role of the efflux pumps in antimicrobial resistance in e....

32
Role of the Efflux Pumps in Antimicrobial Resistance in E. coli Patrick Plésiat Bacteriology Department Teaching Hospital Besançon, France

Upload: others

Post on 26-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Role of the Efflux Pumps in Antimicrobial Resistance in E. coli

    Patrick PlésiatBacteriology Department

    Teaching HospitalBesançon, France

  • ANTIBIOTIC

    TARGET

  • Bacterial targets for antibiotics

    Chromosome

    Cell wall

    Cytoplasmic membrane

    Ribosomes

  • Main resistance mechanisms to drugs

    ANTIBIOTIC

    TARGET

    Protection

    Reduced affinity- mutations- recombinaisons- enzymatic modification

    InactivationModification

    EffluxImpermeability

    SubstitutionAmplification

  • Gram-negative species with known efflux systems

    ♦Escherichia coli♦Salmonella Typhimurium♦Shigella dysenteriae♦Klebsiella pneumoniae♦Enterobacter aerogenes♦Serratia marcescens♦Proteus vulgaris♦Citrobacter freundii...

    ♦Pseudomonas aeruginosa♦Pseudomonas putida♦Burkholderia cepacia♦Burkholderia pseudomallei♦Stenotrophomonas maltophilia♦Alcaligenes eutrophus...

    ♦Haemophilus influenzae♦Campylobacter jejuni♦Helicobacter pylori♦Vibrio parahaemolyticus♦Vibrio cholerae♦Neisseria gonorrhoeae... ♦Bacteroides fragilis...

  • Efflux mechanisms: practical implications

    Do efflux systems produce clinically relevant levels of resistance ?

    Does the expression of drug transporters somewhat impair the virulence of bacterial pathogens ?

    What is the prevalence of efflux systems relative to other resistance mechanisms among the clinical isolates ?

    How to recognize efflux mutants in laboratory practice ?

    What recommendations can be made to the physician for the treatment of patients infected with mdr strains ?

  • Drug accumulation experiments

    TimeTime

    Intra

    cellu

    lar a

    ccum

    ulat

    ion

    CCCP

    ATPglucose

    S

    R

  • Structure of bacterial efflux systems

    One component systems

    – Mostly in Gram positive species (except Tet...)

    – A single transporter protein in the cytoplasmic membrane

    – Determines the substrate specificity and resistance

    Three component (tripartite) systems

    – Exclusively in Gram negative species (GNB)

    ♦♦ A A transportertransporter proteinprotein

    ♦♦ A periplasmic A periplasmic adaptoradaptor lipoproteinlipoprotein

    ♦♦ A outer membrane A outer membrane channelchannel proteinprotein

  • Energy sources

    Antiporters

    – PMF transporters (proton motive force)

    – Na+-antibiotic antiporters

    ABC transporters

    – ATP binding cassette pumps

    – Hydrolysis of ATP into ADP + Pi

    – Mostly in Gram positive species

  • PMF transporters

    Major Facilitator Superfamily (MFS)– Drug efflux

    ♦ 12 TMS transporters♦ 14 TMS transporters

    – Active uptake/export♦ sugars...♦ amino acids, secondary metabolites...

    Small Multidrug Resistance Family (SMR)♦ 4 TMS transporters

    Resistance/Nodulation Cell Division Family (RND)♦ 12 TMS transporters

    Multi Antimicrobial Extrusion Family (MATE)♦ 12 TMS transporters

  • Structure of drug efflux systems

    H+

    ATP ADP

    antibiotic

    MFS, SMR MATE ABC RND, MFS, ABC

    Na+

    antibiotic

    H+

  • Fernandez-Recio J. et al. FEBS 2004, 578: 5-9

  • Murakami S. et al. Nature 2002, 419: 587

  • Murakami S. et al. Curr Opinion Struct. Biol. 2003, 13: 443

  • Murakami S. et al. Curr Opinion Struct. Biol. 2003, 13: 443

  • Efflux systems in E. coli

    Chromosomally encoded pumps– 37 putative drug transporters: 19 MFS, 3 SMR, 7 RND, 7 ABC, 1

    MATE

    – 20 pumps are able to transport toxic/antibiotic molecules

    – 15-17 pumps may provide with some resistance to antibiotics when overproduced from plasmid genes (Nishino K et al. J. Bacteriol. 2001)

    – Upregulation of a single pump results in increased drug efflux

    Acquisition of exogenous pump encoding genes– Genes carried by mobile elements (plasmids, transposons,

    integrons)

