rotating frame (angular velocity 𝝎𝝎 )

22
Rotating frame (angular velocity ): βˆ’ βˆ’ (offset) βˆ† (residual vertical magnetic field in the rotating frame) x y z 1 x y z 1 2 3 4

Upload: others

Post on 17-Mar-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rotating frame (angular velocity 𝝎𝝎 )

Rotating frame (angular velocity πŽπŽπ’“π’“π’“π’“):

𝑑𝑑𝝁𝝁(𝑑𝑑)𝑑𝑑𝑑𝑑

= πŽπŽβˆ’πŽπŽπ’“π’“π’“π’“ + 𝝎𝝎𝟏𝟏 Γ— 𝝁𝝁 𝑑𝑑 = βˆ’π›Ύπ›Ύ 𝑩𝑩 +πŽπŽπ’“π’“π’“π’“

𝛾𝛾 + π‘©π‘©πŸπŸ Γ— 𝝁𝝁 𝑑𝑑

𝜴𝜴 (offset) βˆ†π‘©π‘© (residual vertical magnetic field in the rotating frame)

x

y

z π‘©π‘©πŸŽπŸŽ

π‘©π‘©πŸπŸ

πœ”πœ”1

𝛼𝛼 𝑴𝑴

x

y

z π‘©π‘©πŸŽπŸŽ

𝜴𝜴

𝑴𝑴

1 2 3 4

Page 2: Rotating frame (angular velocity 𝝎𝝎 )

Basic NMR experiment

Relaxation delay

90Β° pulse Free induction decay (FID)

Repeat 𝑛𝑛 times (to improve signal to noise ratio)

Free induction decay (FID) - Magnetization precesses in the x-y plane, this induces electrical current in a coil and is detected

90Β° pulse - Tips magnetization into the x-y plane

Relaxation delay - Allows magnetization to return to equilibrium along z

Page 3: Rotating frame (angular velocity 𝝎𝝎 )

x

y

z π‘©π‘©πŸŽπŸŽ

π‘©π‘©πŸπŸ

πœ”πœ”1

𝛼𝛼

Turn on π‘©π‘©πŸπŸ for time 𝑑𝑑 such that 𝛼𝛼 = πœ”πœ”1𝑑𝑑 = | βˆ’ 𝛾𝛾𝐡𝐡1|𝑑𝑑 = πœ‹πœ‹

2

𝑴𝑴

Rotating frame (angular velocity πŽπŽπ’“π’“π’“π’“)

90Β° pulse

x

y

z π‘©π‘©πŸŽπŸŽ

𝜴𝜴

Magnetization precesses in the x-y plane with frequency 𝜴𝜴 (and relaxes back to equilibrium)

𝑴𝑴

Free induction decay (FID)

1 2 3 4

Page 4: Rotating frame (angular velocity 𝝎𝝎 )

Description and analysis of rotations (oscillations): Rotation with angular velocity 𝜴𝜴

x

y

𝑴𝑴

𝜴𝜴

x

y

𝑴𝑴 𝜴𝜴

𝑀𝑀π‘₯π‘₯

𝑀𝑀𝑦𝑦

time 𝑑𝑑

𝑀𝑀π‘₯π‘₯ = 𝑀𝑀0 𝑀𝑀𝑦𝑦 = 0

𝑀𝑀π‘₯π‘₯ = 𝑀𝑀0 cosΩ𝑑𝑑 𝑀𝑀𝑦𝑦 = 𝑀𝑀0 sinΩ𝑑𝑑

𝛼𝛼 = Ω𝑑𝑑

Page 5: Rotating frame (angular velocity 𝝎𝝎 )

x

y

𝑴𝑴 𝜴𝜴

𝑀𝑀π‘₯π‘₯

𝑀𝑀𝑦𝑦

𝑀𝑀π‘₯π‘₯ = 𝑀𝑀0 cosΩ𝑑𝑑 𝑀𝑀𝑦𝑦 = 𝑀𝑀0 sinΩ𝑑𝑑

x

y

𝑴𝑴

βˆ’πœ΄πœ΄

𝑀𝑀π‘₯π‘₯

𝑀𝑀𝑦𝑦

𝑀𝑀π‘₯π‘₯ = 𝑀𝑀0 cos(βˆ’Ξ©π‘‘π‘‘) =𝑀𝑀0 cosΩ𝑑𝑑 𝑀𝑀𝑦𝑦 = 𝑀𝑀0 sin(βˆ’Ξ©π‘‘π‘‘) = βˆ’π‘€π‘€0 sinΩ𝑑𝑑

Need both 𝑀𝑀π‘₯π‘₯ and 𝑀𝑀𝑦𝑦 components to distinguish the direction (sign) of rotation

