s-domain analysis - cae...

21
S-Domain Analysis

Upload: truongliem

Post on 11-Feb-2018

258 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

S-Domain Analysis

Page 2: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

s-Domain Circuit AnalysisTime domain

(t domain)Complex frequency domain (s domain)

LinearCircuit

Differentialequation

Classicaltechniques

Responsewaveform

Laplace Transform

Inverse Transform

Algebraicequation

Algebraictechniques

Responsetransform

L

L-1

Laplace Transform

LTransformed

Circuit

Page 3: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Kirchhoff’s Laws in s-Domaint domain s domain

Kirchhoff’s current law (KCL)

Kirchhoff’s voltage law (KVL)

)(1 ti

)(4 ti

)(2 ti

)(3 ti

0)()()()( 4321 =+−+ titititi 0)()()()( 4321 =+−+ sIsIsIsI

0)()()( 321 =++− tvtvtv 0)()()( 321 =++− sVsVsV

−+ )(2 tv −+ )(4 tv

+)(1 tv

+)(3 tv

+)(5 tv

Page 4: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Signal Sources in s Domain

L

L

t domain s domain

)(tv_

+

)(tvS_+

)(ti

circuiton depends)(

)()(==

titvtv S

Voltage Source:

_

+

)(sV )(sVS_+

)(sIVoltage Source:

circuiton depends)(

)()(==

sIsVsV S

+

_

)(tv )(tiS

)(ti

circuiton depends)(

)()(==

tvtiti S

Current Source:)(sV )(sIS

+

_)(sI

Current Source:

circuiton depends)(

)()(==

sVsVsI S

Page 5: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Time and s-Domain Element ModelsImpedance and Voltage Source for Initial Conditions

Time Domain

L

L

L

s-Domain

_

+

)(tvR R

)(tiR

)()( tRitv RR =Resistor:

_

+

)(sVR R

)(sIR

)()( sRIsV RR =Resistor:

_

+

)(tvL L

)(tiL

dttdiLtv L

L)()( =

Inductor:

_+_

+

)(sVL

Ls

)0(LLi

)(sIL

)0( )()(

L

LL

LisLsIsV −=

Inductor:

_

+

)(tvC C

)(tiC

)0(

)(1)(0

C

t

CC

v

diC

tv

+

= ∫ ττ

Capacitor:

_+

_

+

)(sVC

Cs1

svC )0(

)(sIC

s)(v

sICs

sV

C

CC

0

)(1)( +=

Capacitor:

Page 6: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Impedance and Voltage Source for Initial Conditions

RsIsVsZ

R

RR ==

)()()(

0)0(th wi)()()( === L

L

LL iLs

sIsVsZ

00th wi1)()()( === )(v

CssIsVsZ C

C

CC

• Impedance Z(s)

with all initial conditions set to zero

ansformcurrent tr transformvoltage)( =sZ

• Impedance of the three passive elements

Page 7: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Time and s-Domain Element ModelsAdmittance and Current Source for Initial Conditions

Time Domain

L

L

L

s-Domain

_

+

)(tvR R

)(tiR

)(1)( tvR

ti RR =Resistor:

_

+

)(sVR R

)(sIR

)(1)( sVR

sI RR =Resistor:

_

+

)(tvL L

)(tiLInductor:

)0(

)(1)(0

L

t

LL

i

dvL

ti

+

= ∫ ττ

_

+

)(tvC C

)(tiC

dttdvCti C

C)()( =

Capacitor:

Inductor:

s)(i

sVLs

sI

L

LL

0

)(1)( +=

_

+

)(sVLLs

siL )0(

)(sIL

)0( )()(

C

CC

CvsCsVsI −=

Capacitor:

_

+

)(sVCCs1 )0(CCv

)(sIC

Page 8: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Admittance and Current Source for Initial Conditions

RsVsIsY

R

RR

1)()()( ==

0)0(th wi1)()()( === L

L

LL i

LssVsIsY

00th wi)()()( === )(vCs

sVsIsY C

C

CC

• Admittance Y(s)

with all initial conditions set to zero

)(1

transformvoltageansformcurrent tr)(

sZsY ==

• Admittance of the three passive elements

Page 9: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Example: Solve for Current Waveform i(t)

L_+

)(tuVA

R

)(tiL

_

+

)(sVL)0(LLi

−+ )(sVR

_+

sVA

R

)(sI

Ls_+

0)()( =++− sVsVs

VLR

ABy KVL:

)()( sRIsVR =Resistor: )0()()( LL LisLsIsV −=Inductor:

