s. ostapchenko- pomeron calculus: x-sections, diffraction & mc

97
*

Upload: klim00

Post on 01-Dec-2014

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Pomeron Calculus: X-sections, Diraction & MC

S. Ostapchenko

NTNU (Trondheim)

ECT∗ Trento, December 3, 2010

arXive: 1003.0196 [hep-ph], hep-ph/0612175, 0602139, 0505259

Page 2: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outline

I Optical theorem, unitarity & AGK cuts

I Enhanced Pomeron graphs: resummation

I Phenomenological approach - 2 Pomeron poles:

total, elastic & diractive x-sections

I 'Semihard Pomeron'

I MC approach (QGSJET II)

Page 3: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outline

I Optical theorem, unitarity & AGK cuts

I Enhanced Pomeron graphs: resummation

I Phenomenological approach - 2 Pomeron poles:

total, elastic & diractive x-sections

I 'Semihard Pomeron'

I MC approach (QGSJET II)

Page 4: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outline

I Optical theorem, unitarity & AGK cuts

I Enhanced Pomeron graphs: resummation

I Phenomenological approach - 2 Pomeron poles:

total, elastic & diractive x-sections

I 'Semihard Pomeron'

I MC approach (QGSJET II)

Page 5: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outline

I Optical theorem, unitarity & AGK cuts

I Enhanced Pomeron graphs: resummation

I Phenomenological approach - 2 Pomeron poles:

total, elastic & diractive x-sections

I 'Semihard Pomeron'

I MC approach (QGSJET II)

Page 6: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outline

I Optical theorem, unitarity & AGK cuts

I Enhanced Pomeron graphs: resummation

I Phenomenological approach - 2 Pomeron poles:

total, elastic & diractive x-sections

I 'Semihard Pomeron'

I MC approach (QGSJET II)

Page 7: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

'Elementary' processes:

non-dir. production virtual rescattering diraction

I elastic scattering - coherence of the parton cascade preservedby the scattering process

I 'elementary' inel. process - coherence broken ⇒ hadronization

I general interaction - multiple scattering:

......σtot = Im = ∑

Page 8: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Optical theorem + AGK rules⇒ relation between elastic amplitude & inelastic nal states

+ +

2

+

= + + +

I AGK rules: no interference between dierent topologies ofnal states

I ⇒ all possible nal states - obtained via AGK-cuts of elasticscattering diagrams

I partial cross sections - expressed via amplitudes for'elementary' scattering

Page 9: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Optical theorem + AGK rules⇒ relation between elastic amplitude & inelastic nal states

+ +

2

+

= + + +

I AGK rules: no interference between dierent topologies ofnal states

I ⇒ all possible nal states - obtained via AGK-cuts of elasticscattering diagrams

I partial cross sections - expressed via amplitudes for'elementary' scattering

Page 10: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Optical theorem + AGK rules⇒ relation between elastic amplitude & inelastic nal states

+ +

2

+

= + + +

I AGK rules: no interference between dierent topologies ofnal states

I ⇒ all possible nal states - obtained via AGK-cuts of elasticscattering diagrams

I partial cross sections - expressed via amplitudes for'elementary' scattering

Page 11: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Optical theorem + AGK rules⇒ relation between elastic amplitude & inelastic nal states

+ +

2

+

= + + +

I AGK rules: no interference between dierent topologies ofnal states

I ⇒ all possible nal states - obtained via AGK-cuts of elasticscattering diagrams

I partial cross sections - expressed via amplitudes for'elementary' scattering

Page 12: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Schematic (elementary parton cascades ≡ Pomerons):

a

d

... ...1 2 m 1 n

......

a

d

I Pomeron amplitudes - various approaches possible(purely phenomenological, BFKL, ...)

Intermediate states between Pomeron exchanges include inelasticexcitations: ∑i |Xi 〉〈Xi |= |p〉〈p|+∑i 6=p |Xi 〉〈Xi |

I Good-Walker-like scheme - use elastic scattering eigenstates:

|Xi 〉 →∑j

√Cj/Xi

|j〉

Page 13: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Schematic (elementary parton cascades ≡ Pomerons):

a

d

... ...1 2 m 1 n

......

a

d

I Pomeron amplitudes - various approaches possible(purely phenomenological, BFKL, ...)

Intermediate states between Pomeron exchanges include inelasticexcitations: ∑i |Xi 〉〈Xi |= |p〉〈p|+∑i 6=p |Xi 〉〈Xi |

I Good-Walker-like scheme - use elastic scattering eigenstates:

|Xi 〉 →∑j

√Cj/Xi

|j〉

Page 14: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Schematic (elementary parton cascades ≡ Pomerons):

a

d

... ...1 2 m 1 n

......

a

d

I Pomeron amplitudes - various approaches possible(purely phenomenological, BFKL, ...)

Intermediate states between Pomeron exchanges include inelasticexcitations: ∑i |Xi 〉〈Xi |= |p〉〈p|+∑i 6=p |Xi 〉〈Xi |

I Good-Walker-like scheme - use elastic scattering eigenstates:

|Xi 〉 →∑j

√Cj/Xi

|j〉

Page 15: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

E.g., using eikonal vertices for Pomeron emission:

fpp(s,b) = i∑j ,k

Cj/pCk/p

[1− e−χP

jk (s,b)]

χPjk = Imf P

jk - eikonal for Pomeron exchange between |j〉 and |k〉I ⇒ allows to calculate X-sections for various nal states:

σ(n)ad

(s) = ∑j ,k

Cj/pCk/p

∫d2b

[2χPjk(s,b)]

n

n!e−2χP

jk (s,b)

σdiffr−projad

(s) = ∑j ,k,l ,m

(Cj/pδjl −Cj/pCl/p

)Ck/pCm/p

×∫d2b

[1− e−χP

jk (s,b)][1− e−χP

lm(s,b)]

I partial x-sections are obtained after resummation of all virtual(elastic) rescatterings

I if the decomposition in eigenstates is energy-independent:low mass diraction (M2

X s) only

Page 16: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

E.g., using eikonal vertices for Pomeron emission:

fpp(s,b) = i∑j ,k

Cj/pCk/p

[1− e−χP

jk (s,b)]

χPjk = Imf P

jk - eikonal for Pomeron exchange between |j〉 and |k〉I ⇒ allows to calculate X-sections for various nal states:

σ(n)ad

(s) = ∑j ,k

Cj/pCk/p

∫d2b

[2χPjk(s,b)]

n

n!e−2χP

jk (s,b)

σdiffr−projad

(s) = ∑j ,k,l ,m

(Cj/pδjl −Cj/pCl/p

)Ck/pCm/p

×∫d2b

[1− e−χP

jk (s,b)][1− e−χP

lm(s,b)]

I partial x-sections are obtained after resummation of all virtual(elastic) rescatterings

I if the decomposition in eigenstates is energy-independent:low mass diraction (M2

X s) only

Page 17: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

E.g., using eikonal vertices for Pomeron emission:

fpp(s,b) = i∑j ,k

Cj/pCk/p

[1− e−χP

jk (s,b)]

χPjk = Imf P

jk - eikonal for Pomeron exchange between |j〉 and |k〉I ⇒ allows to calculate X-sections for various nal states:

