royal belgian institute of marine engineers potential: turning … · 2012. 11. 7. · chemical...

3
Chemical potential: turning carbon dioxide into fuel A number of engineering companies are on a mission to make CO2 fuel production not just a phyiscal reality but a commercial one too. Stephen Harris reports Our entire way of life is built on a fundamental problem. Burning fossil fuels provides abundant cheap energy but produces a chemical widely believed to be dangerously altering the planet's climate. But what if that chemical could be recycled to produce an endless supply of fuel without altering the delicate balance of the atmosphere? That's the tantalising concept behind a slow but dramatic shift in thinking taking place among some scientists and engineers. Instead of viewing carbon dioxide (CO2) just as a cause of climate change, they see it as part of the solution: not something dangerous that needs to be hidden away underground but a useful material that could help reduce our dependence on fossil fuels. Support for carbon capture and utilisation (CCU), rather than carbon capture storage (CCS), has been growing for several years, spurred on by research grants from, among others, the US departments of defense and energy and by companies who are successfully turning CO2 into plastics, building materials and now fuels on an industrial scale. None have yet proven they can profitably produce a sustainable, synthetic alternative to fossil fuels, but there are several persuasive reasons why they're driving ever closer towards that goal. And thanks to some clever engineering, some may be on the verge of a breakthrough. The most obvious reason for pursuing CCU is that turning CO2 into a valuable product could help make the process of capturing it more profitable and potentially even viable without government subsidies. It also reduces the need for locations and infrastructure to deposit the gas underground at the risk of it leaking out due to natural or induced seismic activity. But part of viewing CO2 as useful means understanding that the carbon that forms it is a vital part of our economy and, indeed, the natural world. 'It is the molecule of life — very central to all the chemistry we do,' said Prof Will Zimmerman of Sheffield University, whose work on improving algae production and anaerobic digestion has led him to a new CCU research project about to begin across several UK institutions (see below: Using carbon dioxide to grow algae for biofuels). 'It doesn't make sense to stop at carbon capture technology and sequester it. That may be a shortterm win if you're trying to fight global warming, but it's a longterm loss when it comes to making economic use of that carbon.' Another way to view CCU is not just as something that can directly reduce fossil fuel emissions but also as a method of promoting renewable generation, namely as an energy storage medium. Turning CO2 into fuel requires energy, so hooking up production to wind or solar farms creates a way to save excess electricity from these intermittent sources in a form that can easily be used with our existing liquid fuel infrastructure. This is the view of Rich Masel, a retired professor from Illinois University, whose company, Dioxide Materials, is using renewably driven electrolysers to convert CO2 into vehicle fuel. He argues that CO2derived fuel also offers a more feasible alternative to producing biofuels from crops, pointing to a recent US Congresscommissioned report that found the current US biofuel programme may be ineffective at reducing global greenhousegas emissions. 'The problem with biodiesel is you can never make enough of it,' he said. 'There's not enough arable land to make enough biodiesel to make a really significant difference to CO2.' The positive news about making fuel from CO2 is the variety of ways in which it can be done, although these fall into two broad categories. The first is by following nature's own method for converting CO2, photosynthesis, either by processing biomass, algae or other microorganisms or by artificially recreating the process using ultraviolet light to drive the reaction of CO2 with hydrogen from water. For example, Princeton University spinout company Liquid Light says it can produce more than 20 different fuel products from CO2 using this technique. But while it's easy to think of photosynthesis as an elegant solution — and artificial leaves make for eyecatching headlines — using forms of energy other than light to drive the reaction can free scientists from some of the constraints of the natural process, not least its relatively low energy efficiency. The basic idea is to use heat or electricity and a catalyst to split the CO2 molecules, producing carbon monoxide that can be combined with hydrogen to create syngas. This can then be turned into liquid fuel via FischerTropsch synthesis or another process. Some groups have developed impressively novel ways of tackling this problem. For example, researchers at Sandia National Laboratories in New Mexico have built a giant solar concentrator that uses the sun's heat to break down CO2 and water for syngas production, and a team at ETH Zurich university in Switzerland is pursuing a similar idea. But perhaps more striking is the number of companies that are using established techniques alongside cuttingedge research to make CO2derived fuels not just possible but potentially Royal Belgian Institute of Marine Engineers

Upload: others

Post on 24-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Royal Belgian Institute of Marine Engineers potential: turning … · 2012. 11. 7. · Chemical potential: turning carbon dioxide into fuel A number of engineering companies are on