  • Efflux pumps coded by mobile genetic elements

    Species System Family Substrates

    E. coli TetA/B/E MFS Tc, MinE. coli CmlA MFS CmpE. coli Flo MFS Cmp, FloE. coli OqxAB RND Olaquindox

    Tc: tetracycline; Min: minocycline; Cmp: chloramphenicol; Flo: florfenicol

  • Efflux pumps of MFS, MATE, SMR, or ABC family

    Species System Family Substrates Genes

    E. coli EmrAB-TolC MFS Nal CE. coli Bcr MFS Tc, Km, Fos CE. coli MdfA MFS Tc, Rif, Cmp, Ery, Neo, Fq... CE. coli MdtG MFS Fos CE. coli MdtH MFS Fq CE. coli MdtL MFS Cmp CE. coli MdtM MFS Cmp, Fq CE. coli NorE MATE Cmp, Fq, Fos, Tmp CE. coli EmrE SMR Tc CE. coli MdtJK SMR Nal, Fos CE. coli MacAB-TolC ABC Ery C

    Nal: nalidixic acid; Tc: tetracycline; Km: kanamycin; Fos: fosfomycin; Rif: rifampicin; Cmp: chloramphenicol; Ery: erythromycin; Neo: neomycin; Fq: fluoroquinolones; Tmp: trimethoprim

  • Efflux pumps of the RND family

    Bacteria System Substrates

    E. coli AcrAB-TolC1 Fq, ß-lactams3, Tc, Cmp, Nov, Ery, Fus, Rif…E. coli AcrEF-TolC2 Fq, ß-lactams3, Tc, Cmp, Nov, Ery, Fus, Rif…E. coli AcrD2-AcrA-TolC AGs, Ery, PolyBE. coli CusAB-?2 FosE. coli MdtABC-TolC2 FqE. coli MdtEF-TolC2 EryP. aeruginosa MexAB-OprM1 Fq, ß-lactams1, Tc, Cmp, Nov, Ery, Fus, Tm...P. aeruginosa MexCD-OprJ2 Fq, 3rd GC, Tc, Cmp, Ery, TmpP. aeruginosa MexEF-OprN2 Fq, Cmp, TmpP. aeruginosa MexXY2-OprM Fq, AGs, 3rdGC, Ery, TcN. gonorrhoeae MtrCDE1 Tc, Cmp, ß-lactams1, Ery, Fus, Rif...Fq: (fluoro)quinolones; Tc: tetracycline; Cmp: chloramphenicol; Nov: novobiocin; Ery: erythromycin; Fus: fusidic acid; Rif: rifampicin; AGs: aminoglycosides; PolyB: polymyxin B; Tmp: trimethoprim; Sulf: sulfamethoxazole; 3rdGC: cefepime, cefpirome. 1 expressed constitutively in wild type cells, 2 inducible expression, 3 except imipenem.

  • Induction of acrAB-tolC expression

    tetracyclinechloramphenicol

    salicylate-acetylsalicylatebenzoate

    stress...

    tetracyclinerchloramphenicolrquinolonesrerythromycinrsolvants, pine oil...

    MarRABRob bile salts

    SoxSR oxidative stress

    ∆∆ AcrABAcrAB∆ EmrAB

    ∇∇ Porin OmpFPorin OmpF∆∆ TolCTolC

    ∆∇Other proteins

    Mar regulon

  • Overexpression of acrAB and mtrCDE operons

    mtrDmtrDmtrCmtrC mtrEmtrEmtrRmtrR

    acrRacrRacrBacrBacrAacrA

    --

    mutations mdrmutations mdr

    MtrAMtrA

    ++

    ++

    MarAMarA

    --

    MarRMarR__ (MppA)

    SoxSSoxS SoxRSoxR__

  • Webber M. et al. Antimicrob. Agents Chemother. 2001, 45: 1550

  • Systems MtrCDE and FarAB in N. gonorrhoeae

    Antibiotics wild type CDE++ CDE- FarAB-

    Penicillin G 0.008 0.032 0.008 nd

    Erythromycin 0.25 1 - 2 0.06 0.25

    Tetracycline 0.25 0.5 nd nd

    Rifampicin 0.06 0.25 0.015 nd

    Linoleic acid 1600 nd 25 - 50 50

    Palmitic acid 100 nd 12.5 12.5

  • System AcrAB-TolC in E. coli

    Antibiotics wild type AcrAB++ AcrAB-

    Nalidixic acid 4 - 6 8.5 - 32 0.6Norfloxacin 0.025 - 0.1 0.3 - 1.25 ndOfloxacin 0.06 - 0.07 0.25 - 0.3 ndCiprofloxacin 0.02 0.15 nd