Page 6: Rotating frame (angular velocity 𝝎𝝎 )

𝑀𝑀π‘₯π‘₯ and 𝑀𝑀𝑦𝑦 components formally treated like real and imaginary components of a complex number:

x

y

𝑴𝑴 𝜴𝜴

𝑀𝑀π‘₯π‘₯

𝑀𝑀𝑦𝑦

𝛼𝛼 = Ω𝑑𝑑

𝑀𝑀 = 𝑀𝑀π‘₯π‘₯ + 𝑖𝑖𝑀𝑀𝑦𝑦 = 𝑀𝑀0 cosΩ𝑑𝑑 + 𝑖𝑖𝑀𝑀0 sinΩ𝑑𝑑

𝑀𝑀 = 𝑀𝑀0 (cosΩ𝑑𝑑 + 𝑖𝑖 sinΩ𝑑𝑑) =𝑀𝑀0𝑒𝑒𝑖𝑖Ω𝑑𝑑

Page 7: Rotating frame (angular velocity 𝝎𝝎 )

Return to equilibrium: relaxation β€’ Longitudinal (spin-lattice) relaxation

𝑀𝑀𝑧𝑧

𝑀𝑀𝑧𝑧 = 𝑀𝑀0(1 βˆ’ π‘’π‘’βˆ’π‘…π‘…1𝑑𝑑) = 𝑀𝑀0(1 βˆ’ π‘’π‘’βˆ’π‘‘π‘‘π‘‡π‘‡1)

𝑀𝑀0

0 𝑑𝑑

Page 8: Rotating frame (angular velocity 𝝎𝝎 )

Return to equilibrium: relaxation β€’ Transverse (spin-spin) relaxation:

𝑀𝑀π‘₯π‘₯𝑦𝑦 = 𝑀𝑀0π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑𝑒𝑒𝑖𝑖Ω𝑑𝑑 = 𝑀𝑀0π‘’π‘’βˆ’ 𝑑𝑑𝑇𝑇2 𝑒𝑒𝑖𝑖Ω𝑑𝑑

𝑀𝑀π‘₯π‘₯

https://en.wikipedia.org/wiki/Relaxation_(NMR)

𝑑𝑑 0

Page 9: Rotating frame (angular velocity 𝝎𝝎 )

Fourier transform S Ο‰ = ∫ 𝑠𝑠(𝑑𝑑)π‘’π‘’βˆ’π‘–π‘–π‘–π‘–π‘‘π‘‘βˆžβˆ’βˆž 𝑑𝑑𝑑𝑑

Oscillation 𝑠𝑠 𝑑𝑑 = 𝑀𝑀0π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑𝑒𝑒𝑖𝑖Ω0𝑑𝑑

𝑆𝑆 πœ”πœ” = οΏ½ 𝑀𝑀0π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑𝑒𝑒𝑖𝑖Ω0𝑑𝑑 π‘’π‘’βˆ’π‘–π‘–π‘–π‘–π‘‘π‘‘βˆž

0

𝑑𝑑𝑑𝑑

Converting oscillating signal to a frequency spectrum

𝑖𝑖(Ξ©0βˆ’πœ”πœ” βˆ’ 𝑅𝑅2]𝑑𝑑 = y 𝑖𝑖(Ξ©0βˆ’πœ”πœ” βˆ’ 𝑅𝑅2]𝑑𝑑𝑑𝑑 = dy

= 𝑀𝑀0𝑖𝑖(Ξ©0βˆ’π‘–π‘–)βˆ’π‘…π‘…2

�𝑒𝑒𝑦𝑦𝑑𝑑𝑑𝑑 = 𝑀𝑀0𝑖𝑖(Ξ©0βˆ’π‘–π‘–)βˆ’π‘…π‘…2

[𝑒𝑒𝑖𝑖 Ξ©0βˆ’π‘–π‘– π‘‘π‘‘π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑]𝑑𝑑=0

= οΏ½ 𝑀𝑀0𝑒𝑒[𝑖𝑖 Ξ©0βˆ’π‘–π‘– βˆ’π‘…π‘…2]𝑑𝑑

∞

0

𝑑𝑑𝑑𝑑 = �𝑀𝑀0𝑒𝑒𝑦𝑦 𝑑𝑑𝑦𝑦𝑖𝑖 Ξ©0βˆ’π‘–π‘– βˆ’π‘…π‘…2

∞ �𝑒𝑒𝑦𝑦𝑑𝑑𝑑𝑑 = 𝑒𝑒𝑦𝑦 + 𝐢𝐢

(0-1)

Page 10: Rotating frame (angular velocity 𝝎𝝎 )