σ(n)ad

(s) = ∑j ,k

Cj/pCk/p

∫d2b

[2χPjk(s,b)]

n

n!e−2χP

jk (s,b)

σdiffr−projad

(s) = ∑j ,k,l ,m

(Cj/pδjl −Cj/pCl/p

)Ck/pCm/p

×∫d2b

[1− e−χP

jk (s,b)][1− e−χP

lm(s,b)]

I partial x-sections are obtained after resummation of all virtual(elastic) rescatterings

I if the decomposition in eigenstates is energy-independent:low mass diraction (M2

X s) only

Page 18: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

E.g., using eikonal vertices for Pomeron emission:

fpp(s,b) = i∑j ,k

Cj/pCk/p

[1− e−χP

jk (s,b)]

χPjk = Imf P

jk - eikonal for Pomeron exchange between |j〉 and |k〉I ⇒ allows to calculate X-sections for various nal states:

σ(n)ad

(s) = ∑j ,k

Cj/pCk/p

∫d2b

[2χPjk(s,b)]

n

n!e−2χP

jk (s,b)

σdiffr−projad

(s) = ∑j ,k,l ,m

(Cj/pδjl −Cj/pCl/p

)Ck/pCm/p

×∫d2b

[1− e−χP

jk (s,b)][1− e−χP

lm(s,b)]

I partial x-sections are obtained after resummation of all virtual(elastic) rescatterings

I if the decomposition in eigenstates is energy-independent:low mass diraction (M2

X s) only

Page 19: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Higher diraction = more asymmeric eigenstates

smaller σtot (σinel) - inelastic screening

bigger uctuations of multiplicity / of Npart in pA (AA)

Page 20: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Non-linear eects

Pomeron-Pomeron interactions ⇒ rich physics

I e.g. nal states with jets:...

...

...

...

'fan' diagrams - low-x PDFs as 'seen' in DIS & inclusivecross sections

'net fans' - 'reaction-dependent PDFs' (depend onrescattering on the partner hadron) )

p p

p...

(x, Q )2 (x, Q )2

Page 21: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

High mass diraction from enhanced diagrams:

I sign-indenite contributions

I higher orders - increasingly important with energy

I ⇒ all order resummation needed

I same applies to other nal states

General solution to the problem (e.g. MC implementation) requires:

I knowledge of the Pomeron amplitude

I knowledge of multi-Pomeron vertices

I complete resummation of enhanced diagrams:for elastic scattering amplitude & for particular nal states

Page 22: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

High mass diraction from enhanced diagrams:

I sign-indenite contributions

I higher orders - increasingly important with energy

I ⇒ all order resummation needed

I same applies to other nal states

General solution to the problem (e.g. MC implementation) requires:

I knowledge of the Pomeron amplitude

I knowledge of multi-Pomeron vertices

I complete resummation of enhanced diagrams:for elastic scattering amplitude & for particular nal states

Page 23: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

High mass diraction from enhanced diagrams:

I sign-indenite contributions

I higher orders - increasingly important with energy

I ⇒ all order resummation needed

I same applies to other nal states

General solution to the problem (e.g. MC implementation) requires:

I knowledge of the Pomeron amplitude

I knowledge of multi-Pomeron vertices

I complete resummation of enhanced diagrams:for elastic scattering amplitude & for particular nal states

Page 24: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

High mass diraction from enhanced diagrams:

I sign-indenite contributions

I higher orders - increasingly important with energy

I ⇒ all order resummation needed

I same applies to other nal states

General solution to the problem (e.g. MC implementation) requires:

I knowledge of the Pomeron amplitude

I knowledge of multi-Pomeron vertices

I complete resummation of enhanced diagrams:for elastic scattering amplitude & for particular nal states

Page 25: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

High mass diraction from enhanced diagrams:

I sign-indenite contributions

I higher orders - increasingly important with energy

I ⇒ all order resummation needed

I same applies to other nal states

General solution to the problem (e.g. MC implementation) requires:

I knowledge of the Pomeron amplitude

I knowledge of multi-Pomeron vertices

I complete resummation of enhanced diagrams:for elastic scattering amplitude & for particular nal states

Page 26: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

High mass diraction from enhanced diagrams:

I sign-indenite contributions

I higher orders - increasingly important with energy

I ⇒ all order resummation needed

I same applies to other nal states

General solution to the problem (e.g. MC implementation) requires:

I knowledge of the Pomeron amplitude

I knowledge of multi-Pomeron vertices

I complete resummation of enhanced diagrams:for elastic scattering amplitude & for particular nal states

Page 27: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

High mass diraction from enhanced diagrams:

I sign-indenite contributions

I higher orders - increasingly important with energy

I ⇒ all order resummation needed

I same applies to other nal states

General solution to the problem (e.g. MC implementation) requires:

I knowledge of the Pomeron amplitude

I knowledge of multi-Pomeron vertices

I complete resummation of enhanced diagrams:for elastic scattering amplitude & for particular nal states

Page 28: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

High mass diraction from enhanced diagrams:

I sign-indenite contributions

I higher orders - increasingly important with energy

I ⇒ all order resummation needed

I same applies to other nal states

General solution to the problem (e.g. MC implementation) requires:

I knowledge of the Pomeron amplitude

I knowledge of multi-Pomeron vertices

I complete resummation of enhanced diagrams:for elastic scattering amplitude & for particular nal states

Page 29: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Diagrammatic resummation

Without Pomeron 'loops' one would have 'net'-like graphs:

1

1 2

33

4

y ,b

y ,b

y ,b

y ,b y ,b

y ,b

y ,b

y ,b3

y ,b3

1

y ,b4

y ,b3

2

1

5

3

1 1

2 2

22

5

(a) (b) (c)

In reality, any 'intermediate' Pomeron may be replaced by 'loops':

...

Page 30: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Introduce 'net fan' contributions via Schwinger-Dyson equation:

y ,b22

net

...n2

y ,b1 1

y ,b

net net

11y ,b1 1

+...m

Σm +n >2

/

2

...l>1/

=2

2 2

2

/

m >1, n >0/

I correspond to arbitrary Pomeron 'nets' coupled to given vertex(for simplicity, loops not shown)

y ,b1 1

y ,b1 1

y ,b22

y ,b1 1

y ,b22

y ,b22

y ,b1 1y ,b

net

11

= + +

a

d

a

d

a

d

+y ,b

33

a

d

+ ...

I have the meaning of 'reaction-dependent PDFs'

Page 31: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Introduce 'net fan' contributions via Schwinger-Dyson equation:

y ,b22

net

...n2

y ,b1 1

y ,b

net net

11y ,b1 1

+...m

Σm +n >2

/

2

...l>1/

=2

2 2

2

/

m >1, n >0/

I correspond to arbitrary Pomeron 'nets' coupled to given vertex(for simplicity, loops not shown)

y ,b1 1

y ,b1 1

y ,b22

y ,b1 1

y ,b22

y ,b22

y ,b1 1y ,b

net

11

= + +

a

d

a

d

a

d

+y ,b

33

a

d

+ ...

I have the meaning of 'reaction-dependent PDFs'

Page 32: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Sum of (almost) all irredicible contributions to elastic amplitude(Ωpp(jk)(s,b)):

n1

−Σm

1

net

net

net

net

netnet y ,b

2

m...