    Ampicillin 2 - 4 5 - 6 0.6 - 2Erythromycin 128 - 256 > 512 < 2 - 8Tetracycline 1.25 - 3 5 - 16 0.25 - 0.3Chloramphenicol 4 - 7.5 10 - 28 0.6

  • System MexAB-OprM in P. aeruginosa

    Antibiotics wild type MexAB++ MexAB-

    Norfloxacin 0.25 - 1 2 - 4 0.05 - 0.25Ofloxacin 0.4 - 1 1.6 - 8 0.025 - 0.05Ciprofloxacin 0.03 - 0.25 0.4 - 1.6 0.012 - 0.03

    Carbenicillin 12.5 - 64 50 - 256 0.4 - 1Aztreonam 1.6 - 4 12.5 - 32 0.1 - 0.2Ceftazidime 0.4 - 2 1.6 - 8 0.2 - 0.4Cefepime 0.8 - 2 3 - 4 0.1 - 0.5Meropenem 0.2 - 0.5 0.8 - 2 0.1 - 0.2

    Tetracycline 6.25 - 16 25 - 64 0.2 - 1.2Chloramphenicol 12.5 - 32 100 - 512 0.8 - 2

  • Active efflux

    Outer membranepermeability

    Other mechanisms

    Interplays between resistance mechanisms in GNB

  • Efflux/target double mutants of E. coli

    Genotype/Phenotype Oflo Cipro

    wild type AG100 0.03 ≤0.015

    AcrAB++ 0.125 0.06

    gyrA (Asp87->Gly) 0.25 0.25

    gyrA (Asp87->Gly; Ser83->Leu) 4 2

    gyrA (Asp87->Gly), AcrAB++ 8 4

    gyrA (Asp87->Gly), AcrAB-0.06 0.03

    Oethinger et al. Antimicrob. Agents Chemother. 2000, 44: 10-13

  • Therapeutic implications of efflux systems

    Resistance levels conferred by intrinsic pumps– Low to moderate drug resistance (MIC x 2 - 16)

    – Clinical significance♦ Lack of clinical data !♦ Poor response to treatment when the concentrations of

    antibiotics are low at the infection site (insufficient dosage, inappropriate drug, abcess...)

    ♦ Increased emergence of target mutants ?

    Emergence of gain of efflux mutants under treatment– Cross resistance to structurally unrelated molecules

    – Role of fluoroquinolones

  • PK/PD Monte Carlo

    Treatment MIC (mg/L) Target Attainment Rate (%)Drug total daily dosage

    (mg)unitary dose interval

    (hours)Cmax/MIC > 10 AUC/MIC > 125

    Ciproflox. 1200 8 0.12 66 87

    0.25 6 7

    1600 6 0.12 66 90

    0.25 5 12

    2400 8 0.12 98 100

    0.25 60 85

    0.5 4.2 3.7

    Levoflox. 500 24 0.5 70 40

    1 4 3

    1000 12 0.5 72 72

    1 4 5

    Dupont P. et al. J. Antimicrob. Chemother. 2005

  • Efflux mutants, are they virulent ?

    Clinical experience– Many examples of mdr isolates recovered from clinical specimens

    (blood, urine, sputums…)

    Other considerations– marA disruption mutants of S. Typhimurium remain fully virulent

    in a murine BALB/c infection model (Sulavik, J. Bacteriol. 1997, 179: 1857)

    – First step fluoroquinolone resistant mutants with mutations in gyrA, gyrB or marOR do not display significant loss of fitness (in vitro competition experiments, experimental urinary tract infection in mouse) (Komp Lindgren P., AAC 2005, 49: 2343)

    – Role of secondary mutations ?

  • How to characterize efflux mechanismsPlasmid or transposon encoded efflux systems– Multiresistance phenotype

    – Detection of efflux gene(s): PCR, nucleic probes

    Upregulation of intrinsic efflux systems– Protein levels

    ♦ Western blotting of membrane extracts with specific antibodies

    – mRNA levels♦ Northern blot, MacroArray, MicroArray♦ Real Time RT-PCR (Light Cycler, Taq Man, I Cycler…)

    – Intracellular accumulation of antibiotics♦ [3H] ou [14C] radiolabeled or fluorescent compounds (BET,

    acriflavine…)

    – Sequencing of regulatory genes

  • Efflux inhibitors

    Phenyl-Arginyl ß N-naphtylamide