robotics

49
MICRO AND NANO SYSTEMS RESEARCH GROUP MICRO AND NANO SYSTEMS RESEARCH GROUP HELSINKI UNIVERSITY OF TECHNOLOGY Control Engineering Laboratory Microrobotics, Microtelemanipulation and Microassembly Introduction to Microsystems Technology Lecture N-1 Quan Zhou MICRO AND NANO SYSTEMS RESEARCH GROUP MICRO AND NANO SYSTEMS RESEARCH GROUP HELSINKI UNIVERSITY OF TECHNOLOGY Control Engineering Laboratory Table of Contents, Slide 2 Outline Microrobotics Microtelemanipulation Microassembly

Upload: zdeniel2006

Post on 23-Nov-2015

22 views

Category:

Documents


1 download

TRANSCRIPT

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGY

    Control Engineering Laboratory

    Microrobotics, Microtelemanipulation and Microassembly

    Introduction to Microsystems TechnologyLecture N-1

    Quan Zhou

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 2

    Outline

    Microrobotics Microtelemanipulation Microassembly

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 3

    Definitions

    Robot Word robot was coined by the Czech playwright Karel Capek in his play

    Rossum's Universal Robots in 1920s, robota = forced labor, worker A reprogrammable, multifunctional manipulator designed to move

    material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks, Robot Institute of America, 1979

    Industrial robots vs. service robots

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 4

    Definitions ...

    Microrobot reprogrammable behavior (as in industrial robots) or adaptivity to unpredicted circumstances (as in advanced robots for

    unstructured environments, service robots) or remote controllability (as in teleoperated robots)

    Basically the only difference between a macro and microrobot is the scale of the application domain

    Microbots extend human capabilities to the microscale

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 5

    Classification

    With regard to size/capabilities miniature robots microrobots nanorobots

    Functional classification fixed / mobile energy source on-board / not on-board wires / wireless

    Task-specific classification

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 6

    Classification with regard to size Miniature robots

    size: few cubic centimeters workspace and forces

    comparable to those of fine human manipulations

    fabrication by assembling conventional miniature components and micromachines

    majority of todays microrobots belong to this class

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 7

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 8

    Classification with regard to size ...

    Microrobots size: few hundred cubic micrometers fabricated by means of micromachining technologies (such as bulk or

    surface micromachining or LIGA technology) consists of microactuators, sensors and signal processing circuits scaling effect should be taken into account when designing actuators, for

    example applications: cell manipulation, assembly

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 9

    Classification with regard to size ... Nanorobots

    size: few hundred nanometers to a couple of micrometers, i.e. same as the scale of biological cells

    conventional mechanical principles (for driving and manipulation) are not applicable here but electrochemical means could be used (mimicking biological organisms)

    solid-state technology is not currently suitable for nano-scale fabrication but polymer chemistry techniques can provide a solution

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 10

    Functional classification

    CU - control unit

    PS - power supply

    AP - actuators for positioning

    AO - actuators for operation

    Classification criteria mobility autonomy control

    (wires)

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 11

    Task-specific classification Ratio C between the physical

    dimensions of the microrobot and its workspace C >> 1: stationary

    micromanipulation systems C

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 13

    Actuation principles for microrobots

    Actuation principles Active materials

    Piezoelectric actuators Shape memory alloy

    Electrostatic forces Electromagnetic actuators Other principles

    Drive principles: Direct actuation Impact principle

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 14

    Piezoelectric micropositioning device Yamagata et. al., Japan Steps in nanometer range Commercially available Speed 5 mm/s Positioning accuracy 0.1 m Transfer force 13 N

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 15

    Abalone a micro-crawling machine Codourey et. al., Switzerland Two legs: inner and outer leg Electromagnets fix the legs Operation sequence

    fix outer leg move inner leg using piezos fix inner leg and free outer leg move outer leg using piezos

    Motion resolution: 10 nm Maximum step: 5 m Dimensions: 60 x 60 mm2

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 16

    Swimming microrobot Fukuda et. al., Japan Applications: to inspect industrial

    pipelines or blood vessels A 8 m motion of piezoelectric stack

    actuators is magnified 250 times to the motion of 2 mm

    Swim motion by 32 mm long fins Dimensions: 34 mm x 19 mm One rot and and trans DOF Speed 30 mm/s

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 17

    Levitation microrobots

    To avoid the problems of friction, different levitation systems have been proposed electromagnetic actuation electrostatic actuation ultraviolet light

    A platform typically levitates on an air cushion generated by small nozzles

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 18

    Tools

    Microknives Microneedles Microdosing tools Microlasers Microgrippers

    grippers with moving parts (piezoelectric, shame memory alloy, electrostatic )

    grippers without moving parts (vacuum, frozen gripper ) non-contact transportation (laser trap, ultrasonic systems )

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 19

    Information transmission

    With the present technology information transmission from the microworld is difficult

    Visual information is only information that is currently available Optical stereo microscopes

    do not require vacuum long working distance provides space for the micromanipulator low resolution small depth of field

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 20

    Information transmission ...