...n2

...1n

mΣ−

m +n >2

...

...... +

1

1

1

ii

2 1

21m ,n >1m +n >3/

y ,b1 1

1 /

1

y ,b1

y ,b1 11

y ,b1 1

2

2m ,n >1/m ,n >0/

/

...

examples of graphs which are not included in this scheme:

p

p

p

p p p

pp

(a) (b) (c) (d)

Page 33: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Knowing the amplitude one can calculate σtot, dσel/dt, etc.

However, to describe the structure of nal states one needs thecomplete set of partial cross sections

I one assumes the validity of AGK cutting rules

I one starts from 'building blocks': AGK-cuts of 'net fans'- dened by Schwinger-Dyson equations

y ,b2 2

y ,b1 1

y ,b1 1

y ,b22

y ,b11

m>0/y ,b22

y ,b11

m>0/y ,b22

y ,b11

y ,b22

y ,b11

n>0/

m>2/

y ,b11y ,b1 1

y ,b22

y ,b22

y ,b11y ,b1 1

y ,b22

y ,b22

y ,b11

n>0/

m>2/

y ,b

= +−

1y ,b1 1

m=1_

y ,b1 1

+ −−

−= + + −/...

m>1/_

m>0

n>0/

net

net

......

net /

_/

net...

n>0...

...

net /

m>1_

/

net...

n>0...

...

...

net

netnet

.../

...

m>1/_

m>0

n>0/

net

net

......

m=1_

y ,b22

/...

m>1/_

m>0

n>0/

net

net

......

1

m=1_

m>1

...

net

netnet

...

Page 34: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

One obtains the complete system of cuts:

...

1y ,b

1

_

net

/m>2/m>0

......

1y ,b

1

_

net

/m>2/m>0

net...

/n>2

net

...

/n>2_ n>0/

net...

/n>2

net

1y ,b

1

/m>0/m>2

_

...

net

...

n>0/1y ,b

1

_n=1

net

...n>0/1

y ,b1

_n=1

net

...

/m>0/m>2

_

/n>2_ n>0/

... net

...

/m>2

1y ,b

1

...netnet

/m>2

1y ,b

1−...

netnet

(2)/m>2

1y ,b

1

net

...n>0/

n=1_

net

...n>0/

n=1_

+ +

/m>0/m>2

_

...

net

...

1y ,b

1 1y ,b

1

n>1/ net

...

/m>0/m>2

_

+

/m>2

1y ,b

1

...netnet

1y ,b

1 n>0/

/n>2_

/m>1

...

net

net

......

(1)

1y ,b

1

/n>2_ n>0/

... net

...

/n>2_ n>0/

1y ,b

1

net

.../m>0

/m>2

...

_

net

......

/n>2_

...n>0/

net

... −−

1y ,b

1

/n>2_ n>0/

... net

...

/n>2_ n>0/

/m>2

net...

net/m>0

_m=1

...1

y ,b1 1

y ,b1

/n>2_

...n>0/

net

... +

net...

/n>2

1y ,b

1

net...

/n>2

1y ,b

1

...net

/m>0

_m=1

...

net...

/n>2

1y ,b

1

net/m>0

_m=1

/m>0

_m=1

net

+

(8)

+

+

(9)

net/m>0

_m=1

n>0/

/m>0

net

1y ,b

1

...

_m=1

_n=1

1y ,b

1

...

_m=1

_n=1

n>0/

/m>0

_m=1

1y ,b

1

_m=1

_n=1

1y ,b

1

_n=1

+ 1y ,b

1

_n=1

+

_n=1

1y ,b

1

_

net

/m>2

...

/m>0

net

−++ ......

... ......

_

net

/m>2/m>0

(3)

− ...

net

...

−...

netnet

_ne

t

...n>0/

n=1

...

net

...

(4)

+

(5) (6) (7)

−−

net

......

net

...net

(10)

netnet

−... ......

(11)

...... ...

−...net

... −...net

...

net

......

− +

Page 35: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Obtained contributions satisfy s-channel unitarity (completness):

11

∑i=1

Ω(i)pp(jk)(s,b) = Ωpp(jk)(s,b)

I allow to derive x-sections for various topologies of nal states

I e.g., diractive cuts:p

p

A B

C

E

p

p

E

C

D A B

C

CD

p

p

ED

A B

A B

(a) (b) (c)

I can be applied for a MC generation

I for all that one ONLY (?!) needs to know the Pomeronamplitude & multi-Pomeron vertices

Page 36: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Obtained contributions satisfy s-channel unitarity (completness):

11

∑i=1

Ω(i)pp(jk)(s,b) = Ωpp(jk)(s,b)

I allow to derive x-sections for various topologies of nal states

I e.g., diractive cuts:p

p

A B

C

E

p

p

E

C

D A B

C

CD

p

p

ED

A B

A B

(a) (b) (c)

I can be applied for a MC generation

I for all that one ONLY (?!) needs to know the Pomeronamplitude & multi-Pomeron vertices

Page 37: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Obtained contributions satisfy s-channel unitarity (completness):

11

∑i=1

Ω(i)pp(jk)(s,b) = Ωpp(jk)(s,b)

I allow to derive x-sections for various topologies of nal states

I e.g., diractive cuts:p

p

A B

C

E

p

p

E

C

D A B

C

CD

p

p

ED

A B

A B

(a) (b) (c)

I can be applied for a MC generation

I for all that one ONLY (?!) needs to know the Pomeronamplitude & multi-Pomeron vertices

Page 38: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Particular (simple) model

Let us assume eikonal multi-P vertices: G (m,n) = r3P γm+n−3P

I 2-component ('soft' +'hard') Pomeron:

DP(s, t) = 8π i[sαP(s) e

α ′P(s) lns t + rh/s sαP(h) e

α ′P(h) lns t]

I dipole form factor for proton elastic eigenstates |j〉:

FPj (t) =

γj

(1−Λj t)2; γj = γ (1±κ), j = 1,2

I Pomeron eikonal:χPjk(s,b) = 1

8π2is

∫d2q e−i~q

~b FPj (q2)FP

k (q2)DP(s,q2)

I P exchange between a proton and a multi-P vertex (y ,~b):

χPj (y ,b) =

γP8π2iey

∫d2q e−i~q

~b FPj (q2)DP(ey ,q2)

Page 39: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Particular (simple) model

Let us assume eikonal multi-P vertices: G (m,n) = r3P γm+n−3P

I 2-component ('soft' +'hard') Pomeron:

DP(s, t) = 8π i[sαP(s) e

α ′P(s) lns t + rh/s sαP(h) e

α ′P(h) lns t]

I dipole form factor for proton elastic eigenstates |j〉:

FPj (t) =

γj

(1−Λj t)2; γj = γ (1±κ), j = 1,2

I Pomeron eikonal:χPjk(s,b) = 1

8π2is

∫d2q e−i~q

~b FPj (q2)FP

k (q2)DP(s,q2)

I P exchange between a proton and a multi-P vertex (y ,~b):

χPj (y ,b) =

γP8π2iey

∫d2q e−i~q

~b FPj (q2)DP(ey ,q2)

Page 40: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Particular (simple) model