𝑆𝑆 πœ”πœ” = βˆ’π‘€π‘€0𝑖𝑖 Ξ©0βˆ’π‘–π‘– βˆ’π‘…π‘…2

= βˆ’π‘€π‘€0𝑖𝑖 Ξ©0βˆ’π‘–π‘– βˆ’π‘…π‘…2

βˆ’π‘–π‘– Ξ©0βˆ’π‘–π‘– βˆ’π‘…π‘…2βˆ’π‘–π‘– Ξ©0βˆ’π‘–π‘– βˆ’π‘…π‘…2

𝐡𝐡 + 𝐴𝐴 βˆ’π΅π΅ + 𝐴𝐴 = βˆ’π΅π΅2 + 𝐴𝐴2

= 𝑀𝑀0𝑖𝑖 Ξ©0βˆ’π‘–π‘– +𝑅𝑅2Ξ©0βˆ’π‘–π‘– 2+𝑅𝑅22

= 𝑀𝑀0[ 𝑅𝑅2Ξ©0βˆ’π‘–π‘– 2+𝑅𝑅22

+ 𝑖𝑖 Ξ©0βˆ’π‘–π‘–Ξ©0βˆ’π‘–π‘– 2+𝑅𝑅22

]

𝐴𝐴 πœ”πœ” Absorption

𝐷𝐷(πœ”πœ”) Dispersion

Lorentzian line shape

πœ”πœ” Ξ©0

βˆ†πœ”πœ” = 2𝑅𝑅2 (βˆ†πœˆπœˆ = 𝑅𝑅2

πœ‹πœ‹ )

Full width at half height

Page 11: Rotating frame (angular velocity 𝝎𝝎 )

2-dimensional (2D) NMR spectroscopy

Correlation between nuclear dipoles β€’ Through-bond interactions (J-coupling) < 4 bonds

apart β€’ Through-space interactions (nuclear Overhauser

effect, NOE) < 5 Γ… apart

Ω𝐴𝐴

Ω𝐡𝐡

Page 12: Rotating frame (angular velocity 𝝎𝝎 )

Kumar A, Ernst RR, WΓΌthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1-6.

The first 2D spectrum of a protein (BPTI)

Page 13: Rotating frame (angular velocity 𝝎𝝎 )

2D NMR spectroscopy

Relaxation delay

90Β°y FID

𝑑𝑑1 𝑑𝑑2 π‘‘π‘‘π‘šπ‘šπ‘–π‘–π‘₯π‘₯

90Β°y 90Β°-y

x

y

z

π‘©π‘©πŸŽπŸŽ

F B C D E A G

A

B

A: 𝑀𝑀𝑧𝑧 = 𝑀𝑀0 B: 𝑀𝑀π‘₯π‘₯ = 𝑀𝑀0

Page 14: Rotating frame (angular velocity 𝝎𝝎 )

2D NMR spectroscopy

Relaxation delay

90Β°y FID

𝑑𝑑1 𝑑𝑑2 π‘‘π‘‘π‘šπ‘šπ‘–π‘–π‘₯π‘₯

90Β°y 90Β°-y

x

y

z

𝜴𝜴

F B C D E A G

B C

C: 𝑀𝑀π‘₯π‘₯ = 𝑀𝑀0 cosΩ𝑑𝑑1 𝑀𝑀𝑦𝑦 = 𝑀𝑀0 sinΩ𝑑𝑑1

x

𝜴𝜴

𝑀𝑀π‘₯π‘₯

𝑀𝑀𝑦𝑦

𝛼𝛼 = Ω𝑑𝑑1

C π‘©π‘©πŸŽπŸŽ y

Page 15: Rotating frame (angular velocity 𝝎𝝎 )

2D NMR spectroscopy

Relaxation delay

90Β°y FID

𝑑𝑑1 𝑑𝑑2 π‘‘π‘‘π‘šπ‘šπ‘–π‘–π‘₯π‘₯

90Β°y 90Β°-y

x

y

z

F B C D E A G

D

C

D: 𝑀𝑀𝑧𝑧 = βˆ’π‘€π‘€0 cosΩ𝑑𝑑1 𝑀𝑀𝑦𝑦 = 𝑀𝑀0 sinΩ𝑑𝑑1 (ignore 𝑀𝑀𝑦𝑦, it will get cancelled by phase cycling and/or gradients

𝑀𝑀π‘₯π‘₯ 𝑀𝑀𝑦𝑦

π‘©π‘©πŸŽπŸŽ

E: 𝑀𝑀𝑧𝑧 = βˆ’π‘€π‘€0 a cosΩ𝑑𝑑1 Relaxation during π‘‘π‘‘π‘šπ‘šπ‘–π‘–π‘₯π‘₯

Page 16: Rotating frame (angular velocity 𝝎𝝎 )

