rudiger-urbanke-lecture.pdf

Upload: ardeva

Post on 21-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    1/70

    Approaching ShannonRuediger Urbanke, EPFL

    Summer School @ USC, August 6th, 2010

    Many thanks to Dan Costello, Shrinivas Kudekar, Alon Orlitsky, and Thomas Riedelfor their help with these slides.

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    2/70

    Storing Shannon

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    3/70

    Networking Shannon

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    4/70

    Completing Shannon

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    5/70

    Compressing Shannon

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    6/70

    Reading Shannon

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    7/70

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    8/70

    Coding

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    9/70

    Disclaimer

    Technical slides do not contain references.These are all summarized at the end of each section.

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    10/70

    Classes of Codes

    (linear) block codes convolutional codes

    sparse graph codes polar codes

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    11/70

    How Do We Compare?

    block error probabilityPN(R,C)

    R rate

    C capacity

    complexity

    N block length

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    12/70

    How We Compare: Error Exponent

    error exponentE(R,C) = limN

    1

    N log(PN(R,C))

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    13/70

    How We Compare: Finite-Length Scaling

    10-8

    10

    -7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    10-8

    10

    -7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    Nincreasing

    channel quality

    1/

    f(z) scaling function;mothercurve

    scaling exponent

    threshold

    N

    1 ( )

    PN

    (R,

    )

    0

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    14/70

    How We Compare: Finite-Length Scaling

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    C

    C

    CN1/(C C)

    PN

    (R,

    C) Nincreasing

    rate

    threshold

    1/

    f(z) scaling function;mothercurve

    scaling exponent

    0

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    15/70

    Finite-Length Scaling

    f(z) scaling function;mothercurve

    > 0 scaling exponent

    limN:N1/(CR)=z

    PN(R,C) =f(z)

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    16/70

    Finite-Length Scaling -- References

    V. Privman, Finite-size scaling theory, in Finite Size Scaling and Numerical Simulation of StatisticalSystems, V. Privman, ed., World Scientific Publ., Singapore, 1990, pp. 198.

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    17/70

    Complexity

    = CR gap to capacity

    exponential versus polynomial

    linear -- but look at prefactor

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    18/70

    Block Codes

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    19/70

    Error Exponent of Block Codes under MAP

    error exponentE(R,C) = limN N

    log(PN(R,C))

    quadratic

    Figure ``borrowed from

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    20/70

    Error Exponent -- References

    R. Gallager,Information Theory and Reliable Communication, Wiley 1968.

    A. Barg and G. D. Forney, Jr., Random codes: Minimum distances and error exponents, IEEETransactions on Information Theory, Sept 2002.

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    21/70

    Scaling of Block Codes under MAP -- BEC

    ``perfect code

    = 0 = 1 = 1R

    PN

    0

    1

    erasure fraction

    distribution of erasures

    E[E] = N[(E E)2] = N(1 )

    E N(N, N(1 ))

    PN QN((1 R) )

    N(1 )

    = Q

    N((1 R) )(1 )

    = Q

    z(1 )

    z =N((1R) )

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    22/70

    Scaling of Block Codes under MAP -- BEC

    random linear block codes are almost perfect

    square binary

    random matrixof dimension n

    0010101000101110010010

    101010101010100010100101011100010

    probability that full rank

    n1

    i=0

    2n 2i

    2n =

    n1

    i=0

    (1 2in) n 0.28878809508. . .

    00101010001011100100101010101010101000101001

    if we have k rowsless then probabilitydecays by roughly

    2(k+1

    2 )

    hence for random linear block codes the transition is of constant (on an absolute scale) width

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    23/70

    Scaling of Block Codes under MAP

    logA(N,P) = NCNVQ1(P) + O(log(N))

    P error probability

    block length

    A(N,P) size of largest such code

    i(x, y) = logdp(y| x)

    dp(y)

    C= E[i(x, y)]

    V = V[i(x, y)]

