s h o c k - f it t e d n u m e r ic a l s o lu t io n s f ...powers/paper.list/spain.andrew.pdf ·...

33
Shock-Fitted Numerical Solutions for Two-Dimensional Detonations with Periodic Boundary Conditions Andrew Henrick, Tariq D. Aslam, Joseph M. Powers 11 th SIAM International Conference on Numerical Combustion Granada, Spain Los Alamos National Laboratory University of Notre Dame April 23, 2006 Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.1/20

Upload: others

Post on 19-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Shock-Fitted Numerical Solutions forTwo-Dimensional Detonationswith Periodic Boundary Conditions

Andrew Henrick, Tariq D. Aslam, Joseph M. Powers11

th SIAM International Conference on Numerical Combustion

Granada, Spain

Los Alamos National LaboratoryUniversity of Notre Dame

April 23, 2006

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.1/20

Page 2: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Presentation Outline

IntroductionMotivation & BackgroundGeneral Formulation

Shock-FittedTransformationNumerical Method

1-D Limiting CaseComparison withLinear Stability TheoryPulsating Detonation

2-D Results

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.2/20

Page 3: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Background

2-D shock geometry2-D Euler equations withreaction2 species chemicalkineticsCalorically perfect idealgas mixtureHigh-order convergence

Confiner

Unshocked HE

ConfinerShock Wave

Sonic Locus

Deflection of Confiner

Shocked HE

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.3/20

Page 4: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Background

2-D shock geometry2-D Euler equations withreaction2 species chemicalkineticsCalorically perfect idealgas mixtureHigh-order convergence

!

"

Shock Wave

Perio

dic

B.C.

Perio

dic

B.C.

Neumann Condition

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.3/20

Page 5: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Background

2-D shock geometry2-D Euler equations withreaction2 species chemicalkineticsCalorically perfect idealgas mixtureHigh-order convergence

!"

!t+

!

!x("u) +

!

!y("v) = 0,

!

!t("u) +

!

!x("u2 + p) +

!

!y("uv) = 0,

!

!t("v) +

!

!x("vu) +

!

!y("v2 + p) = 0,

!

!t

"

e +1

2(u2 + v2)

««

+

!

!x

"u

e +1

2(u2 + v2) +

p

"

««

+

!

!y

"v

e +1

2(u2 + v2) +

p

"

««

= 0.

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.3/20

Page 6: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Background

2-D shock geometry2-D Euler equations withreaction2 species chemicalkineticsCalorically perfect idealgas mixtureHigh-order convergence

A ! B

Let # denote mass fraction of B

!

!t("#) +

!

!x("u#) = a"(1 " #) exp

"E"

p

«

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.3/20

Page 7: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Background

2-D shock geometry2-D Euler equations withreaction2 species chemicalkineticsCalorically perfect idealgas mixtureHigh-order convergence

e =1

! ! 1

p

"! q#

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.3/20

Page 8: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Background

2-D shock geometry2-D Euler equations withreaction2 species chemicalkineticsCalorically perfect idealgas mixtureHigh-order convergence

!x

Erro

r

O(!x5)

O(!x)

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.3/20

Page 9: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Motivation

What are the state-of-the-art numerical techniques used fordiscontinuous problems?

Shock capturingRobustNumerical viscosity reduces convergence to O(!x)

Shock trackingRobustDescription of discontinuous motion variesConverges at O(!x)

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.4/20

Page 10: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Motivation

Accuracy loss due to differentiation across discontinuities.High order convergence can be achieved throughshock-fitting

Governing equations are posed in fitted coordinatesSolution is smooth within each domainAnalytic jump conditions used to compute shock speedRestricted to embedded shocks

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.5/20

Page 11: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Motivation

Accuracy loss due to differentiation across discontinuities.High order convergence can be achieved throughshock-fitting

Governing equations are posed in fitted coordinatesShock location is fixed

Solution is smooth within each domainAnalytic jump conditions used to compute shock speedRestricted to embedded shocks

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.5/20

Page 12: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Motivation

Accuracy loss due to differentiation across discontinuities.High order convergence can be achieved throughshock-fitting

Governing equations are posed in fitted coordinatesShock location is fixed

Solution is smooth within each domainRegular finite differencing is adequate

Analytic jump conditions used to compute shock speedRestricted to embedded shocks

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.5/20

Page 13: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Shock-Fit Transformation

Consider transform

" = "(x, y, t), ! = !(x, y, t), # = t

applied to

$F

$t+

$f i

$yi = B Dn =

!f i

"

#F $%i

where only derivatives aretransformed.

! = 0

%i

F(1)

F(2)

f i(1)

f i(2)

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.6/20

Page 14: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Shock-Fit Transformation

Consider transform

" = "(x, y, t), ! = !(x, y, t), # = t

applied to

$F

$t+

$f i

$yi = B Dn =

!f i

"

#F $%i

where only derivatives aretransformed.