Let us assume eikonal multi-P vertices: G (m,n) = r3P γm+n−3P

I 2-component ('soft' +'hard') Pomeron:

DP(s, t) = 8π i[sαP(s) e

α ′P(s) lns t + rh/s sαP(h) e

α ′P(h) lns t]

I dipole form factor for proton elastic eigenstates |j〉:

FPj (t) =

γj

(1−Λj t)2; γj = γ (1±κ), j = 1,2

I Pomeron eikonal:χPjk(s,b) = 1

8π2is

∫d2q e−i~q

~b FPj (q2)FP

k (q2)DP(s,q2)

I P exchange between a proton and a multi-P vertex (y ,~b):

χPj (y ,b) =

γP8π2iey

∫d2q e−i~q

~b FPj (q2)DP(ey ,q2)

Page 41: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Particular (simple) model

Let us assume eikonal multi-P vertices: G (m,n) = r3P γm+n−3P

I 2-component ('soft' +'hard') Pomeron:

DP(s, t) = 8π i[sαP(s) e

α ′P(s) lns t + rh/s sαP(h) e

α ′P(h) lns t]

I dipole form factor for proton elastic eigenstates |j〉:

FPj (t) =

γj

(1−Λj t)2; γj = γ (1±κ), j = 1,2

I Pomeron eikonal:χPjk(s,b) = 1

8π2is

∫d2q e−i~q

~b FPj (q2)FP

k (q2)DP(s,q2)

I P exchange between a proton and a multi-P vertex (y ,~b):

χPj (y ,b) =

γP8π2iey

∫d2q e−i~q

~b FPj (q2)DP(ey ,q2)

Page 42: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Few parameter sets dier by the t to CDF/E710 at√s=1800 GeV

and by the P mass cuto (ξ = lnM2min

): ξ = 2 - A, C; ξ = 1.5 - B

αP(s) αP(h) α ′P(s),

GeV−2α ′P(h),

GeV−2γ,

GeV−1η rh/s Λ1 ,

GeV−2Λ2 ,

GeV−2r3P ,

GeV−1γP ,

GeV−1

(A) 1.145 1.35 0.13 0.075 1.65 0.6 0.06 1.06 0.3 0.14 0.5

(B) 1.15 1.35 0.165 0.08 1.75 0.6 0.065 1.03 0.3 0.15 0.5

(C) 1.14 1.31 0.14 0.085 1.6 0.5 0.09 1.1 0.4 0.14 0.5

I total / elastic cross sections and elastic slope

0

50

100

150

200

102

103

104

105

c.m. energy (GeV)

cro

ss s

ecti

on (

mb)

σtot

σel

10

15

20

25

30

102

103

104

105

c.m. energy (GeV)

slo

pe (

GeV

-2)

Page 43: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Using only 'net'-like (blue) / 'loop'-like (green) enhanced graphs:

0

50

100

150

200

102

103

104

105

c.m. energy (GeV)

cro

ss s

ecti

on (

mb) σtot

σel

0

50

100

150

200

102

103

104

105

c.m. energy (GeV) c

ross

sec

tion

(m

b)

σtot

σel

I ⇒ none of the two classes can be neglected

I P-loops only - far insicient for cross section calculations

I relative importance of P-loops - higher for smaller P-slope andfor non-eikonal multi-P vertices (e.g. in QCD)

Page 44: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Using only 'net'-like (blue) / 'loop'-like (green) enhanced graphs:

0

50

100

150

200

102

103

104

105

c.m. energy (GeV)

cro

ss s

ecti

on (

mb) σtot

σel

0

50

100

150

200

102

103

104

105

c.m. energy (GeV) c

ross

sec

tion

(m

b)

σtot

σel

I ⇒ none of the two classes can be neglected

I P-loops only - far insicient for cross section calculations

I relative importance of P-loops - higher for smaller P-slope andfor non-eikonal multi-P vertices (e.g. in QCD)

Page 45: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Using only 'net'-like (blue) / 'loop'-like (green) enhanced graphs:

0

50

100

150

200

102

103

104

105

c.m. energy (GeV)

cro

ss s

ecti

on (

mb) σtot

σel

0

50

100

150

200

102

103

104

105

c.m. energy (GeV) c

ross

sec

tion

(m

b)

σtot

σel

I ⇒ none of the two classes can be neglected

I P-loops only - far insicient for cross section calculations

I relative importance of P-loops - higher for smaller P-slope andfor non-eikonal multi-P vertices (e.g. in QCD)

Page 46: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Using only 'net'-like (blue) / 'loop'-like (green) enhanced graphs:

0

50

100

150

200

102

103

104

105

c.m. energy (GeV)

cro

ss s

ecti

on (

mb) σtot

σel

0

50

100

150

200

102

103

104

105

c.m. energy (GeV) c

ross

sec

tion

(m

b)

σtot

σel

I ⇒ none of the two classes can be neglected

I P-loops only - far insicient for cross section calculations

I relative importance of P-loops - higher for smaller P-slope andfor non-eikonal multi-P vertices (e.g. in QCD)

Page 47: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Dierential elastic cross section

10-5

10-4

10-3

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10 6

0 0.1 0.2 0.3 0.4 0.5 |t| (GeV2)

dσ el

/dt

(mb/

GeV

2 )

546 (x101)

1800 (x100)

62.5 (x102)

53 (x103)

31 (x104)

14000 (x10-1)

Page 48: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Diractive cross sections

Single (M2

X/s < 0.15) and double (y(0)gap ≥ 3) diraction x-sections

1

10

102

103

104

105

c.m. energy (GeV)

cro

ss s

ectio

n (m

b)

σSD

σDD

1

10

102

103

104

105

c.m. energy (GeV) c

ross

sec

tion

(mb)

σSD

σDD

I high mass diraction - decreases with energy

I suppression of diraction - by eikonal RGS factors and byabsorptive corrections from higher order cut enhanced graphs

Page 49: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Diractive cross sections

Single (M2

X/s < 0.15) and double (y(0)gap ≥ 3) diraction x-sections

1

10

102

103

104

105

c.m. energy (GeV)

cro

ss s

ectio

n (m

b)

σSD

σDD

1

10

102

103

104

105

c.m. energy (GeV) c

ross

sec

tion

(mb)

σSD

σDD

I high mass diraction - decreases with energy

I suppression of diraction - by eikonal RGS factors and byabsorptive corrections from higher order cut enhanced graphs

Page 50: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Diractive cross sections

Single (M2

X/s < 0.15) and double (y(0)gap ≥ 3) diraction x-sections

1

10

102

103

104

105

c.m. energy (GeV)

cro

ss s

ectio

n (m

b)

σSD

σDD

1

10

102

103

104

105

c.m. energy (GeV) c

ross

sec

tion

(mb)

σSD

σDD

I high mass diraction - decreases with energy

I suppression of diraction - by eikonal RGS factors and byabsorptive corrections from higher order cut enhanced graphs

Page 51: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Examples - partiall resummations of higher order graphs

I dominant contributions to σSD:

/m>2

n>0/

/m>2

n>0/

n>1/_

n>1/_

/m>2

1y ,b

1 1y ,b

1 1y ,b

1

n>0/n>1/_ n>0/

m>2/_

/m>0

n>1/_

1y ,b

1

n>0/

m>2/_

/m>01y ,b

1

n>1/_

n>0/

m>2/_

n>1/_

/m>01y ,b

1

m>2/_

/m>01y ,b

1

net...