0)0()()( =−++− LA LisLsIsRIs

V

LRsi

LRsRV

sRV

LRsi

LRssLVsI

LAA

LA

++

+−=

++

+=

)0(

)0()(

)(

)()0()( tueieR

VR

Vtit

LR

L

tLR

AA

+−=

−−Inverse Transform:

forced response natural response

Page 10: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Series Equivalence and Voltage Division

)()()()()( 1111 sIsZsIsZsV ==

)())()(()()()(

21

21

sIsZsZsVsVsV

+=+=KVL:

)()(

)()(

)()(

)()(

22

11

sVsZsZsV

sVsZ

sZsV

EQ

EQ

=

=

)()()()()( 2222 sIsZsIsZsV ==

)()()( 21 sZsZsZEQ +=

Restof

Circuit

Z1

Z2

−+ )(1 sV

+)(2 sV

+)(sV

)(sI

)(1 sI

)(2 sI

Restof

CircuitZEQ

+)(sV

)(sI

21 ZZZEQ +=

Page 11: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Parallel Equivalence and Current Division

)()()( 11 sVsYsI =

)())()(()()()(

21

21

sVsYsYsIsIsI

+=+=KCL:

)()(

)()(

)()(

)()(

22

11

sIsYsYsI

sIsY

sYsI

EQ

EQ

=

=

)()()( 22 sVsYsI =

)()()( 21 sYsYsYEQ +=

Restof

CircuitYEQ

+)(sV

)(sI

21 YYYEQ +=

Restof

CircuitY1 Y2

+)(sV

)(sI

)(2 sI)(1 sI

Page 12: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

)(1 sV 1EQZ_+

_

+

Ls

)(2 sV

A

B EQZ

)(1 sV_+

A

B

EQZ)(1 sV 1EQZ_+

_

+

Ls

)(2 sV

A

B EQZ

Example: Equivalence Impedance and Admittance

1

1)()(

2

1

+++=

++=+=

RCsRLsRLCs

RCsRLssZLssZ EQEQ

RRCsCs

RsZsY

EQEQ

11)(

1)(1

1+=+==

L

Find equivalent impedance at A and BSolve for v2(t)

Inductor current = 0capacitor voltage = 0

at t = 0

)(1 tv R C_+

_

+

L

)(2 tv

A

B

)(1 sV RCs1

_+

_

+

Ls

)(2 sV

A

B

)(1 sV 1EQZ_+

_

+

Ls

)(2 sV

A

B

)(

)()(

)(

12

11

2

sVRLsRCLs

R

sVZ

sZsV

EQ

EQ

++=

=)(1 sV R

Cs1

_+

_

+

Ls

)(2 sV

A

B 1EQZ

Page 13: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

General Techniques for s-Domain Circuit Analysis

• Node Voltage Analysis (in s-domain)– Use Kirchhoff’s Current Law (KCL)– Get equations of node voltages– Use current sources for initial conditions– Voltage source current source

• Mesh Current Analysis (in s-domain)– Use Kirchhoff’s Voltage Law (KVL)– Get equations of currents in the mesh– Use voltage sources for initial conditions– Current source voltage source

(Works only for “Planar” circuits)

Page 14: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Formulating Node-Voltage Equations

Step 0: Transform the circuit into the s domain using current sources to represent capacitor and inductor initial conditions

Step 1: Select a reference node. Identify a node voltage at each of the non-reference nodes and a current with every element in the circuit

Step 2: Write KCL connection constraints in terms of the element currents at the non-reference nodes

Step 3: Use the element admittances and the fundamental property of node voltages to express the element currents in terms of the node voltages

Step 4: Substitute the device constraints from Step 3 into the KCL connection constraints from Step 2 and arrange the resulting equations in a standard form

Page 15: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Example: Formulating Node-Voltage Equations

L

)(tiS

R C

L

t domain

)(sIS

RCs1

Ls

s domain

siL )0(

)0(CCv

)(sVA

)(2 sI )(1 sI )(3 sI

)(sVB

Referencenode

Step 0: Transform the circuit into the s domain using current sources to represent capacitor and inductor initial conditions

Step 1: Identify N-1=2 node voltages and a current with each element

Step 2: Apply KCL at nodes A and B:

0)()()0()0( :B Node

0)()()0()( :A Node

31

21S

=−++

=−−−

sIsIs

iCv

sIsIs

isI

LC

L

Step 3: Express element equations in terms of node voltages

[ ] [ ]