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    24/70

    Finite-Length Scaling -- References

    G. Landsburg, Uber eine Anzahlbestimmung und eine damit zusammenhangende Reihe, J.

    Reine Angew. Math. vol. 111, pp. 87-88, 1893.A. Feinstein, A new basic theorem of information theory, IRE Trans. Inform. Theory, vol.PGIT-4, pp. 222, 1954.V. Strassen, Asymptotische Abschtzungen in Shannons Informationstheorie, Trans. ThirdPrague Conf. Information Theory, pp. 689723, 1962.Y. Polyanskiy, H. V. Poor and S. Verd, "Dispersion of Gaussian Channels," 2009 IEEE Int.Symposium on Information Theory, Seoul, Korea, June 28-July 3, 2009.Y. Polyanskiy, H. V. Poor and S. Verd, "Dispersion of the Gilbert-Elliott Channel," 2009 IEEEInt. Symposium on Information Theory, Seoul, Korea, June 28-July 3, 2009.

    For a very simple proof of previous result ask Thomas Riedel, UIUC

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    25/70

    Convolutional Codes

    convolutional codes

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    26/70

    Convolutional Codes

    Figures `borrowed from

    affine

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    27/70

    Finite-Length Scaling of LDPC Codes -- BEC

    scaling behavior?

    K constraint length

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    28/70

    Convolutional Codes -- Some References

    Big bang:

    P. Elias, Coding for noisy channels, in IRE International Convention Record, Mar. 1955, pp. 3746.

    Algorithms and error exponents:

    J. M. Wozencraft, Sequential decoding for reliable communication, Research Lab. of Electron. Tech. Rept. 325,MIT, Cambridge, MA, USA, 1957.

    R. M. Fano, A heuristic discussion of probabilistic decoding, IEEE Trans. Information Theory, vol. IT-9, pp.64-74, Apr. 1963.A. J. Viterbi, Error bounds of convolutional codes and an asymptotically optimum decoding algorithm, IEEETrans. Inform. Theory, 13 (1967), pp. 260269.H. L. Yudkin, Channel state testing in information decoding, Sc.D. thesis, Dept. of Elec. Engg.,M.I.T., 1964.J. K. Omura, On the Viterbi decoding algorithm, IEEE Trans. Inform. Theory,15 (1969), pp. 177179.G. D. Forney, Jr., The Viterbi algorithm, Proc. IEEE, 61 (1973), pp. 268278.K. S. Zigangirov, Time-invariant convolutional codes: Reliability function, in Proc. 2nd Joint Soviet-SwedishWorkshop Information Theory, Grnna, Sweden, Apr. 1985.

    N. Shulman and M. Feder, Improved Error Exponent for Time-Invariant and Periodically Time-VariantConvolutional Codes, IEEE Trans. Inform. Theory, 46 (2000), pp. 97103.G. D. Forney, Jr., The Viterbi algorithm: A personal history. E-print: cond-mat/0104079, 2005.

    Overview:

    A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding, McGraw-Hill, New York, NY,USA, 1979.S. Lin and D. J. Costello, Jr., Error Control Coding, Prent. Hall, Englewood Cliffs, NJ, USA, 2nd ed., 2004.

    R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding, IEEE Press, Piscataway, NJ, USA,1999.

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    29/70

    Some Open Questions

    Scaling behavior

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    30/70

    digrams such as TH, ED, etc. In the second-order approximation, digram structure is introduced. After a

    letter is chosen, the next one is chosen in accordance with the frequencies with which the various letters

    follow the first one. This requires a table of digram frequenciesp i j. In the third-order approximation,

    trigram structure is introduced. Each letter is chosen with probabilities which depend on the preceding two

    letters.

    3. THE S ERIES OFA PPROXIMATIONS TO ENGLISH

    To give a visual idea of how this series of processes approaches a language, typical sequences in the approx-

    imations to English have been constructed and are given below. In all cases we have assumed a 27-symbol

    alphabet, the 26 letters and a space.

    1. Zero-order approximation (symbols independent and equiprobable).

    XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL-

    HJQD.

    2. First-order approximation (symbols independent but with frequencies of English text).

    OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA

    NAH BRL.

    3. Second-order approximation (digram structure as in English).

    ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-

    COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

    4. Third-order approximation (trigram structure as in English).

    IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-

    TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

    5. First-order wordapproximation. Rather thancontinuewith tetragram, ,n-gramstructure it is easier

    and better to jump at this point to word units. Here words are chosen independently but with their

    appropriate frequencies.

    REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NAT-

    URAL HEREHE THEA IN CAME THETO OF TOEXPERT GRAY COMETO FURNISHES

    THE LINE MESSAGE HAD BE THESE.

    6. Second-order word approximation. The word transition probabilities are correct but no further struc-

    ture is included.

    THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-

    ACTER OF THISPOINTIS THEREFORE ANOTHER METHODFOR THELETTERS THAT

    THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

    The resemblance to ordinaryEnglish text increases quite noticeably at each of the above steps. Note that

    these samples have reasonably good structure out to about twice the range that is taken into account in their

    construction. Thus in (3) the statistical process insures reasonable text for two-letter sequences, but four-

    letter sequences from the sample can usually be fitted into good sentences. In (6) sequences of four or more

    words can easily be placed in sentences without unusual or strained constructions. The particular sequence

    of ten words attack on an English writer that the characterof this is not at all unreasonable. It appears then

    that a sufficiently complex stochastic process will give a satisfactory representation of a discrete source.

    The first two samples were constructed by the use of a book of random numbers in conjunction with

    (for example 2) a table of letter frequencies. This method might have been continued for (3), (4) and (5),

    since digram, trigram and word frequency tables are available, but a simpler equivalent method was used.

    7

    LDPC UDREVOIGRES

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    31/70

    Sparse Graph Codes

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    32/70

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    33/70

    var

    iablenodes

    check

    no

    des

    permutat

    ion

    ! "

    H x = 0

    sparse

    x1+x4+x8 = 0

    LDPC Ensemble

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    34/70

    (1-(1-x)5)3

    34

    #

    Asymptotic Analysis -- BEC

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    35/70

    35

    #

    (1-(1-x)5)3

    MAP versus BP

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    36/70

    Capacity Achieving -- BEC

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    37/70

    Capacity Approaching -- BMS

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    38/70

    Error Exponent of LDPC Codes -- BP

    graphG

    channel parameter

    # of iterations

    P{|PN(G, , )E[PN(G, , )]| } eN

    If converges to zero for large and if codehas error correcting radius then we can prove that the code

    has an error exponent under iterative decoding.

    E[PN(G, , )]

    simplest sufficient condition:code has expansion at least 3/4 which istrue whp if left degree is at least 5; (less restrictive conditions are knownbut more complicated); codes used in ``practice do not have error exponents

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    39/70

    Expansion

    |V||C|at most sizedl |V|

    take the smallest ratio|C|/(dl |V|)over all ``small sets

    (dl, dr)-regular cannothave expansion beyond(dl-1)/dl

    remarkably, random graphsessentially achieve this bound whp

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    40/70

    Finite-Length Scaling of LDPC Codes -- BEC

    scaling parameters computable

    PN =Q(z/)(1 + O(N

    1

    3 )) z =N(BP N2/3 )

    0.3 0.35 0.4 0.45 0.5

    PN

    10-1

    10-2

    10-3

    10-4

    10-5

    (x) =1

    6

    x +5

    6

    x3

    BP

    = 0.

    4828

    = 0.5791

    / = 0.6887

    (x) = x5 R = 3/7

    (we ignore error floor here!)

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    41/70

    Optimization

    0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    40.58 %

    0.0 1.0rate/capacity

    2 3 4 5 6 7 8 9 10

    2 3 4 5 6 7 8 9 10 11 12 13

    contribution to error floor

    6 8 10 12 14 16 18 20 22 24 2 6

    0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    40.58 %

    0.0 1.0rate/capacity

    2 3 4 5 6 7 8 9 10

    2 3 4 5 6 7 8 9 10 11 12 13

    contribution to error floor

    6 8 10 12 14 16 18 20 22 24 2 6

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    42/70

    Finite-Length Scaling of LDPC Codes -- BAWGNC

    (3, 6) BSC (3, 4) BAWGNC

    same form of scaling law; parameters are computable but no proof

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    43/70

    Gap To Threshold versus Length

    limN:N1/(CR)=z

    PN(R,C) =f(z) N1/(CR) = z fixes errorN1/ (CR)

    = z

    N= (z )additive gap

    = 2halving the gap requires increasing length by 4

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    44/70

    Gap versus Complexity (per bit)

    BEC/Threshold -- O(1); degrees are constant and we touch every edge at mostonce

    BEC/Capacity -- O(log(1/\delta)) for standard LDPC; degrees grow like log(1/\delta)and we touch every edge once

    BMS/Threshold -- ???

