robust parameter design

Upload: nikhil-aggarwal

Post on 11-Oct-2015

35 views

Category:

Documents


1 download

DESCRIPTION

Robust Parameter Design

TRANSCRIPT

  • 5/20/2018 robust parameter design

    1/42

    Taguchi

    Robust Parameter Design

  • 5/20/2018 robust parameter design

    2/42

    Robust Parameter Design (Taguchi Design)

    A three step method for achieving robust design (Taguchi)

    System design

    Parameter design

    Tolerance Design

  • 5/20/2018 robust parameter design

    3/42

    System Design New concepts ideas and methods are generated to provide new and

    better products

    For egs. judgment of selected materials, parts based on science andtechnology.

    Innovation and knowledge management

    New product development etc.

  • 5/20/2018 robust parameter design

    4/42

    Parameter Design

    To determine the factor levels that produce the best performance

    of the product/process under study.

    The objective is to make the design Robust!

    The optimal parameter levels can be determined throughexperimentation

  • 5/20/2018 robust parameter design

    5/42

    Tolerance Design

    Fine tune the results of parameter design by tightening the

    tolerance of factors with significant influence on the product.

    Identifying the need for better materials,

    buying newer equipment, spending more money for inspection etc.

  • 5/20/2018 robust parameter design

    6/42

    The Taguchi Process

    1. Problem Identification

    Locate the problem source not just the symptom

    2. Brainstorming Session

    The purpose is to identify critical variables for the quality of the product (CTQ) or service inquestion (referred to as factors by Taguchi)

    Control factors variables under management control

    Noise factors uncontrollable variation

    Define different factor levels (three or four) and identify possible interaction between factors

  • 5/20/2018 robust parameter design

    7/42

    Determine Design characteristics

    1. Smaller -the-better

    2. Nominal-is-best

    3. Higher-the-better

    The design characteristics are related to CTQ.

  • 5/20/2018 robust parameter design

    8/42

    3.Experimental Design

    Using factor levels and objectives determined via brainstorming

    Taguchi advocates off-line-experimentation as a contrast totraditional on-line or in-process experimentation

    Care should be taken to selecting number of trials, trial conditions,how to measure performance etc.

  • 5/20/2018 robust parameter design

    9/42

    4. Experimentation

    Various rigorous analysis approaches like ANOVA and Multiple

    Regression can be used. Customized methods are available like Taguchidesign (Orthogonal Arrays).

  • 5/20/2018 robust parameter design

    10/42

    5. Analysis

    The experimentation provides best levels for all factors

    6. Conforming Experiments (confirmatory runs)

    The results should be validated by running experiments with all

    factors set to optimal levels

  • 5/20/2018 robust parameter design

    11/42

    Design using Minitab

  • 5/20/2018 robust parameter design

    12/42

    Linear graph of (L4 2

    3

    )

    1 23

  • 5/20/2018 robust parameter design

    13/42

  • 5/20/2018 robust parameter design

    14/42

    Linear graphs of orthogonal design (L8)

  • 5/20/2018 robust parameter design

    15/42

    Inner Array and Outer Array

  • 5/20/2018 robust parameter design

    16/42

    Computing Quality Loss Function (QLF)

    Define

    C = The unit repair cost when the deviation from target takes place

    = Tolerance interval (allowable parameter variation from target to SL)

    V = Deviation from target

    L(V) = the loss in monetary form (The quality loss)

    The Loss Function

    L(V) = C(V/)2

  • 5/20/2018 robust parameter design

    17/42

    Example::The repair cost for an engine shaft is 1000. The shaft diameter isrequired to be 101 mm. On average the produced shafts deviates 0.5mm from target.

    Determine the mean quality loss per shaft using the Taguchi QLF.

    Solution: L(0.5) = C*(V/)2 = 1000*(0.5/1)2 = 1000*0.25 = 250 perunit

  • 5/20/2018 robust parameter design

    18/42

    Quality Characteristics

    Nominal the best (dimension of a part with modest variance) (foodproducts, medical instruments etc.)

    Smaller the better (minimum shrinkage in garments, minimum noisein A/C)

    Larger the better (maximum expected life of a component)

  • 5/20/2018 robust parameter design

    19/42

    Signal to noise ratio (S/N)

    The signal to noise ratio measures the sensitivity of the quality characteristics

    being investigated in a controlled manner to those external influencing

    factors (noise factors) not under control.

    The aim of any experiment is always to determine the highest possible S/Nratio for the result.

    A high value of S/N implies that the signal is much higher value of S/N implies

    that the signal is much higher than the effects of the noise factors.

    signal/noise = amount of energy for intended function/amount of energywasted

  • 5/20/2018 robust parameter design

    20/42

    Calculation of signal to noise ratio

    S/N = -10 log 10 (MSD)

    MSD = mean square Deviation

    For NTB, MSD = Sum (observation target) 2/N

    For STB, MSD = (y12+y2

    2+y32+yn

    2)/N

    The unstated target value is zero.