2D NMR spectroscopy

Relaxation delay

90Β°y FID

𝑑𝑑1 𝑑𝑑2 π‘‘π‘‘π‘šπ‘šπ‘–π‘–π‘₯π‘₯

90Β°y 90Β°-y

x

y

z

F B C D E A G

E

F

π‘©π‘©πŸŽπŸŽ E: 𝑀𝑀𝑧𝑧 = βˆ’π‘€π‘€0 a cosΩ𝑑𝑑1

F: 𝑀𝑀π‘₯π‘₯ = 𝑀𝑀0 a cosΩ𝑑𝑑1

G: 𝑀𝑀π‘₯π‘₯ = 𝑀𝑀0 a cosΩ𝑑𝑑1π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑2 cosΩ𝑑𝑑2 𝑀𝑀𝑦𝑦 = 𝑀𝑀0 a cosΩ𝑑𝑑1π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑2 sinΩ𝑑𝑑2

𝑀𝑀π‘₯π‘₯𝑦𝑦 = 𝑀𝑀0 a cosΩ𝑑𝑑1π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑2𝑒𝑒𝑖𝑖Ω𝑑𝑑2

Page 17: Rotating frame (angular velocity 𝝎𝝎 )

𝑀𝑀π‘₯π‘₯𝑦𝑦 = 𝑀𝑀0 a cosΩ𝑑𝑑1 π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑2𝑒𝑒𝑖𝑖Ω𝑑𝑑2 Amplitude modulation

β€’ Acquire data with increasing 𝑑𝑑1 β€’ Fourier transform each FID (in 𝑑𝑑2) β€’ Fourier transform the spectra in 𝑑𝑑1

Rule, G.S. and Hitchens, T.K. Fundamentals of Protein NMR Spectroscopy, 2006, Springer

250

250

Page 18: Rotating frame (angular velocity 𝝎𝝎 )

2-dimensional (2D) NMR spectroscopy

Relaxation delay

90Β°y FID

𝑑𝑑1 𝑑𝑑2 π‘‘π‘‘π‘šπ‘šπ‘–π‘–π‘₯π‘₯

90Β°y 90Β°-y

F B C D E A G

𝑀𝑀𝑧𝑧 = βˆ’π‘€π‘€π΄π΄ cosΩ𝐴𝐴𝑑𝑑1 Nucleus A

D: 𝑀𝑀𝑧𝑧 = βˆ’π‘€π‘€π΅π΅ cosΩ𝐡𝐡𝑑𝑑1 Nucleus B

βˆ’π‘€π‘€π΄π΄ π‘Žπ‘Žπ΄π΄π΄π΄cosΩ𝐴𝐴𝑑𝑑1 E: βˆ’π‘€π‘€π΅π΅ π‘Žπ‘Žπ΅π΅π΅π΅cosΩ𝐡𝐡𝑑𝑑1

βˆ’π‘€π‘€π΅π΅ π‘Žπ‘Žπ΅π΅π΄π΄cosΩ𝐡𝐡𝑑𝑑1 βˆ’π‘€π‘€π΄π΄ π‘Žπ‘Žπ΄π΄π΅π΅cosΩ𝐴𝐴𝑑𝑑1

G: ( )π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑2𝑒𝑒𝑖𝑖Ω𝐴𝐴𝑑𝑑2 ( )π‘’π‘’βˆ’π‘…π‘…2𝑑𝑑2𝑒𝑒𝑖𝑖Ω𝐡𝐡𝑑𝑑2

Page 19: Rotating frame (angular velocity 𝝎𝝎 )

Ω𝐴𝐴

Ω𝐡𝐡

Ω𝐡𝐡

Ω𝐴𝐴

Page 20: Rotating frame (angular velocity 𝝎𝝎 )

Rankin, Naomi & Preiss, David & Welsh, Paul & Burgess, Karl & Nelson, Scott & Lawlor, Debbie & Sattar, Naveed. (2014). The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective. Atherosclerosis. 237. 287–300.

Instrumentation

Page 21: Rotating frame (angular velocity 𝝎𝝎 )

600 MHz Agilent VNMRS spectrometer: β€’ four channels β€’ z-axis gradients β€’ HCN triple resonance probe 500 MHz Agilent VNMRS spectrometer: β€’ three channels β€’ three-axis gradients β€’ HCN triple resonance probe β€’ direct and indirect broadband

probes β€’ accessories for MAS

University of Montana

Page 22: Rotating frame (angular velocity 𝝎𝝎 )