...

net...

/n>2

net...

/n>2

m>2/_

/m>01y ,b

1

net...

...

net...

/n>2

m>2/_

/m>01

y ,b1

n>0/

m>2/_

n>1/_

/m>01y ,b

1

n>0/

m>2/_

/m>01y ,b

11

y ,b1

net... n>0/

−...

netnet

...ne

t

...

net ...netnet

net

+

net

......

+...

netnet

net... ...

net

net

......

...

...

+

net

net

net

......

... net

...

net

net...

......

...

+

net

+ − ...... n

et

net

net...

......

...

+

netnet ne

t... ...

...

n>1/

net

...

_/n>2

/m>1...

+

net

...

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

I lowest order contribution only: p

p

n >1/1−

y ,b1 1

1m >1/

n >1/1− /1

n >0

22y ,b

y ,b1 1

m >12/ 1

m >1/

n >1/1−

k>1/

p

p

/1n >0

22y ,b

/2n >0

k>1/

p

p /1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

/2n >1

2/m >0...

......

...

...

...

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

p

p2

n =1

k=1

......

...

/k>2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

2/m >0

−n >1/2p

....../2n >0

...

......

p

(f)

...

...

/k>2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

2/m >0

/2n >2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

2/m >0

/k>0

k>1/−

/2n >2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

/k>12/m >1

/2n >2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

−n >1/2p

....../2n >0

/k>12/m >1

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

2/m >0

−n >1/2p

....../2n >0

/k>0

k>1/−...

...

......

...p

...

(g)

/1n >0

1/m >2

y ,b1 1

22y ,b

p

p2

n =1−

−n >1/1

k=1−

......

...

(h)

1/m >2

y ,b1 1

k=1−

2n =1−

22y ,b

1/m >2

y ,b1 1

2/m >0

22y ,b

/n >01

n >1/2−/n >0

2

1/m >2

y ,b1 1

22y ,b

n >1/2−/n >0

2

1/m >2

y ,b1 1

2/m >0

22y ,b

k>1/− /k>0

/n >01

n >1/2−/n >0

2

1/m >2

/1n >0

...

......

...

......

2m =1

k=1

p

p

......

......

...

...

(a) (b) (c)

(d) (e)

...

...

...

......

p

p...

...

...

......

...p

...

p...

...

...

...

......

p

p...

...

...

...

......

p

(i) (j) (k) (l)

...

.../n >0

1

...

p

p

...

... ......

... /k>2

...

p

p

...

... ......

.../k>1

...

...

p

p

...

...

...

......

2/m >1

/1n >1

(m) (n) (o) (p)

I triple-Pomeron graph only

I in all the cases - full re-summation of uncut enhanced graphs

Page 52: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Examples - partiall resummations of higher order graphs

I dominant contributions to σSD:

/m>2

n>0/

/m>2

n>0/

n>1/_

n>1/_

/m>2

1y ,b

1 1y ,b

1 1y ,b

1

n>0/n>1/_ n>0/

m>2/_

/m>0

n>1/_

1y ,b

1

n>0/

m>2/_

/m>01y ,b

1

n>1/_

n>0/

m>2/_

n>1/_

/m>01y ,b

1

m>2/_

/m>01y ,b

1

net...

...

net...

/n>2

net...

/n>2

m>2/_

/m>01y ,b

1

net...

...

net...

/n>2

m>2/_

/m>01

y ,b1

n>0/

m>2/_

n>1/_

/m>01y ,b

1

n>0/

m>2/_

/m>01y ,b

11

y ,b1

net... n>0/

−...

netnet

...ne

t

...

net ...netnet

net

+

net

......

+...

netnet

net... ...

net

net

......

...

...

+

net

net

net

......

... net

...

net

net...

......

...

+

net

+ − ...... n

et

net

net...

......

...

+

netnet ne

t... ...

...

n>1/

net

...

_/n>2

/m>1...

+

net

...

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

I lowest order contribution only: p

p

n >1/1−

y ,b1 1

1m >1/

n >1/1− /1

n >0

22y ,b

y ,b1 1

m >12/ 1

m >1/

n >1/1−

k>1/

p

p

/1n >0

22y ,b

/2n >0

k>1/

p

p /1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

/2n >1

2/m >0...

......

...

...

...

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

p

p2

n =1

k=1

......

...

/k>2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

2/m >0

−n >1/2p

....../2n >0

...

......

p

(f)

...

...

/k>2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

2/m >0

/2n >2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

2/m >0

/k>0

k>1/−

/2n >2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

/k>12/m >1

/2n >2

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

−n >1/2p

....../2n >0

/k>12/m >1

/1n >0n >1/1

1/m >2

y ,b1 1

22y ,b

2/m >0

−n >1/2p

....../2n >0

/k>0

k>1/−...

...

......

...p

...

(g)

/1n >0

1/m >2

y ,b1 1

22y ,b

p

p2

n =1−

−n >1/1

k=1−

......

...

(h)

1/m >2

y ,b1 1

k=1−

2n =1−

22y ,b

1/m >2

y ,b1 1

2/m >0

22y ,b

/n >01

n >1/2−/n >0

2

1/m >2

y ,b1 1

22y ,b

n >1/2−/n >0

2

1/m >2

y ,b1 1

2/m >0

22y ,b

k>1/− /k>0

/n >01

n >1/2−/n >0

2

1/m >2

/1n >0

...

......

...

......

2m =1

k=1

p

p

......

......

...

...

(a) (b) (c)

(d) (e)

...

...

...

......

p

p...

...

...

......

...p

...

p...

...

...

...

......

p

p...

...

...

...

......

p

(i) (j) (k) (l)

...

.../n >0

1

...

p

p

...

... ......

... /k>2

...

p

p

...

... ......

.../k>1

...

...

p

p

...

...

...

......

2/m >1

/1n >1

(m) (n) (o) (p)

I triple-Pomeron graph only

I in all the cases - full re-summation of uncut enhanced graphs

Page 53: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Impact on high mass part of σSD and diraction prole (at 14 TeV):

10-1

1

10

10 2

102

103

104

105

c.m. energy (GeV)

σSD

(HM

) (m

b)

10-3

10-2

10-1

1

0 1 2 3 b (fm)

σSD

(HM

)(b)

I using dominant contributions only - coincides with the fullre-summation within 5%

I lowest order contribution - order of magnitude dierence

I triple-P contribution only - violates unitarity:σSD > σtot, σSD(s,b) 1 at b ∼ 0

Page 54: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Impact on high mass part of σSD and diraction prole (at 14 TeV):

10-1

1

10

10 2

102

103

104

105

c.m. energy (GeV)

σSD

(HM

) (m

b)

10-3

10-2

10-1

1

0 1 2 3 b (fm)

σSD

(HM

)(b)

I using dominant contributions only - coincides with the fullre-summation within 5%

I lowest order contribution - order of magnitude dierence

I triple-P contribution only - violates unitarity:σSD > σtot, σSD(s,b) 1 at b ∼ 0