    BMS/Capacity -- ???

    BEC/Capacity -- O(1) for MN-type LDPC ensembles; degrees are constant and wetouch every edge at most `once

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    45/70

    Sparse Graph Codes -- Some References

    Big bang:R. G. Gallager, Low-density parity-check codes, IRE Trans.Inform.Theory, 8 (1962).C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error-correcting coding anddecoding, in Proc. of ICC, Geneva, Switzerland, May 1993.

    Analysis:M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. A. Spielman, Analysis of low density codes andimproved designs using irregular graphs, in Proc. of the 30th Annual ACM Symposium on Theory ofComputing, 1998, pp. 249258.M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. A. Spielman, Efficient erasure correcting codes, IEEETrans. Inform. Theory, 47 (2001), pp. 569584.T. Richardson, A. Shokrollahi, and R. Urbanke, Design of capacity-approaching irregular low-densityparity-check codes, IEEE Trans. Inform. Theory, 47 (2001), pp. 619637.T. Richardson and R. Urbanke, The capacity of low-density parity check codes under message-passing decoding, IEEE Trans. Inform. Theory, 47 (2001), pp. 599618.S.-Y. Chung, G. D. Forney, Jr., T. Richardson, and R. Urbanke, On the design of low-density parity-

    check codes within 0.0045 dB of the Shannon limit, IEEE Commun. Lett., 5 (2001), pp. 5860.

    Error exponents:D. Burshtein and G. Miller, Expander graph arguments for message-passing algorithms, IEEE Trans.Inform. Theory, 47 (2001), pp. 782790.O. Barak and D. Burshtein, Upper Bounds on the Error Exponents of LDPC Code Ensembles, TheIEEE International Symposium on Information Theory (ISIT-2006), Seattle, July 2006.

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    46/70

    Sparse Graph Codes -- Some References

    Finite-length scaling:A. Montanari, Finite-size scaling of good codes, in Proc. of the Allerton Conf. on Commun., Control,and Computing, Monticello, IL, USA, Oct. 2001.A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, Finite-length scaling for iteratively decodedLDPC ensembles, in Proc. of the Allerton Conf. on Commun., Control, and Computing, Monticello, IL,USA, Oct. 2003.J. Ezri, A. Montanari, and R. Urbanke, Finite-length scaling for Gallager A, in 44th Allerton Conf. on

    Communication, Control, and Computing, Monticello, IL, Oct. 2006.A. Dembo and A. Montanari, Finite size scaling for the core of large random hyper-graphs. E-print:math.PR/0702007, 2007.Ezri, J., Montanari, A., Oh, S. and Urbanke, R.(2008) The Slope Scaling Parameter for GeneralChannels, Decoders, and Ensembles. Proceeding of the IEEE International Symposium on InformationTheory.

    Complexity:

    A. Khandekar and R. J. McEliece, On the complexity of reliable communication on the erasurechannel, in Proc. IEEE Int. Symp. Information Theory (ISIT2001), Washington, DC, Jun. 2001, p. 1.H. D. Pfister, I. Sason, and R. Urbanke, Capacity-achieving ensembles for the binary erasure channelwith bounded complexity, IEEE Transactions on Inform. Theory, vol. 51 , issue 7, 2005 , pp. 2352 -2379.

    Overviews:D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge Univ. Press,2003.

    T. Richardson and R. Urbanke, Modern Coding Theory, Cambridge Univ. Press, 2008.

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    47/70

    Some Open Questions

    Simple design procedures?

    Can you achieve capacity on general BMS channels?

    Thresholds under LP decoding?

    Scaling for general BMS channels?

    Scaling under MAP?

    Scaling under LP decoding?

    Scaling under flipping decoding?

    Scaling to capacity?