! = 0

%i

F(1)

F(2)

f i(1)

f i(2)

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.6/20

Page 15: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Shock-Fit Transformation

Consider transform

" = "(x, y, t), ! = !(x, y, t), # = t

applied to

$F

$t+

$f i

$yi = B Dn =

!f i

"

#F $%i

where only derivatives aretransformed.

! = 0

%i

F(1)

F(2)

f i(1)

f i(2)

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.6/20

Page 16: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Shock-Fit Transformation

Consider transform

" = "(x, y, t), ! = !(x, y, t), # = t

applied to

$F

$t+

$f i

$yi = B Dn =

!f i

"

#F $%i

where only derivatives aretransformed.

x and y momentum are stillsolved

! = 0

%i

F(1)

F(2)

f i(1)

f i(2)

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.6/20

Page 17: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Transformed Equations

The resulting fitted equations are

$

$#("

gF ) +$

$!j

!

"gF

$!j

$t+"

gf i$!j

$yi

"

="

gB

Conservation form with proper shock speed

Dn =

%"gF !"j

!t +"

gf i !"j

!yi

&

!"gF

" %j

"g =

#

#

#

#

#

#

!y!"

#

#

#

#

#

#is the determinant of the metric tensor

!!"i

!t = !"i

!yj!yj

!# # U i = !"i

!yj U j

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.7/20

Page 18: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Formulation: Conserved Quantities

!"

!t+

!

!x("u) +

!

!y("v) = 0,

!

!t("u) +

!

!x("u2 + p) +

!

!y("uv) = 0,

!

!t("v) +

!

!x("vu) +

!

!y("v2 + p) = 0,

!

!t

"

e +1

2(u2 + v2)

««

+

!

!x

"u

e +1

2(u2 + v2) +

p

"

««

+

!

!y

"v

e +1

2(u2 + v2) +

p

"

««

= 0,

!

!t("#) +

!

!x("u#) = a"(1 " #) exp

"E"

p

«

,

e =1

$ " 1

p

"" q#.

$

%

%

%

%

%

%

%

&

F1

F2

F3

F4

F5

'

(

(

(

(

(

(

(

)

=

$

%

%

%

%

%

%

%

&

&

&u

&v

&*

e + 12(u2 + v2)

+

&'

'

(

(

(

(

(

(

(

)

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.8/20

Page 19: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Formulation: Shock-Fitted Eqns.

!

!%

2

6

6

6

6

6

6

6

4

F !1

F !2

F !3

F !4

F !5

3

7

7

7

7

7

7

7

5

+!

!&

0

B

B

B

B

B

B

B

B

B

@

!&

!t

2

6

6

6

6

6

6

6

4

F !1

F !2

F !3

F !4

F !5

3

7

7

7

7

7

7

7

5

+1#

g

!y

!'

2

6

6

6

6

6

6

6

6

6

4

F !2

F !22

F !1

+#

gp

F !2F !3

F !1

F !2F !4

F !1

+#

gF !2

F !1

p

F !2F !5

F !1

3

7

7

7

7

7

7

7

7

7

5

"1#

g

!x

!'

2

6

6

6

6

6

6

6

6

6

4

F !3

F !2F !3

F !1

F !23

F !1

+#

gp

F !3F !4

F !1

+#

gF !3

F !1

p

F !3F !5

F !1

3

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

A

+!

!'

0

B

B

B

B

B

B

B

B

B

@

!'

!t

2

6

6

6

6

6

6

6

4

F !1

F !2

F !3

F !4

F !5

3

7

7

7

7

7

7

7

5

"1#

g

!y

!&

2

6

6

6

6

6

6

6

6

6

4

F !2

F !22

F !1

+#

gp

F !2F !3

F !1

F !2F !4

F !1

+#

gF !2

F !1

p

F !2F !5

F !1

3

7

7

7

7

7

7

7

7

7

5

+1#

g

!x

!&

2

6

6

6

6

6

6

6

6

6

4

F !3

F !2F !3

F !1

F !23

F !1

+#

gp

F !3F !4

F !1

+#

gF !3

F !1

p

F !3F !5

F !1

3

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

A

=

2

6

6

6

6

6

6

6

4

0

0

0

0

(

3

7

7

7

7

7

7

7

5

p =($ " 1)#

g

F !4 "

(F !2)

2 + (F !3)

2

2F !1

+ qF !5

«

, ( =a#

g(F !

1 " F !5) exp

"EF !1

#gp

«

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.9/20

Page 20: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Formulation: Shock Change Eqn.

At the shock, E = &(e + 12(u2 + v2)) = f(Dn).

$Dn

$#=

!

$E

$Dn

#

#

#

#

S

"!1 $E

$#

#

#

#

#

S

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.10/20

Page 21: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Formulation: Shock Change Eqn.

At the shock, E = &(e + 12(u2 + v2)) = f(Dn).

|v| = vivj = u2 + v2 is invariant.