    Scanning electron microscope better resolution larger depth of view workspace can be seen from different angles manipulators must be operable in vacuum and withstand electron radiation large-chamber SEMs presently available (2 m3)

    Force and acoustic information currently not available solutions are being sought

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 21

    Some Other examples of Mobile Microrobots

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 22

    Microrobot ExamplesNanowalker from MIT

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 23

    Microrobot ExamplesDesno Inpipe wireless mobile microrobot

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 24

    Examples of MicrorobotUnderwater Microrobot (Fukuda)

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 25

    Microrobots ExamplesFlying micro insects (UC Berkerly)

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 26

    Microtelemanipulation

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 27

    Telemanipulation

    What is telemanipulation? a way for a human being to extend his operation capability to a remote

    location telemanipulator

    a machine which extends a persons sensing and/or manipulating capability to a remote location.

    typically includes artificial sensors, a vehicle for moving, communication channels artificial arms and hands to apply forces and perform mechanical work

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 28

    Application Areas Why telemanipulation?

    To overcome the barrier to the world where direct human involvement is difficult or impossible

    The traditional application areas of telemanipulation nuclear plants subsurface space

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 29

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 30

    Microtelemanipulation Why microtelemanipulation?

    To overcome the barrier of dimension and to reach the microworld

    Why tele? computer assistance

    accuracy and performance human involvement

    robustness and intelligence

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 31

    Micromanipulator? A micromanipulator is a device that

    is capable of manipulating micro objects. micro object

    an object having dimensions < 1mm

    size of micromanipulator not necessary micro-sized

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 32

    Concept of Microtelemanipulation

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 33

    Classification of Micromanipulation

    Interaction type contact non-contact

    Physical basis electrical mechanical magnetic optical

    Environment dry wet

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 34

    Application Areas The application areas of

    micromanipulation biotechnological operations microsurgery assembly of micro systems testing of micro chips and

    components

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 35

    Applications in Biotechnology The applications in biotechnological

    operations injections and aspirations

    cell toxicology gene technology

    measurement of electrical quantities inside a cell

    e.g. patch clamp technique separation of particles

    e.g. spores

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 36

    Applications in Microsurgery The applications in microsurgery

    diagnostic surgery neurosurgery (brain surgery) micro vascular anastomosis

    blood vessels nerves

    ophthalmology (eye surgery) intracavity interventions (using

    endoscopes and microcatheters)

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 37

    Applications in Microassembly The application areas in

    microassembly optoelectronic devices wrist watches micro motors and gears micro robots ...

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 38

    Applications in Microchips The applications in microchips testing

    electrical probing mechanical testing

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 39

    Problems in Micromanipulation

    The problems in microtelemanipulation scaling effect measurement difficulties external disturbances actuator non-linearity

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 40

    Scaling Laws Time: I0 van der Waals: I1/4 Diffusion: I1/2 Distance: I1 Velocity: I1 Surface tension: I1 Electrostatic force: I2 Muscle force: I2 Friction: I2 Thermal Losses: I2

    Piezo-electricity: I2 Shape memory alloy: I2 Mass: I3 Gravity: I3 Magnetic: I3 Torque: I3 Power: I3

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 41

    Scaling of Some ForcesM

    ICR

    O A

    ND

    NA

    NO

    SYS

    TEM

    S R

    ESEA

    RC

    H G

    RO

    UP MIC

    RO

    AN

    D N

    AN

    O SYSTEM

    S RESEA

    RC

    H G

    RO

    UP

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 42

    Other Effects

    Other effects became significant in the micro world surface adhesions contact electrification micro/nano friction break down of continuum assumption

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 43

    Summary of Scaling Effect

    What is scaling effect? The change of dominant physical quantities between different scales is

    called scaling effect gravitational, inertial forces become less effective van der Waals forces, electrostatic forces, surface tension forces become more

    important other effects

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 44

    Actuator Nonlinearity Properties

    Hysteresis, drift and gain-nonlinearity

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 45

    Classical Preisach Hysteresis Model for Piezo Actuator

    Preisach model:

    x(t): output m(a,b): weighting function a, b: up and down switching point gab[u(t)]: binary hysteresis

    operator

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 46

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 47

    The Micromanipulator

    3 DOF tripod-like parallel manipulator

    Joint-free structure Piezohydraulic actuation Workspace: 1.2 x 0.6 x

    0.3 mm Resolution:

    submicrometers

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 48

    Actuation System

    Tank diameter: 40 mm, Bellow length: 18.8 mm

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 49

    Measurement Strain gages: deformation of the

    piezoelectric actuators Hall sensors: movement of the

    mobile platform Machine vision: movement of the

    tool tip

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 50

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 51

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 52

    Microassembly

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 53

    Microassembly Common definition:

    Assembly of micro part with dimension less than 1 mm

    Our definition: Assembly of miniaturized parts

    where micro domain phenomena affect the performance and precision

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 54

    Two Types Serial microassembly

    Parts are put together one-by-one Parallel microassembly

    multiple parts are assembled simultaneously

    deterministic microassembly stochastic microassembly

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 55

    Serial Microassembly Serial microassembly

    Traditional pick and place procedure

    Capable of handling complicated hybrid micro devices

    Techniques required Microscope Visual servoing High precision positioning Parts handling tools

    Tweezers grippers

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 56

    Parallel Microassembly I Deterministic parallel microassembly

    Flip-chip wafer to wafer transfer Micro gripper array

    Mechanical Thermal

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 57

    Parallel Microassembly II Stochastic parallel microassembly

    Destination unknown Self-assembly Techniques

    Fluidic agitation and mating shape Vibratory agitation and electrostatic

    forces Vibratory agitation and mating shape Mating patterns of self-assembly

    monolayer

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 58

    Applications Where microassembly is needed?

    MEMS devices become increasingly complicated

    The traditional assembly technology become less effective because of the scaling down

    Application areas optoelectronic devices wrist watches micro motors and gears micro robots ...

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 59

    Micro Assembly Examples I

    University of Karlsruhe, Institute for Real-time Computer System & Robotics

    Micro mobile robot solution

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 60

    Micro Assembly Examples II

    Sandia National LaboratoriesMicromanipulation lab

    Assembly of MEMS components of size 10 to 100 microns

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 61

    Micro Assembly Examples III

    University KaiserslauternInstitute for production automation

    3 stage assembly line, assembly precision betterthan 1 micron

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 62

    Micro Assembly Examples IV

    Technishe Universitat MunchenLaboratory for Process Control and Real-time Systems

    Coarse-fine positioning system and vacuum micro gripper

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 63

    Micro Assembly Examples V

    Institute of Microengineering Production (IPM)Ecole Polytechnique Federale de Lausanne (EPFL)

    Assembly of wrist watch and optical sensor, precision 0.5 micron

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 64

    Micro Assembly Examples VI

    Micro assembly station at Micro System Technology Group, TUT/HUT

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 65

    Mini Factory

    HolliosHollios

    Hollis Hollis

    Hollis Virtual mini factory for microphone assembly

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 66

    Micro Factory

    MEL

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 67

    Tasks in Micro Assembly Tasks in microassembly

    preparation of parts transportation of parts positioning and fixing of parts connecting the parts testing and measuring the finished

    microsystem

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 68

    Issues in Microassembly

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 69

    Precision Positioning I Coarse-fine approach

    A macro robot + a precision robot (micromanipulator)

    A precision robot (micromanipulator) + coarse multi-axial stage

    Micro robots

    Microassembly Automation Laboratory, Lawrence Livermore

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 70

    Precision Positioning II: Stages

    Newport Piezosystem

    MIT Nanotechnik

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 71

    Precision Positioning III: More Stages and Actuators

    X-Y stage from Nanotechnik

    Ultrasonic motor by Nanomotion

    X-Y-Z stages from Physik Instrumente X-Z stage from Newport Co.

    Stepper motor from Newport Co.

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 72

    Precision Positioning IV: Mobile Micro Robots

    University of Karlsruhe, Institute for Real-time Computer System & Robotics

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 73

    Micromanipulator

    Nanotechnik

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 74

    Position Measurement Measurement methods

    Visual servoing Linear encoding Laser sensor Other sensors

    Acceleration meter Hall sensor

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 75

    Visual ServoingM

    ICR

    O A

    ND

    NA

    NO

    SYS

    TEM

    S R

    ESEA

    RC

    H G

    RO

    UP MIC

    RO

    AN

    D N

    AN

    O SYSTEM

    S RESEA

    RC

    H G

    RO

    UP

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 76

    Micro Griping Gripping methods

    Grippers with moving part Various shape Actuation principle

    Piezoelectric, SMA, electrostatic Grippers without moving part

    Vacuum gripper adhesive gripper Frozen gripper Water drop gripper

    Non-contact transportation system Laser trap gripper Dielectrophoretic transportation Ultrasonic system

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 77

    Micro Grippers

    EPFL Lawrence Livermore National Laboratory

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 78

    Force Measurement Sensing methods

    Piezoresistive Optic reflective

    Installation Integrated Non-contact

    Piezolever from Thermomicroscopes

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 79

    Dispensing and Connection Micro dispensers Wire connection

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 80

    Vibration Control I For vibration control, several aspect should be taken into account:

    Construction of the building Location of site Away from heavy machinery

    A cheap solution Vibration isolation table

    There are several isolation principles used in vibration control: Passive isolation

    Elastomeric Spring

    Pneumatic Active

    Electromagnetic Piezo

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 81

    Vibration Control II

    Passive Isolation No need for connections

    electrical air preassure

    Clean room and vacuum compatible

    Elastomeric Isolator from Newport Co.