)()()()(1 where)()()()(

)()(1)()()()(

3

2

1

sCsVsVsYsIRGsGVsVsYsI

sVsVLs

sVsVsYsI

BBC

AAR

BABAL

=====

−=−=

Page 16: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Formulating Node-Voltage Equations (Cont’d)Step 2: Apply KCL at nodes A and B:

0)()()0()0( :B Node

0)()()0()( :A Node

31

21S

=−++

=−−−

sIsIs

iCv

sIsIs

isI

LC

L

Step 3: Express element equations in terms of node voltages

[ ] [ ]

)()()()(1 where)()()()(

)()(1)()()()(

3

2

1

sCsVsVsYsIRGsGVsVsYsI

sVsVLs

sVsVsYsI

BBC

AAR

BABAL

=====

−=−=

Step 4: Substitute eqns. in Step 3 into eqns. in Step 2 and collect common terms to yield node-voltage eqns.

siCvsVCs

LssV

Ls

sisIsV

LssV

LsG

LCBA

LSBA

)0()0()(1)(1 :B Node

)0()()(1)(1 :A Node

+=

++

−=

+

Page 17: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Solving s-Domain Circuit Equations• Circuit Determinant:

LsGCsGLCs

LsLsCsLsG

LsCsLsLsLsG

s

++=

−++=

+−−+

=∆

2

2)1()1)(1(

1111

)(

Depends on circuit element parameters: L, C, G=1/R, not on driving force and initial conditions

• Solve for node A using Cramer’s rule:

GCsGLCsCvLCsi

GCsGLCssILCs

sLsCsCvsi

LssisI

sssV

CLS

CL

LS

AA

+++−+

+++=

∆++

−+

=∆∆=

22

2 )0()0()()1()(

1)0()0(1)0()(

)()()(

Zero Statewhen initial conditionsources are turned off

Zero inputwhen input sources

are turned off

Page 18: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Solving s-Domain Circuit Eqns. (Cont’d)

• Solve for node B using Cramer’s rule:

GCsGLCsCvGLsGLi

GCsGLCssI

sCvsiLs

sisILsG

sssV

CLS

CL

LS

BB

+++++

++=

∆+−

−+

=∆∆=

22

)0()1()0()()(

)0()0(1)0()(1

)()()(

Zero State Zero input

Page 19: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Network Functions

• Driving-point function relates the voltage and current at a given pair of terminals called a port

Transform SignalInput Transform Response state-Zero function Network =

)(1

)()()(

sYsIsVsZ ==

• Transfer function relates an input and response at different ports in the circuit

)()(FunctionTransfer Voltage)(

1

2

sVsVsTV ==

Circuitin the

zero-state−

+)(sV

)(sI

Circuitin the

zero-state11 or IV 22 or IV

Input Output

_+

1V−

+2V)(sTV

In Out

)()(FunctionTransfer Current )(

1

2

sIsIsTI ==

)()(AdmittanceTransfer )(

1

2

sVsIsTY ==

)()(ImpedanceTransfer )(

1

2

sIsVsTZ == _

+

1V

2I

)(sTY

In Out

1I−

+2V)(sTZ

In Out

1I )(sTI

In Out

2I

Page 20: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Calculating Network Functions

Z1

Z2

+)(2 sV)(1 sV_

+Y1 Y2)(1 sI

)(2 sI

)()()( 21 sZsZsZEQ +=

)()()(

)()()(

21

2

1

2

sZsZsZ

sVsVsTV +

==

• Driving-point impedance

• Voltage transfer function:

)()()(

)()( 121

22 sV

sZsZsZsV

+

=

)()()( 21 sYsYsYEQ +=

)()()(

)()()(

21

2

1

2

sYsYsY

sIsIsTI +

==

• Driving-point admittance

• Voltage transfer function:

)()()(

)()( 121

22 sY

sYsYsYsI

+

=

Page 21: S-Domain Analysis - CAE Usershomepages.cae.wisc.edu/~ece902/LectureNotes/Simulation_1up/lec3c.… · S-Domain Analysis. s-Domain Circuit Analysis Time domain (t domain) Complex frequency

Impulse Response and Step Response

T(s)Circuit)(sX )(sY

Input Output)()()( sXsTsY =

• Input-output relationship in s-domain

)(1)()( sTsTsY =×=• When input signal is an impulse

– Impulse response equals network function– H(s) = impulse response transform– h(t) = impulse response waveform

ssH

ssTsG )()()( ==

• When input signal is a step– G(s) = step response transform– g(t) = step response waveform

)()( tutx =

)()( ttx δ=

(=) means equal almost everywhere,excludes those points at which g(t)has a discontinuitydt

tdgthdhsgt )())(( ,)()(0

== ∫ ττ