Page 55: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Impact on high mass part of σSD and diraction prole (at 14 TeV):

10-1

1

10

10 2

102

103

104

105

c.m. energy (GeV)

σSD

(HM

) (m

b)

10-3

10-2

10-1

1

0 1 2 3 b (fm)

σSD

(HM

)(b)

I using dominant contributions only - coincides with the fullre-summation within 5%

I lowest order contribution - order of magnitude dierence

I triple-P contribution only - violates unitarity:σSD > σtot, σSD(s,b) 1 at b ∼ 0

Page 56: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Impact on high mass part of σSD and diraction prole (at 14 TeV):

10-1

1

10

10 2

102

103

104

105

c.m. energy (GeV)

σSD

(HM

) (m

b)

10-3

10-2

10-1

1

0 1 2 3 b (fm)

σSD

(HM

)(b)

I using dominant contributions only - coincides with the fullre-summation within 5%

I lowest order contribution - order of magnitude dierence

I triple-P contribution only - violates unitarity:σSD > σtot, σSD(s,b) 1 at b ∼ 0

Page 57: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

From the Tevatron to the LHC

1.8 TeV σ tot σ el σSD σDD σSDHM σDD

HM σDDLHM σDPE

Set (A) 79.3 19.3 9.62 3.62 4.52 1.95 1.20 (1.17) 0.19

Set (B) 80.5 19.9 9.84 4.06 4.78 2.37 1.24 (1.20) 0.23

Set (C) 72.8 16.4 10.5 3.84 5.74 2.01 1.42 (1.36) 0.28

KMR 73.7 16.4 13.8 9.7

GLM 73.3 16.3 9.76 5.36 1.2

14 TeV σ tot σ el σSD σDD σSDHM σDD

HM σDDLHM σDPE

Set (A) 128 37.5 12.1 4.61 3.62 2.06 1.40 (1.37) 0.10

Set (B) 126 37.3 12.4 5.18 4.24 2.50 1.60 (1.56) 0.14

Set (C) 108 29.7 12.3 5.36 5.06 2.81 1.72 (1.68) 0.20

KMR 91.7 21.5 19.0 14.1

GLM 92.1 20.9 11.8 6.08 1.28

I main dierence to KMR & GLM - faster rise of σtot

Page 58: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

From the Tevatron to the LHC

1.8 TeV σ tot σ el σSD σDD σSDHM σDD

HM σDDLHM σDPE

Set (A) 79.3 19.3 9.62 3.62 4.52 1.95 1.20 (1.17) 0.19

Set (B) 80.5 19.9 9.84 4.06 4.78 2.37 1.24 (1.20) 0.23

Set (C) 72.8 16.4 10.5 3.84 5.74 2.01 1.42 (1.36) 0.28

KMR 73.7 16.4 13.8 9.7

GLM 73.3 16.3 9.76 5.36 1.2

14 TeV σ tot σ el σSD σDD σSDHM σDD

HM σDDLHM σDPE

Set (A) 128 37.5 12.1 4.61 3.62 2.06 1.40 (1.37) 0.10

Set (B) 126 37.3 12.4 5.18 4.24 2.50 1.60 (1.56) 0.14

Set (C) 108 29.7 12.3 5.36 5.06 2.81 1.72 (1.68) 0.20

KMR 91.7 21.5 19.0 14.1

GLM 92.1 20.9 11.8 6.08 1.28

I main dierence to KMR & GLM - faster rise of σtot

Page 59: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

'Semihard Pomeron'

Parton cascades start at low virtualities ⇒I Q2

0- cuto between 'soft' and perturbative physics

I 'Soft' interactions (all |q2| - small ⇒ αs(q2) > 1):- pQCD is inapplicable ⇒'soft' Pomeron amplitude

I 'Semihard' processes (|q2|> Q20⇒ αs(q2) 1)

- 'soft' Pomeron for∣∣p2t ∣∣ < Q2

0

- DGLAP ladder for∣∣p2t ∣∣ > Q2

0

I general interaction ⇒ 'general Pomeron':

I

= +

soft Pomeron

QCD ladder

soft Pomeron

I same multi-P vertices: G (m,n) = r3P γm+n−3P

(couple soft Ps & soft 'ends' of semihard Ps)

Page 60: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

'Semihard Pomeron'

Parton cascades start at low virtualities ⇒I Q2

0- cuto between 'soft' and perturbative physics

I 'Soft' interactions (all |q2| - small ⇒ αs(q2) > 1):- pQCD is inapplicable ⇒'soft' Pomeron amplitude

I 'Semihard' processes (|q2|> Q20⇒ αs(q2) 1)

- 'soft' Pomeron for∣∣p2t ∣∣ < Q2

0

- DGLAP ladder for∣∣p2t ∣∣ > Q2

0

I general interaction ⇒ 'general Pomeron':

I

= +

soft Pomeron

QCD ladder

soft Pomeron

I same multi-P vertices: G (m,n) = r3P γm+n−3P

(couple soft Ps & soft 'ends' of semihard Ps)

Page 61: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 62: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 63: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 64: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 65: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 66: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 67: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 68: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 69: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 70: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Monte Carlo approach (QGSJET-II)

MC procedure:

I choose between low mass diraction or multiple productionI sample impact parameter & elastic scattering eigenstatesI sample a particular 'macro-conguration' of the interactionI for each cut 'net-fan': generate (recursively) all cut Pomerons

& rapidity gapsI perform energy partition between all cut PomeronsI for each cut 'semihard Pomeron': reconstruct the perturbative

'piece' (hard process, ISR, FSR)I for each cut Pomeron: string formation & hadronization

Like in the linear (quasi-eikonal) scheme

I interaction congurations are dened by Regge cuts of elasticdiagrams

I the procedure generalizes to hA (AA) in a parameter-free way

Page 71: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Main dierences of the latest version (QGSJET-II-04)compared to QGSJET-II-03 (released in 2005):

I Pomeron loops included (only net-like graphs in II-03)

⇒ twice smaller triple-P coupling: r3P ' 0.1 GeV

I PP-coupling xed by H1 LPS diractive data

(in II-03 - by FD(3)2

from ZEUS rap-gap data)

I parameter t included data on dσ elpp/dt, dσ el

πp/dt, dσ elKp/dt

I higher soft/hard cuto: Q20

= 3 GeV2 (Q20

= 2.5 GeV2 in II-03)

corresponds to pmin

⊥,hard = 2Q0 ' 3.4 GeV for the chosen

factorization scale in the model: M2F = p2⊥/4

Dierences between the two versions for particle production:at ne-tuning level (no drastic modications induced by LHC)

Page 72: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Main dierences of the latest version (QGSJET-II-04)compared to QGSJET-II-03 (released in 2005):

I Pomeron loops included (only net-like graphs in II-03)

⇒ twice smaller triple-P coupling: r3P ' 0.1 GeV

I PP-coupling xed by H1 LPS diractive data

(in II-03 - by FD(3)2

from ZEUS rap-gap data)

I parameter t included data on dσ elpp/dt, dσ el

πp/dt, dσ elKp/dt

I higher soft/hard cuto: Q20

= 3 GeV2 (Q20

= 2.5 GeV2 in II-03)

corresponds to pmin

⊥,hard = 2Q0 ' 3.4 GeV for the chosen

factorization scale in the model: M2F = p2⊥/4

Dierences between the two versions for particle production:at ne-tuning level (no drastic modications induced by LHC)