Chemicalpotential:turningcarbondioxideintofuelA number of engineering companies are on a mission to make CO2 fuel production not just a phyiscal reality but a commercial one too.  Stephen Harris reports 

Our  entire  way  of  life  is  built  on  a  fundamental  problem. Burning  fossil  fuels  provides  abundant  cheap  energy  but produces a chemical widely believed to be dangerously altering the  planet's  climate.  But  what  if  that  chemical  could  be recycled to produce an endless supply of fuel without altering the delicate balance of the atmosphere? That's the tantalising concept  behind  a  slow  but  dramatic  shift  in  thinking  taking place among some scientists and engineers. Instead of viewing carbon dioxide (CO2) just as a cause of climate change, they see it as part of the solution: not something dangerous that needs to  be  hidden  away  underground  but  a  useful material  that could help reduce our dependence on fossil fuels.    Support for carbon capture and utilisation (CCU), rather than carbon  capture  storage  (CCS),  has  been  growing  for  several years, spurred on by research grants from, among others, the US departments of defense and energy and by companies who are  successfully  turning  CO2  into  plastics,  building materials and now  fuels  on  an  industrial  scale. None  have  yet proven they can profitably produce a sustainable, synthetic alternative to  fossil  fuels,  but  there  are  several  persuasive  reasons why they're  driving  ever  closer  towards  that  goal.  And  thanks  to some  clever  engineering,  some  may  be  on  the  verge  of  a breakthrough.    The most obvious reason for pursuing CCU is that turning CO2 into  a  valuable  product  could  help  make  the  process  of capturing it more profitable and potentially even viable without government  subsidies.  It  also  reduces  the need  for  locations and infrastructure to deposit the gas underground at the risk of it  leaking out due  to natural or  induced  seismic  activity. But part of  viewing CO2 as useful means understanding  that  the carbon that forms it is a vital part of our economy and, indeed, the natural world.    'It  is the molecule of  life — very central to all the chemistry we  do,'  said  Prof  Will  Zimmerman  of  Sheffield  University, whose  work  on  improving  algae  production  and  anaerobic digestion has led him to a new CCU research project about to begin across several UK  institutions  (see below: Using carbon dioxide  to grow algae  for biofuels).  'It doesn't make  sense  to stop at carbon capture technology and sequester  it. That may be a short‐term win if you're trying to fight global warming, but it's a long‐term loss when it comes to making economic use of that carbon.' Another way  to  view  CCU  is  not  just  as  something  that  can directly  reduce  fossil‐fuel  emissions  but  also  as  a method of 

promoting renewable generation, namely as an energy storage medium. Turning CO2 into fuel requires energy, so hooking up production to wind or solar farms creates a way to save excess electricity  from  these  intermittent sources  in a  form  that can easily be used with our existing liquid fuel infrastructure.    This is the view of Rich Masel, a retired professor from Illinois University,  whose  company,  Dioxide  Materials,  is  using renewably driven electrolysers to convert CO2 into vehicle fuel. He  argues  that  CO2‐derived  fuel  also  offers  a more  feasible alternative  to  producing  biofuels  from  crops,  pointing  to  a recent  US  Congress‐commissioned  report  that  found  the current US biofuel programme may be  ineffective at reducing global greenhouse‐gas emissions.  'The problem with biodiesel is  you  can  never make  enough  of  it,'  he  said.  'There's  not enough arable land to make enough biodiesel to make a really significant difference to CO2.'    The positive news about making fuel from CO2 is the variety of ways  in which  it can be done, although  these  fall  into  two broad categories. The first is by following nature's own method for  converting  CO2,  photosynthesis,  either  by  processing biomass,  algae  or  other  micro‐organisms  or  by  artificially recreating  the  process  using  ultraviolet  light  to  drive  the reaction  of  CO2  with  hydrogen  from  water.  For  example, Princeton University spin‐out company Liquid Light says  it can produce more than 20 different fuel products from CO2 using this technique.    But while  it's easy  to  think of photosynthesis as an elegant solution — and artificial leaves make for eye‐catching headlines — using forms of energy other than light to drive the reaction can free scientists from some of the constraints of the natural process, not least its relatively low energy efficiency. The basic idea is to use heat or electricity and a catalyst to split the CO2 molecules, producing carbon monoxide that can be combined with hydrogen to create syngas. This can then be turned  into liquid fuel via Fischer‐Tropsch synthesis or another process.    Some  groups  have  developed  impressively  novel  ways  of tackling  this  problem.  For  example,  researchers  at  Sandia National  Laboratories  in New Mexico have built a giant  solar concentrator that uses the sun's heat to break down CO2 and water  for  syngas  production,  and  a  team  at  ETH  Zurich university in Switzerland is pursuing a similar idea. But perhaps more  striking  is  the  number  of  companies  that  are  using established  techniques  alongside  cutting‐edge  research  to make CO2‐derived fuels not just possible but potentially 