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    48/70

    Polar Codes

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    49/70

    patterns

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    50/70

    Codes from Kronecker Product of G2

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    51/70

    Reed-Muller Codes

    choose rows of largest weight

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    52/70

    Polar Codes

    W -- BMS channel

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    53/70

    Channel Polarization

    bad

    ch

    annels

    0

    0

    0

    0

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    54/70

    Successive Decoding

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    55/70

    Successive Decoding

    Stefan Meier http://ipgdemos.epfl.ch/polarcodes/

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    56/70

    Channel Polarization

    threshold

    Stefan Meier http://ipgdemos.epfl.ch/polarcodes/

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    57/70

    How Do Channels Polarize?

    X1

    X2

    U1=X1+X2; observe Y1and Y2 U2=X2; U2=X1+U1 ; observe Y1and Y2

    U2

    Y2 Y1

    X2 X1+U1=X1

    repetition code

    +

    U1

    Y1 Y2

    X1 X2

    parity-check node

    #

    1-(1-#)2

    much worse

    #

    #2 much better

    BEC(#)

    BEC(#)noise

    known

    total capacity = (1-#)2

    +1-#2

    =2(1-#)

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    58/70

    How Do Channels Polarize?

    0.5

    0.5

    0.75

    0.25

    0.9375

    0.4375

    0.5625

    0.0625

    0.9961

    0.8086

    0.6836

    0.1211

    0.8789

    0.3164

    0.1914

    0.0039

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    59/70

    Polar Codes -- Some References

    Big bang:

    E. Arikan, Channel polarization: A method for constructing capacity-achieving codes for symmetricbinary-input memoryless channels, http://arxiv.org/pdf/0807.3917

    Exponent:

    E. Arikan and E. Telatar, On the Rate of Channel Polarization, http://arxiv.org/pdf/0807.3806

    S. B. Korada, E. Sasoglu, and R. Urbanke, Polar Codes: Characterization of Exponent, Bounds, andConstructions, http://arxiv.org/pdf/0901.0536

    Source Coding:

    N. Hussami, S. B. Korada, and R. Urbanke, Performance of Polar Codes for Channel and SourceCoding, http://arxiv.org/pdf/0901.2370S. B. Korada, and R. Urbanke, Polar Codes are Optimal for Lossy Source Coding, http://arxiv.org/pdf/0903.0307E. Arikan, Source Polarization, http://arxiv.org/pdf/1001.3087

    Non-symmetric and non-binary channels:

    E. Sasoglu, E. Telatar,and E.Arikan, Polarization for arbitrary discrete memoryless channels, http://arxiv.org/pdf/0908.0302R. Mori and T. Tanaka, Channel Polarization on q-ary Discrete Memoryless Channels by ArbitraryKernels, http://arxiv.org/pdf/1001.2662R. Mori and T. Tanaka, Non-Binary Polar Codes using Reed-Solomon Codes and Algebraic GeometryCodes, http://arxiv.org/pdf/1007.3661

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    60/70

    MAC channel:

    E. Sasoglu, E. Telatar and Edmund Yeh, Polar codes for the two-user multiple-access channel, http://arxiv.org/pdf/1006.4255E. Abbe and E. Telatar, Polar Codes for the m-User MAC and Matroids, http://arxiv.org/pdf/1002.0777

    Compound channel:

    S. H. Hassani, S. B. Korada,and R. Urbanke, The Compound Capacity of Polar Codes, http://arxiv.org/pdf/0907.3291

    Wire-tap channel and security:

    H. Mahdavifar and A. Vardy,Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes,http://arxiv.org/pdf/1007.3568E. Hof and S. Shamai, Secrecy-Achieving Polar-Coding for Binary-Input Memoryless Symmetric Wire-

    Tap Channels, http://arxiv.org/pdf/1005.2759Mattias Andersson, Vishwambhar Rathi, Ragnar Thobaben, Joerg Kliewer, Mikael Skoglund, NestedPolar Codes for Wiretap and Relay Channels, http://arxiv.org/pdf/1006.3573O. O. Koyluoglu and H. El Gamal, Polar Coding for Secure Transmission and Key Agreement, http://arxiv.org/pdf/1003.1422

    Constructions:

    R. Moriand T. Tanaka, Performance and Construction of Polar Codes on Symmetric Binary-Input

    Memoryless Channels, http://arxiv.org/pdf/0901.2207M. Bakshi, S. Jaggi, and M. Effros, Concatenated Polar Codes, http://arxiv.org/pdf/1001.2545

    Scaling:

    S. H. Hassani and R. Urbanke, On the scaling of Polar codes: I. The behavior of polarized channels,http://arxiv.org/pdf/1001.2766T. Tanaka and R. Mori, Refined rate of channel polarization, http://arxiv.org/pdf/1001.2067S. H. Hassani, K. Alishahi and R. Urbanke, On the scaling of Polar Codes: II. The behavior of un-polarized channels, http://arxiv.org/pdf/1002.3187

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    61/70

    Error Exponent of Polar Codes -- BECA First Guess

    Y =

    log(Z)

    X= log(Y)

    assume that Z is already small,hence Y is large

    Z

    Z2, wp1

    2,

    2ZZ2, wp12.

    Z

    Z2, wp 1

    2,

    1 (1 Z)2, wp 12.

    Y

    2Y, wp 1

    2,

    Y 1, wp 12.

    X

    X+ 1, wp 1

    2,

    X, wp 12.

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    62/70

    Error Exponent of Polar Codes -- BECA First Guess

    random walk on lattice with drift

    after m steps we expect X to have value roughly m/2

    this means we expect Y to have value roughly 2m/2 = 2N

    this means we expect Z to have value roughly 2 N

    X

    X+ 1, wp 1

    2,

    X, wp 12.

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    63/70

    Error Exponent of Polar Codes

    limm

    P(Zm 22

    m/2+mQ1(R/C)/2+o(

    m)

    ) = R

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    64/70

    Finite-Length Scaling for Polar Codes (BEC)

    Z

    Z2, wp1

    2,

    1 (1 Z)2, wp12.

    Battacharyya process

    z = 0 z = 1

    2

    symmetry of distribution = 1/2

    QN(x) = 1

    N|{i : x E(W

    (i)N

    ) 1

    4}|

    z = 0 z = 1

    1

    2

    z = 2x

    (general case follows in similar manner)

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    65/70

    Finite-Length Scaling for Polar Codes -- BEC

    Q(x) = limN

    N1

    QN(x) scaling assumption

    3.62

    4

    BEC

    BAWGNC

    Q(x) = 21

    1Q(1/2

    1/4 x/2) + (1 21{x1/8})Q(min

    x/2, 1/2

    x/2)

    solve this functional equation (numerically)

    this gives Q(x) (up to scaling) and

    Q(x)

    2Q2N(x)=QN(1/21/4 x/2)+(121{x1/8})QN(min

    x/2, 1/2

    x/2)

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    66/70

    Finite-Length Scaling for Polar Codes -- BECSimulations versus Scaling

    PN(R,C) Q1(N

    1

    (CR))

    N1 (CR)

    N = 223, 224, 225, 226

    lo

    g10

    PN

    (R,

    C)

    CR

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    67/70

    0.43 bits/channel use86 % of capacity

    Gap To Capacity versus Length

    limN:N1/(CR)=z

    PN(R,C) =f(z) N1 (CR) = z fixes errorN1/ (CR)

    = z

    N= (z/) 4

    !10 billion to get 1% close to capacity

    additive gap

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    68/70

    Gap to Capacity versus Complexity

    =O(log(1/))

    complexity per bit

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    69/70

    Some Open Questions

    Variation on the theme that performs better at small lengths?

    Do RM codes achieve capacity?

    Make scaling conjecture under successive decoding rigorous.

    Scaling behavior under MAP decoding?

    Find a reasonable channel where they do notwork. :-)

  • 7/24/2019 Rudiger-Urbanke-Lecture.pdf

    70/70

    Message

    sparse graph codes -- best codes in ``practice; still misssome theory; error floor region is tricky; still somewhat of an

    art to construct

    polar codes -- nice for theory; not (yet) ready for applicationsbut the field is young; how do we improve finite-lengthperformance

    scaling behavior is the next best thing to exact analysis;probably more meaningful characterization for practical

    case than error exponent