    Passive spring Isolation

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 82

    Vibration Control III

    Pneumatic Isolation Consists of a sealed air chamber Platform floats in a cushion of air

    Need for air preassure Difficult to install in clean room and vacuum environment

    VH-isostation from Newport Co.

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 83

    Vibration Control IV

    Active Isolation Pneumatic with electromegnetic sensors and

    actuators

    AD500 activator from Newport Co.

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 84

    Vibration Control V

    Active Isolation An active vibration isolation system measures the vibrations from the floor

    and the table itself, and produces a mechanical force contrary to the vibration.

    Piezo actuators from Newport Co Elite 3 Workstation from Newport Co.

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 85

    Environmental Issues Environmental control takes

    care of issues like: Temperature control Humidity control Air flow Dust participles

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 86

    The Environmental Chamber (Design)Double layer polycarbonate wall

    Air duct

    Air buffer

    Diffuse plate

    Aluminum frame

    Access Orifices

    Vibration Isolation table

    Cable passing point

    Air inlet (from environmental controller)

    Bottom thermal isolation layer

    Air outlet (to environmental controller)

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 87

    The Environmental Chamber: the Controller ARCTEST Environmental equipment Temperature

    Range: 10 to +40 C Accuracy:

    +/- 0.1 C Humidity

    Range: 5 to 80 %RH Accuracy: +/- 0.1 %

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 88

    Benders TestsTesting Results

    Displacement of the benders Important influence both of T

    and humidity could be noticed. Apart from temperature and

    humidity influence, the amplitude of the movement was higher with the lower frequency (0.2 Hz)

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 89

    Initial results of environment effects to microassembly, IV

    Displacement and angular error of pick and place operation of a miniaturized gear at different temperature and humidity settings

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 90

    Modularization

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 91

    Special Phenomena in Microassembly Scaling effects:

    The change of dominant physical quantities between different scales gravitational, inertial forces become less effective van der Waals forces, electrostatic forces, surface tension forces become more

    important other effects

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 92

    Assembly and Task Planning

    Assembly planning (high level) Assembly representation Work cell planning Sequence planning

    Task planning (low level, planning of handling operations) Gross motion planning (path planning) Fine motion planning Grasp planning

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 93

    Differences Between Macro and Micro Assembly and Task Planning I

    The technologies developed for conventional assembly planning are largely valid

    To be developed in Fine motion planning Grasp planning Feeding

    To take into account of Micro domain forces Special uncertainties

    Assembly planning Assembly representation Work cell planning Sequence planning

    Task planning Gross motion planning (path

    planning) Fine motion planning Grasp planning

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 94

    Differences Between Macro and Micro Assembly and Task Planning II

    Traditional assembly and task planning Geometric model is sufficient in

    many cases No special adhesion forces

    Many planning methods are based on disassembly

    Reversible operations Assembly can be based on

    common sense Can use expert experiences

    Assembly and task planning in micro assembly Physics-based simulation model is

    required Special adhesion forces

    Assembly based on disassembly does not work

    Many operations not reversible Common senses do not always

    work Many experiences expired

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 95

    Model-based Handling and Planning

    A potential powerful method in assembly and task planning in micro assembly is physical model-based virtual reality environment Benefits

    can help task planning: fine motion and grasp planning can help assembly planning: assembly sequence planning Model can help design of new tools: model-based design

    Drawbacks computational intensive require numerical micro domain force models verification difficulties

    MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 96

    Modeling of Micro Operations Global model: rigid body contact

    dynamics + micro domain forces Contact dynamics Friction van der Waals forces electrostatic forces Dry environment Simple-shape objects

    Fast, real-time simulation capableunit in micro meter

  • MIC

    RO

    AN

    D N

    AN

    O S

    YSTE

    MS

    RES

    EAR

    CH

    GR

    OU

    P MICR

    O A

    ND

    NA

    NO

    SYSTEMS R

    ESEAR

    CH

    GR

    OU

    P

    HELSINKI UNIVERSITY OF TECHNOLOGYControl Engineering Laboratory

    Table of Contents, Slide 97

    Summary

    Microrobotics Microtelemanipulation Microassembly