$Dn

$#=

!

$E

$Dn

#

#

#

#

S

"!1 $E

$#

#

#

#

#

S

!E!#

#

#

Sis already calculated in the flow field.

Thus system is closed.

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.10/20

Page 22: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Shock-Fitted Geometry

(g(2)

g(1)

g(1)

g(2)!

Dn

)(1)

)(2)S

contravariant basiscovariant basis

g(i) lie along fitted coords.

g(i) are reciprocal basis! = U|S is the shockvelocity

Since S : !2 = 0

g(1) is embedded in theshockg(2)||"

Note that !1 in general con-tributes artificial tangentialshock velocity.

Thus, Dn = cos(())(2) $ |!|,in general.

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.11/20

Page 23: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Shock-Fitted Geometry: x % "

*

Dn

Shocked HE

Quiescent HE

g(1)

g(2)g(1)

g(2)

!yS

!t

=$(2

)=

Do

!1=

y1=

cons

tant

S : !2 = y2 ! yS(x, t) = 0

g(1) =

0

@

1!yS

!"1

1

A , g(2) =

0

@

0

1

1

A ,

g(1) =

0

@

1

0

1

A , g(2) =

0

@

" !yS

!y1

1

1

A ,

and the grid velocity components are

!&

!t= 0

!'

!t= "

!yS

!t

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.12/20

Page 24: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Shock-Fitted Geometry: x % "

*

Dn

Shocked HE

Quiescent HE

g(1)

g(2)g(1)

g(2)

!yS

!t

=$(2

)=

Do

!1=

y1=

cons

tant

S : !2 = y2 ! yS(x, t) = 0

In this case"

g = 1

( = *, the shock angle

Do =!y

S

!t = Dn

,

1 +-

!yS

!y1

.2

relating the phase speed, theshock surface, the normalshock speed, and the shockslope.

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.12/20

Page 25: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Numerical Method

The method of lines is used to separate spatial and temporalintegration

O(!t5) Runge-Kutta integration in timeO(!x5) or O(!y5) WENO5M with Lax-Friedrich’s fluxsplitting to differentiate in spaceAt the shock

Rankine-Hugoniot jump conditions used directlyOne-sided finite differencing usedShock-change equation gives evolution of Dn

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.13/20

Page 26: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

1-D Results: Pulsating Detonations

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.14/20

Page 27: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

2-D Results: E = 0, q = 15

4.3125

4.313

4.3135

4.314

4.3145

4.315

4.3155

4.316

0 10 20 30 40 50 60 70

Dn

t" = tk

!x = 0.05f(x)

f(x) = D + a1ea2x sin(a3x + a4)

N1/2 !x Range Growth Rate (a2) Frequency (a3)

5 0.2 [20:40] 0.024362 1.1053010 0.1 [30:45] 0.024348 1.1048720 0.05 [40:60] 0.024210 1.10437

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.15/20

Page 28: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

2-D Results: Detonation Cells

"

t

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.16/20

Page 29: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

2-D Results: Detonation Cells

"

t

"

!

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.16/20

Page 30: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

2-D Results: Linear Stability

2.8

2.802

2.804

2.806

2.808

2.81

2.812

2.814

2.816

2.818

2.82

0 10 20 30 40 50 60 70 80 90 100

t

Dn

!x = 0.1

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.17/20

Page 31: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

Conclusions

Need for highly resolved solutions to sandwich testShock-fitting is a viable high order solution technique forproblems involving a single embedded shockConservative 2-D shock-fitted equations derived andimplementedWENO5M combined with LLF splitting

allows for high order convergencegives discrete conservation away from the shockcorrectly captures shocks (degrade to & O(!x))

Areas of current researchValidation from linear stability theory in progressExtension to more complicated geometries

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.18/20

Page 32: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

WENO5M

Weighted Essentially Non-Oscillatory (WENO) Schemes

Stencil 0

Stencil 1

Stencil 2

!xj j + 1

fj+1/2 Fifth order scheme overallfk = h + O(!x3)

fj±1/2 =/2

k=0 )(M)k fk

j±1/2

Schemes differ throughformulation of )

(M)k

Ideal weights:

)0 = 1/10, )1 = 6/10, )2 = 3/10.

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.19/20

Page 33: S h o c k - F it t e d N u m e r ic a l S o lu t io n s f ...powers/paper.list/spain.andrew.pdf · S h o c k - F itte d N u m e r ic a l S o lu tio n s fo r T w o - D im e n s io

WENO5M

WENO5 Modified (Mapped)

)(M)k =

*"k

P2i=0 *"

i

where *"k = gk()

(JS)k )

gk()) =)()k + )2

k " 3)k) + )2)

)2k + (1 " 2)k))

, ) $ [0, 1]

where )(JS)k are those used by Jiang and

Shu (1996)0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 0

k = 2

k = 1

!

"* k

Identity mapping

Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.20/20