rubber visco summary
Embed Size (px)
TRANSCRIPT

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Modeling Rubber and Viscoelasticity with Abaqus
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Modeling Rubber and Viscoelasticity with Abaqus
Motivation
• Rubber materials are found in many components.
• Some of these are illustrated on the following slide.
• Rubber applications include tires, gaskets, and bushings, among
others.
• The vast number of applications that use rubber materials necessitates
a good understanding of the modeling techniques used to analyze
rubber components.

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Modeling Rubber and Viscoelasticity with Abaqus
Motivation
Tires Medical DevicesSeals
Packaging
Bushings, mounts, etc.
keypad spring
Electronics, consumer
products
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Modeling Rubber and Viscoelasticity with Abaqus
Day 1
• Lecture 1 Rubber Physics
• Lecture 2 Introduction to Rubber Elasticity Models
• Lecture 3 Mechanical Testing
• Workshop 1
• Lecture 4 Defining Rubber Elasticity Models in Abaqus
• Lecture 5 Modeling Issues and Tips
• Workshop 2

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Modeling Rubber and Viscoelasticity with Abaqus
Day 2
• Lecture 6 Viscoelastic Material Behavior
• Lecture 7 Time-Domain Viscoelasticity
• Workshop 3
• Lecture 8 Frequency-Domain Viscoelasticity
• Workshop 4
• Lecture 9 Permanent Set in Solid Elastomers
• Lecture 10 Anisotropic Hyperelasticity
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Modeling Rubber and Viscoelasticity with Abaqus
Additional Material
• Appendix 1 Finite Deformations
• Appendix 2 Rubber Elasticity Models: Mathematical Forms
• Appendix 3 Linear Viscoelasticity Theory
• Appendix 4 Harmonic Viscoelasticity Theory
• Appendix 5 Suggested Reading

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Modeling Rubber and Viscoelasticity with Abaqus
Legal Notices
The Abaqus Software described in this documentation is available only under license from
Dassault Systèmes and its subsidiary and may be used or reproduced only in accordance with the
terms of such license.
This documentation and the software described in this documentation are subject to change
without prior notice.
Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any
errors or omissions that may appear in this documentation.
No part of this documentation may be reproduced or distributed in any form without prior written
permission of Dassault Systèmes or its subsidiary.
© Dassault Systèmes, 2011.
Printed in the United States of America
Abaqus, the 3DS logo, SIMULIA and CATIA are trademarks or registered trademarks of Dassault
Systèmes or its subsidiaries in the US and/or other countries.
Other company, product, and service names may be trademarks or service marks of their
respective owners. For additional information concerning trademarks, copyrights, and licenses,
see the Legal Notices in the Abaqus 6.11 Release Notes and the notices at:
http://www.simulia.com/products/products_legal.html.
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Modeling Rubber and Viscoelasticity with Abaqus
Revision Status
Lecture 1 5/11 Updated for 6.11
Lecture 2 5/11 Updated for 6.11
Lecture 3 5/11 Updated for 6.11
Lecture 4 5/11 Updated for 6.11
Lecture 5 5/11 Updated for 6.11
Lecture 6 5/11 Updated for 6.11
Lecture 7 5/11 Updated for 6.11
Lecture 8 5/11 Updated for 6.11
Lecture 9 5/11 Updated for 6.11
Lecture 10 5/11 Updated for 6.11
Appendix 1 5/11 Updated for 6.11
Appendix 2 5/11 Updated for 6.11
Appendix 3 5/11 Updated for 6.11
Appendix 4 5/11 Updated for 6.11
Appendix 5 5/11 Updated for 6.11
Workshop 1 5/11 Updated for 6.11
Workshop 2 5/11 Updated for 6.11
Workshop 3 5/11 Updated for 6.11
Workshop 4 5/11 Updated for 6.11
Workshop Answers 1 5/11 Updated for 6.11
Workshop Answers 2 5/11 Updated for 6.11
Workshop Answers 3 5/11 Updated for 6.11
Workshop Answers 4 5/11 Updated for 6.11