Royal Belgian Institute of Marine Engineers

Page 2: Royal Belgian Institute of Marine Engineers potential: turning … · 2012. 11. 7. · Chemical potential: turning carbon dioxide into fuel A number of engineering companies are on

commercially viable as well.    Air  Fuel  Synthesis  (AFS)  in  the  UK  is  one  such  company harnessing expertise from the petrochemical  industry, using a technique developed by Mobil to turn gas  into methanol.  'It's based on  tried‐and‐tested  catalytic processes  that we  know,' said  managing  director  Peter  Harrison.  'As  it  happens,  that catalytic process actually converts carbon monoxide  into CO2 before  it converts  that  to methanol. So we  said  forget about the carbon monoxide.' The company has set up a pilot plant in a 30ft  (9m) container  in Teeside that can produce more than 1,800  litres  of  renewable  fuels  a  year  and  is  now  seeking funding to take production to a commercial level.    Dioxide  Materials,  meanwhile,  is  using  the  recent development of catalytic ionic liquids to help break down CO2 inside an electrolyser, a novel technique that allows the direct use  of  renewable  energy  but  that  was  inspired  by  the chloralkali  process  used  to  make  chlorine  and  sodium hydroxide  from  salt water.  'The advantage of  this  is  that  the expertise and  the  infrastructure  is  in place  for  the  large‐scale electrolysers,'  said  Dioxide  Materials'  business  development specialist Megan Atchley. 

 Source: Dioxide Materials  Dioxide Material’s three‐electrode cell for lab‐scale CO2 conversion  But  possibly  the  most  developed  process  so  far  has  been created by Iceland's Carbon Recycling International (CRI), which has moved from a pilot plant to a demonstration facility with a capacity of five million  litres of methanol a year — which the company says could be blended into petrol to reduce Iceland's volume  of  fuel  imports.  It  uses  around  5MW  of  power  and about 4,500 tonnes of CO2 annually from a nearby geothermal power plant.    Once  again,  the  advantage  of  this  electro‐thermo‐chemical catalytic method  over  alternatives  such  as  algae‐based  fuels was that it provided the fastest way to a commercial‐scale 

operation and allowed the company to draw more on previous research  and  experience.  'We  needed  to  take  into consideration the timeline and capital requirements for putting the project together,' said chief executive KC Tran. 'The design was  about  a way  to put  the  system up  rapidly but  also  cost effectively. Our plant is built by module, which means we built all  the  different  components  in  different  places  around  the world  according  the  specification  of  the  design  and  brought them together here in Iceland for rapid integration.'    The  engineering  challenge  for  all  the  groups  that  hope  to make CO2 fuel production a commercial reality is scaling up the process while making  it cost‐effective. CRI's modular  solution has allowed  the  company  to build each  stage of  the process individually:  CO2  capture  and  purification,  hydrogen production,  syngas  production  and  compression,  methanol synthesis  and  finally  distillation.  But  it  also  reflected  the importance of a whole‐system approach, where every stage is optimised for this specific production method. Even for the most novel part of the system — the production and  reaction  of  the  syngas —  the  team was  able  to  call  on expertise  from  engineering partners.  'We need uniform heat management  and  to  design  the  reactor  so  there  are  no hotspots in the system,' said Tran. 'We need a catalyst that can tolerate  some  level of  impurity and  that  can be deployed  so that it can be exposed evenly throughout the reactor.    'This was  the design  that we could not  learn  from  the pilot scale.  At  the  larger  scale, we  need  to  leverage what we've learned  but  also  from  people  who  know  how  to  scale  up systems. The choice we made on the design proved to be very good but we didn't know that until we ran the longer cycles.' By continuing  to  build  on  an  established  knowledge  base  and using  this  modular  construction  approach,  the  CRI  team believes it can effectively upsize its plant to 10 times its current production levels — enough to turn a profit.    There are other important considerations if CO2‐derived fuels are to become commercially viable. Tran emphasised the need for flexible production so energy can be stored when electricity is cheapest. Another issue is what kind of fuel is produced and for what market: road vehicles, aviation fuel or something else.    'We  believe  there  is  a market  for  a  premium  product  for motorsport,'  said AFS's Harrison, who  hopes  to  capitalise  on the  sport's  move  towards  more  sustainable  fuel  mixes.  'A bioethanol  blend  is  different  to  petrol;  it  has  different characteristics  and  you  can  effect  the  energy  performance. Having  consistency  of manufacture  is  key  and  when  you're using a variable product such as a bioethanol then that's quite difficult but a synthetic fuel is pretty easy.'    Despite  the appeal and  rapid development of CCU,  it's very unlikely  to  remove  the  need  for  CCS  in  reducing  carbon emissions in the short to medium term, given the scale of the challenge, the limited market for CO2‐derived products and the capital  costs  involved  (see  box:  more  investment  in  CCU needed). But  if a  transition  to a  low‐carbon economy can be managed,  is  there potential  for CCU  systems  to one day pull CO2 directly from the atmosphere  instead of relying on point sources such as power plants?    'The process works almost down to atmospheric  levels,' said Dioxide Materials' Masel. 'The problem is that, if you take CO2 out of the air [surrounding the plant], how do we get the CO2 to  come  back  again?' Harrison  of AFS  suggested  it might be possible using multiple capture units located over a vast area. 'I  would wonder what the dangers of sucking CO2 out of one  