    For LTB, MSD = reciprocal of STB

  • 5/20/2018 robust parameter design

    21/42

    Example

    Customer satisfaction was measured in a hospital . The factorsconsidered are

    (i) waiting time in queue (short,long)

    (ii) politeness of the doctor (rude,polite)

    (iii) availability of the medicines(yes,no)

    Since three factors are involved and each at two levels; also nointeractions would be studied, L4 (2

    3 ) design was chosen

  • 5/20/2018 robust parameter design

    22/42

  • 5/20/2018 robust parameter design

    23/42

    Taguchi Analysis: res1 res2 versus A B C

    Smaller is better

    Level A B C

    1 -13.93 -16.87 -14.87

    2 -16.10 -13.16 -15.16

    Delta 2.17 3.72 0.29

    Rank 2 1 3

    Response Table for Means

    Level A B C

    1 5.000 7.000 5.500

    2 6.500 4.500 6.000

    Delta 1.500 2.500 0.500

    Rank 2 1 3

  • 5/20/2018 robust parameter design

    24/42

    Graphical display

    21

    -13

    -14

    -15

    -16

    -17

    21

    21

    -13

    -14

    -15

    -16

    -17

    A

    Mea

    nofSNratios

    B

    C

    Main Effects Plot for SN ratios

    Data Means

    Signal-to-noise: Smaller is better

    21

    7

    6

    5

    21

    21

    7

    6

    5

    A

    MeanofMeans

    B

    C

    Main Effects Plot for Means

    Data Means

  • 5/20/2018 robust parameter design

    25/42

  • 5/20/2018 robust parameter design

    26/42

    Predicted values

    S/N Ratio Mean

    -11.9240 3.5

    Factor levels for predictions

    A B C 1 2 1

  • 5/20/2018 robust parameter design

    27/42

    Example 2 measuring students satisfaction

  • 5/20/2018 robust parameter design

    28/42

    Data set

  • 5/20/2018 robust parameter design

    29/42

  • 5/20/2018 robust parameter design

    30/42

  • 5/20/2018 robust parameter design

    31/42

    Taguchi Analysis: response versus A B C D E F G

    Response Table for Signal to Noise Ratios

    Larger is better

    Level A B C D E F G

    1 32.93 31.89 32.05 33.28 32.83 33.01 32.14

    2 32.09 33.13 32.98 31.75 32.19 32.01 32.88

    Delta 0.84 1.24 0.93 1.53 0.64 1.00 0.73

    Rank 5 2 4 1 7 3 6

    Response Table for Means

    Level A B C D E F G

    1 45.00 39.75 40.25 46.50 44.50 44.75 40.75

    2 40.50 45.75 45.25 39.00 41.00 40.75 44.75

    Delta 4.50 6.00 5.00 7.50 3.50 4.00 4.00

    Rank 4 2 3 1 7 5.5 5.5

  • 5/20/2018 robust parameter design

    32/42

    Graphical Analysis

    21

    45.0

    42.5

    40.0

    21 21

    21

    45.0

    42.5

    40.0

    21 21

    21

    45.0

    42.5

    40.0

    A

    MeanofMeans

    B C

    D E F

    G

    Main Effects Plot for Means

    Data Means

    21

    33.0

    32.5

    32.0

    21 21

    21

    33.0

    32.5

    32.0

    21 21

    21

    33.0

    32.5

    32.0

    A

    M

    eanofSNratios

    B C

    D E F

    G

    Main Effects Plot for SN ratiosData Means

    Signal-to-noise: Larger is better

  • 5/20/2018 robust parameter design

    33/42

  • 5/20/2018 robust parameter design

    34/42

    Predicted values

    S/N Ratio Mean

    35.9660 60

    Factor levels for predictions

    A B C D E F G

    1 2 2 1 1 1 2

  • 5/20/2018 robust parameter design

    35/42

    CASE STUDY:: Retail Sector

  • 5/20/2018 robust parameter design

    36/42

    CASE STUDY:: Retail Sector

  • 5/20/2018 robust parameter design

    37/42

    CASE STUDY:: Retail Sector

  • 5/20/2018 robust parameter design

    38/42

    CASE STUDY:: Retail Sector

  • 5/20/2018 robust parameter design

    39/42

    CASE STUDY:: Retail Sector

  • 5/20/2018 robust parameter design

    40/42

    CASE STUDY:: Retail Sector

    21

    14

    12

    10

    21 21

    21

    14

    12

    10

    21 21

    21

    14

    12

    10

    A

    MeanofM

    eans

    B C

    D E F

    G

    Main Effects Plot for Means

    Data Means

    21

    22

    20

    18

    21 21

    21

    22

    20

    18

    21 21

    21

    22

    20

    18

    A

    MeanofSNratios

    B C

    D E F

    G

    Main Effects Plot for SN ratiosData Means

    Signal-to-noise: Larger is better

    Factor levels for predictions

    A B C D E F G

    2 2 2 2 2 1 2

  • 5/20/2018 robust parameter design

    41/42

    CASE STUDY:: Retail Sector

  • 5/20/2018 robust parameter design

    42/42

    Q/A