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 1
Rubber Physics
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L1.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Solid Rubber
• Molecular Structure
• Material Processing
• Glass Transition Temperature
• Nearly Incompressible Behavior
• Typical Stress–Strain
Response
• Hysteresis and Damping
• Damage
• Anisotropy
• Thermoplastic Elastomers
• Physical Description
• Advantages and Disadvantages
• Rubber Foam
• Physical Description
• Cellular Structure
• Typical Stress–Strain Response
• Poisson’s Effect

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 2
Introduction to Rubber Elasticity Models
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L2.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Introduction
• Models for Solid Rubber Elasticity
• Mullins Effect
• Model for Foam Rubber Elasticity

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 3
Mechanical Testing
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L3.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Modes of Deformation
• Uniaxial Tension
• Planar Tension
• Uniaxial Compression
• Equibiaxial Tension
• Confined Compression (for volumetric response)
• Loading History
• Testing at Temperature
• Test Specimens
• Test Data Guidelines
• Testing for Time-Dependent Properties

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 4
Defining Rubber Elasticity Models in Abaqus
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L4.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Curve-Fitting for Solid Rubber Elasticity
• Material Stability
• Curve-fitting in Abaqus/CAE
• Choosing a Hyperelastic Model
• Defining Hyperelastic Models
• Mullins Effect
• Hyperfoam Model
• UHYPER

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 5
Modeling Issues and Tips
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L5.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Contact
• Element Selection
• Overview
• First-Order or Second-Order?
• Full or Reduced Integration?
• Regular or Hybrid?
• Incompatible Modes
• Modified Elements
• Complex Geometry
• Meshing Considerations
• Constraints and Reinforcements
• Instability
• Material Instability
• Structural Instability
• Surface Wrinkling and Folding
• Output Variables
• Using Abaqus/Explicit for Rubber
Analyses
• Special Features
• Example: Column Shifter Boot
• Example: Weather Seal

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 6
Viscoelastic Material Behavior
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L6.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Introduction
• Effects of Viscoelasticity
• Creep
• Stress Relaxation
• Damping and Hysteresis
• Linear Viscoelasticity
• Nonlinear Viscoelasticity
• Temperature Dependence

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 7
Time-Domain Viscoelasticity
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L7.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Classical Linear Viscoelasticity
• Prony Series Representation
• Finite-Strain Viscoelasticity
• Relaxation and Creep Test Data
• Prony Series Data
• Automatic Material Evaluation
• Time-Temperature Correspondence
• Reduced Time
• Input Data
• WLF Example
• Usage Hints
• Hysteresis in Elastomers

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 8
Frequency-Domain Viscoelasticity
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L8.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Frequency-Domain Response
• Storage and Loss Moduli
• Classical Isotropic Linear Viscoelasticity
• Isotropic Finite-Strain Viscoelasticity
• Procedures

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 9
Permanent Set in Solid Elastomers
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L9.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Motivation
• Defining Permanent Set
• Example
• Summary

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Lecture 10
Anisotropic Hyperelasticity
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
L10.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Motivation
• Models Available in Abaqus
• Examples

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Appendix 1
Finite Deformations
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
A1.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Motions and Displacements
• Extension of a Material Line Element
• The Deformation Gradient Tensor
• Finite Deformations and Strain Tensors
• Decomposition of a Deformation
• Principal Stretches and Principal Axes of Deformation
• Strain Invariants
• Summary

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Appendix 2
Rubber Elasticity Models: Mathematical Forms
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
A2.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Energy Functions for Solid Rubbers (Isotropic)
• Polynomial Model
• Mooney-Rivlin Model
• Reduced Polynomial Model
• Neo-Hookean Model
• Yeoh Model
• Ogden Model
• Marlow Model
• Arruda-Boyce Model
• Van der Waals Model
• Foam Rubber Model
• Mullins Effect

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Appendix 3
Linear Viscoelasticity Theory
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
A3.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Classical Linear Viscoelasticity

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Appendix 4
Harmonic Viscoelasticity Theory
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
A4.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Classical Linear Viscoelasticity
• Harmonic Excitation

| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
Appendix 5
Suggested Reading
| w
ww
.3ds.c
om
| ©
Dassault S
ystè
mes |
A5.2
Modeling Rubber and Viscoelasticity with Abaqus
Overview
• Suggested Reading