

Al

Al

3.62

2.14

1.98

1.87

1.93

3.24

Al

1.93

3.37

1.95

2.07

3.45

1.87

Al

3.57

2.09

1.96 2.06

1.86

3.22

Al

2.42

3.46

1.96

3.15 2.04

1.79

HO

4.10

0 1 2 3

binding energyg-factors

-7152.23 2.07 2.04

-6772.25 2.10 2.03

-6832.24 2.07 2.04

4 5

-5322.24 2.07 2.04

-5142.25 2.09 2.04

Cu2+in ZSM-5: β sites with zero, one and two Al’s

Page 45: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

T7

T12

T7

T11

T12

T10

O1

O2

O3

O5

O6

T10O4

T11

1.95 1.95

1.96 1.96

3.41

3.44

Al AlAl

Al

1.96

1.91

3.37

1.93

2.09

3.38

Al

Al

1.91

1.96

3.27

2.05

2.17

3.00

Al Al

3.29

1.98 2.10

1.972.06

3.32

Al

1.93

3.30

1.94

2.02

2.04

3.31

Al

1.90

2.08

3.28

2.07

3.09

2.02

-5052.28 2.08 2.05

-5232.27 2.06 2.06

-6562.29 2.07 2.06 

 

654 

-6622.27 2.07 2.06

-6802.26 2.07 2.05

-6982.25 2.06 2.06

binding energyg-factors

 

3210

Cu2+in ZSM-5: γ sites with zero, one and two Al’s

Page 46: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

T2

T1

T10

T6

T9 Al

2.03 2.09

1.923.08

1.92

Al

2.01 1.92

2.93 1.95

2.05

OH

1.97

1.99

3.51

4.43

3.57

Al

1.78

0 1 2

binding energyg-factors

-4822.27 2.09 2.05

-4832.25 2.08 2.05

Cu2+in ZSM-5: δ sites with zero, one and two Al’s

Page 47: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Cu2+in Zeolite: O Cu2+ charge transfer

ν (cm-1) = 30,000[χopt(0)-χopt(Cu2+)]

cm-1/1

000

Page 48: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

DRS spectrum of Co2+in Zeolite A

Page 49: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

DRS spectrum of Co2+in Zeolite Y and its decomposition

Page 50: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

DRS spectrum of Co2+in LTA and FAU:visible region

Page 51: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Co2+in FAU: interpretation

LF: trigonal Co2+

T: pseudo-tetrahedral Co2+ in site I’

HF: pseudo-octahedral Co2+ in site I

Page 52: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Coordination sites in pentosil zeolites(ZSM-5, MOR, FER)

Page 53: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Co2+ spectra in pentasil zeolites(ZSM-5, MOR, FER)

Page 54: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

CONCLUSIONS

1. Significant technical advancementDRS in situ single crystalEPR wide range of resonance frequencies

in situ pulse

2. Coordination of transition metal ions maximize coordination number site distortion number of Al tetrahedra

3. In situUV-VIS: catalyst activation: chromate Cr3+

active site: bis(µ-oxo)dicopper isomorphous substitution: Co2+

EPR: isomorphous substitution of Fe3+

Page 55: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

CONCLUSIONS

4. Pulse EPR:- interaction TMI – Al in lattice- coordination chemistry of Cr(histidine)x in supercages- In situ techniques and pulse EPR give nice results in well-chosen problems.- Specialists are necessary; these are not routine measurements

Page 56: Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

Thanks to

Collaborators:(D. Packet, S. De Tavernier, M. Uytterhoeven, B. Weckhuysen, A. Verberckmoes, M. Groothaert,H. Leeman)

Collaborations:K. Pierloot and A. CeulemansK. Klier

Financial support:Concerted Research ActionFund for Scientific Research