Page 3: Royal Belgian Institute of Marine Engineers potential: turning … · 2012. 11. 7. · Chemical potential: turning carbon dioxide into fuel A number of engineering companies are on

area were,' he said. Although many  factors would have to be overcome, perhaps one day it might really be possible to make fuel out of thin air.  Using carbon dioxide to grow algae for biofuels The challenge to make CO2‐derived fuels economic is so great that  every  stage  of  the  process  needs  to  be  optimised  and perfected.  The  need  for  a  holistic  approach  is  especially apparent in algae biofuels, which appear to offer an alternative to biofuels  that  reduce arable  land  availability but which are also too expensive to be economic and can produce more CO2 through their production than they absorb.    Prof Will Zimmerman of Sheffield University points out  that you can use the CO2  in biomass to grow algae for biofuels or for anaerobic digestion. 'If you wanted to make that line more profitable,  since  the  liquid  biofuels  aren't  profitable  now perhaps the biomass to anaerobic digestion would be,' he said. 'If  you  can  increase  the  profitability  of  the  processing downstream then you could potentially run a bio refinery with a whole range of outputs, some of which are highly profitable and  some  of  which  may  be  at  cost  but  are  part  of  the processing.'    Zimmerman  has  developed  a  novel  method  of  producing micro bubbles with far less energy than conventional methods, which  has  the  potential  to  create  a  much  cheaper  way  of harvesting the algae for use in biofuels. But it could also enable the recycling of CO2 from anaerobic digesters to increase their methane  production,  which  is  the  subject  of  a  £5.7m  CCU project led by Sheffield's Prof Ray Allen and due to start later                                    

this year.      'An engineer has to be an economist as well,' said Zimmerman, who has launched spin‐out company Perlemax to commercialise  his  technology.  'If  the  overall  process  is  not economic,  then  you  haven't  solved  the  problem;  you've  just come  up  with  nice  technology  that's  maybe  bits  of  the solution.'  More investment in CCU needed The UK should invest more money in CCU research in line with its  competitors  if  it  wants  to  benefit  from  the  use  and commercialisation  of  the  technology,  according  to  a  policy document published  last  year by  the Centre  for  Low Carbon Futures.    Carbon  capture  and  utilisation  in  the  green  economy, authored  by  Peter  Styring  of  Sheffield  University  and  Daan Jansen of Dutch research institute ECN, found that while the UK government was  investing £1bn  in CCS demonstration,  there were no plans for similar investment in CCU, unlike in Germany, the US and Australia.    However,  CCU  should  be  seen  as  a  complementary technology to CCS and not as an alternative, the report said. It noted suggestions that the chemical industries could convert at most around 10 per cent of global CO2 emissions into synthetic fuels.    CCU was also limited by market demand for current products and high capital costs for plant construction, it said, but these issues could be addressed through research and development. Source:  www.theengineer.co.uk      www.carbonrecycling.is     AUGUST 2012