Page 73: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Main dierences of the latest version (QGSJET-II-04)compared to QGSJET-II-03 (released in 2005):

I Pomeron loops included (only net-like graphs in II-03)

⇒ twice smaller triple-P coupling: r3P ' 0.1 GeV

I PP-coupling xed by H1 LPS diractive data

(in II-03 - by FD(3)2

from ZEUS rap-gap data)

I parameter t included data on dσ elpp/dt, dσ el

πp/dt, dσ elKp/dt

I higher soft/hard cuto: Q20

= 3 GeV2 (Q20

= 2.5 GeV2 in II-03)

corresponds to pmin

⊥,hard = 2Q0 ' 3.4 GeV for the chosen

factorization scale in the model: M2F = p2⊥/4

Dierences between the two versions for particle production:at ne-tuning level (no drastic modications induced by LHC)

Page 74: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Main dierences of the latest version (QGSJET-II-04)compared to QGSJET-II-03 (released in 2005):

I Pomeron loops included (only net-like graphs in II-03)

⇒ twice smaller triple-P coupling: r3P ' 0.1 GeV

I PP-coupling xed by H1 LPS diractive data

(in II-03 - by FD(3)2

from ZEUS rap-gap data)

I parameter t included data on dσ elpp/dt, dσ el

πp/dt, dσ elKp/dt

I higher soft/hard cuto: Q20

= 3 GeV2 (Q20

= 2.5 GeV2 in II-03)

corresponds to pmin

⊥,hard = 2Q0 ' 3.4 GeV for the chosen

factorization scale in the model: M2F = p2⊥/4

Dierences between the two versions for particle production:at ne-tuning level (no drastic modications induced by LHC)

Page 75: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Main dierences of the latest version (QGSJET-II-04)compared to QGSJET-II-03 (released in 2005):

I Pomeron loops included (only net-like graphs in II-03)

⇒ twice smaller triple-P coupling: r3P ' 0.1 GeV

I PP-coupling xed by H1 LPS diractive data

(in II-03 - by FD(3)2

from ZEUS rap-gap data)

I parameter t included data on dσ elpp/dt, dσ el

πp/dt, dσ elKp/dt

I higher soft/hard cuto: Q20

= 3 GeV2 (Q20

= 2.5 GeV2 in II-03)

corresponds to pmin

⊥,hard = 2Q0 ' 3.4 GeV for the chosen

factorization scale in the model: M2F = p2⊥/4

Dierences between the two versions for particle production:at ne-tuning level (no drastic modications induced by LHC)

Page 76: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Main dierences of the latest version (QGSJET-II-04)compared to QGSJET-II-03 (released in 2005):

I Pomeron loops included (only net-like graphs in II-03)

⇒ twice smaller triple-P coupling: r3P ' 0.1 GeV

I PP-coupling xed by H1 LPS diractive data

(in II-03 - by FD(3)2

from ZEUS rap-gap data)

I parameter t included data on dσ elpp/dt, dσ el

πp/dt, dσ elKp/dt

I higher soft/hard cuto: Q20

= 3 GeV2 (Q20

= 2.5 GeV2 in II-03)

corresponds to pmin

⊥,hard = 2Q0 ' 3.4 GeV for the chosen

factorization scale in the model: M2F = p2⊥/4

Dierences between the two versions for particle production:at ne-tuning level (no drastic modications induced by LHC)

Page 77: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Total, elastic & diractive X-sections / slope

0

25

50

75

100

125

102

103

104

c.m. energy (GeV)

cro

ss s

ectio

n (m

b)

h+p QGSJET II-04

σtot

σel

10

15

20

102

103

104

c.m. energy (GeV)

slo

pe (G

eV-2

)

p+p QGSJET II-04

1

10

102

103

104

c.m. energy (GeV)

cro

ss se

ctio

n (m

b)

QGSJET II-04

σSD

σDD

Page 78: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

dσ elhp/dt - only for small |t| (Gaussian form-factor used)

1

10

10 2

10 3

0 0.1 0.2 0.3 |t| (GeV2)

dσ el

/dt

(m

b/G

eV2 )

1800

62.5 (x10)

31 (x100)

1

10

10 2

10 3

0 0.1 0.2 0.3 |t| (GeV2)

dσ el

/dt

(m

b/G

eV2 )

Kp (x10)

πp

Page 79: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

F2,FD(3)2

0

1

2

10-4

10-1

x

F2(x

,Q2 )

Q2=3.5 GeV2

10-4

10-1

x

Q2=4.5 GeV2

10-4

10-1

x

Q2=6.5 GeV2

10-4

10-1

x

Q2=8.5 GeV2

10-4

10-1

x

Q2=10.0 GeV2

FD(3)2

- upper limit on r3P (RRP & qq contributions neglected)

0

0.02

0.04 xP F

2D(3

)

Q2=3.9 GeV2

β=0.011Q2=3.9 GeV2

β=0.031Q2=7.1 GeV2

β=0.019Q2=7.1 GeV2

β=0.055

0

0.02

0.04

10-3

10-1

xP

xP F

2D(3

)

Q2=5.3 GeV2

β=0.02

10-3

10-1

xP

Q2=5.3 GeV2

β=0.06

10-3

10-1

xP

Q2=10.7 GeV2

β=0.02

10-3

10-1

xP

Q2=10.7 GeV2

β=0.06

Page 80: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Some results at xed target energies

10-1

1

0.2 0.4 0.6 0.8 1 x

xE d

n/dx

p+p → p

100 GeV/c

QGSJET II-04

1

10

0.8 0.85 0.9 0.95 1 x

xE d

n/dx

p+p → p QGSJET II-04

100 GeV/c

200 GeV/c (x 3)

10-4

10-3

10-2

10-1

1

10

10 2

0 0.2 0.4 0.6 0.8 1 x

dn/

dx

p+p → π+/π- QGSJET II-04

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 y

dn/

dy

p+p → π+/π- QGSJET II-04

Page 81: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Versions II-04 (solid) / II-03 (dashed) at√s = 0.2÷7 TeV

0

2

4

6

-5 -2.5 0 2.5 5 η

dN

ch/d

η NSD

1800

200

0

2

4

6

8

-5 -2.5 0 2.5 5 η

dN

ch/d

η

NSD

7000

900

2360

10-7

10-5

10-3

10-1

10

0 2 4 6 8 pt (GeV/c)

dn/

dyd2 p t (c

2 /GeV

2 )

NSD

200 (| η| < 2.5)

1800 (| η| < 1.0)

10-5

10-3

10-1

10

10 3

0 2 4 6 pt (GeV/c)

dn/

dηd2 p t (c

2 /GeV

2 )

NSD

| η| < 2.4

900 (x 0.1)

2360

7000 (x 10)

Page 82: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

But: the inuence of detector eects unclear in CMS resultsE.g., contradiction with ALICE 'inel>0' selection:

0

2

4

6

8

-5 -2.5 0 2.5 5 η

dN

ch/d

η INEL+ QGSJET II-04

7000

900

2360

Page 83: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outlook

QGSJET-II is based on

I optical theorem & s-channel unitarityI all-order resummation of enhanced Pomeron graphsI complete set of partial x-sections (for all possible nal states)I self-consistent MC implementationI 'semihard Pomeron' scheme for hard processesI phenomenological soft Pomeron (⇒ strings) for soft processesI phenomenological vertices for Pomeron-Pomeron interactions

Main drawbacks:

I neglects energy-momentum correlations (at amplitude level) inmultiple scattering

I neglects 'hard' (|q2|> Q20) Pomeron-Pomeron coupling

⇒ no evolution of saturation scale above Q20

= 3 GeV2

(treatment currently in progress (higher twist resummation))

Page 84: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outlook

QGSJET-II is based on

I optical theorem & s-channel unitarityI all-order resummation of enhanced Pomeron graphsI complete set of partial x-sections (for all possible nal states)I self-consistent MC implementationI 'semihard Pomeron' scheme for hard processesI phenomenological soft Pomeron (⇒ strings) for soft processesI phenomenological vertices for Pomeron-Pomeron interactions

Main drawbacks:

I neglects energy-momentum correlations (at amplitude level) inmultiple scattering

I neglects 'hard' (|q2|> Q20) Pomeron-Pomeron coupling

⇒ no evolution of saturation scale above Q20

= 3 GeV2

(treatment currently in progress (higher twist resummation))

Page 85: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outlook

QGSJET-II is based on

I optical theorem & s-channel unitarityI all-order resummation of enhanced Pomeron graphsI complete set of partial x-sections (for all possible nal states)I self-consistent MC implementationI 'semihard Pomeron' scheme for hard processesI phenomenological soft Pomeron (⇒ strings) for soft processesI phenomenological vertices for Pomeron-Pomeron interactions

Main drawbacks:

I neglects energy-momentum correlations (at amplitude level) inmultiple scattering

I neglects 'hard' (|q2|> Q20) Pomeron-Pomeron coupling

⇒ no evolution of saturation scale above Q20

= 3 GeV2

(treatment currently in progress (higher twist resummation))

Page 86: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outlook

QGSJET-II is based on

I optical theorem & s-channel unitarityI all-order resummation of enhanced Pomeron graphsI complete set of partial x-sections (for all possible nal states)I self-consistent MC implementationI 'semihard Pomeron' scheme for hard processesI phenomenological soft Pomeron (⇒ strings) for soft processesI phenomenological vertices for Pomeron-Pomeron interactions

Main drawbacks:

I neglects energy-momentum correlations (at amplitude level) inmultiple scattering

I neglects 'hard' (|q2|> Q20) Pomeron-Pomeron coupling

⇒ no evolution of saturation scale above Q20

= 3 GeV2

(treatment currently in progress (higher twist resummation))

Page 87: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outlook

QGSJET-II is based on

I optical theorem & s-channel unitarityI all-order resummation of enhanced Pomeron graphsI complete set of partial x-sections (for all possible nal states)I self-consistent MC implementationI 'semihard Pomeron' scheme for hard processesI phenomenological soft Pomeron (⇒ strings) for soft processesI phenomenological vertices for Pomeron-Pomeron interactions

Main drawbacks:

I neglects energy-momentum correlations (at amplitude level) inmultiple scattering

I neglects 'hard' (|q2|> Q20) Pomeron-Pomeron coupling

⇒ no evolution of saturation scale above Q20

= 3 GeV2

(treatment currently in progress (higher twist resummation))

Page 88: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outlook

QGSJET-II is based on

I optical theorem & s-channel unitarityI all-order resummation of enhanced Pomeron graphsI complete set of partial x-sections (for all possible nal states)I self-consistent MC implementationI 'semihard Pomeron' scheme for hard processesI phenomenological soft Pomeron (⇒ strings) for soft processesI phenomenological vertices for Pomeron-Pomeron interactions

Main drawbacks:

I neglects energy-momentum correlations (at amplitude level) inmultiple scattering

I neglects 'hard' (|q2|> Q20) Pomeron-Pomeron coupling

⇒ no evolution of saturation scale above Q20

= 3 GeV2

(treatment currently in progress (higher twist resummation))

Page 89: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outlook

QGSJET-II is based on

I optical theorem & s-channel unitarityI all-order resummation of enhanced Pomeron graphsI complete set of partial x-sections (for all possible nal states)I self-consistent MC implementationI 'semihard Pomeron' scheme for hard processesI phenomenological soft Pomeron (⇒ strings) for soft processesI phenomenological vertices for Pomeron-Pomeron interactions

Main drawbacks:

I neglects energy-momentum correlations (at amplitude level) inmultiple scattering

I neglects 'hard' (|q2|> Q20) Pomeron-Pomeron coupling

⇒ no evolution of saturation scale above Q20

= 3 GeV2

(treatment currently in progress (higher twist resummation))

Page 90: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outlook

QGSJET-II is based on

I optical theorem & s-channel unitarityI all-order resummation of enhanced Pomeron graphsI complete set of partial x-sections (for all possible nal states)I self-consistent MC implementationI 'semihard Pomeron' scheme for hard processesI phenomenological soft Pomeron (⇒ strings) for soft processesI phenomenological vertices for Pomeron-Pomeron interactions

Main drawbacks:

I neglects energy-momentum correlations (at amplitude level) inmultiple scattering

I neglects 'hard' (|q2|> Q20) Pomeron-Pomeron coupling

⇒ no evolution of saturation scale above Q20

= 3 GeV2

(treatment currently in progress (higher twist resummation))

Page 91: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Outlook

QGSJET-II is based on

I optical theorem & s-channel unitarityI all-order resummation of enhanced Pomeron graphsI complete set of partial x-sections (for all possible nal states)I self-consistent MC implementationI 'semihard Pomeron' scheme for hard processesI phenomenological soft Pomeron (⇒ strings) for soft processesI phenomenological vertices for Pomeron-Pomeron interactions

Main drawbacks:

I neglects energy-momentum correlations (at amplitude level) inmultiple scattering

I neglects 'hard' (|q2|> Q20) Pomeron-Pomeron coupling

⇒ no evolution of saturation scale above Q20

= 3 GeV2

(treatment currently in progress (higher twist resummation))

Page 92: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Backup

Procedure for a 'cut net-fan' reconstruction(for simplicity, illustrated without Pomeron loops)

1 1y ,b

1 1y ,b

n’>0/

1 1y ,b

m’>2/_

/m’>0

1 1y ,b

n’>0/= ...y’,b’+ ...

net

......

net

+...

netnet

/m’>2

...y’,b’

net......

net

I at each step, one checks if the remaining piece is just a singlecut Pomeron (with all the absorptive eects included):

...

= + ...+

a

d

y ,b1 1

+ + +

I or a diractive cut (last graph in the rhs)I or a splitting into 2 or more cut net-fans (2nd graph in the rhs)

Page 93: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Backup

Procedure for a 'cut net-fan' reconstruction(for simplicity, illustrated without Pomeron loops)

1 1y ,b

1 1y ,b

n’>0/

1 1y ,b

m’>2/_

/m’>0

1 1y ,b

n’>0/= ...y’,b’+ ...

net

......

net

+...

netnet

/m’>2

...y’,b’

net......

net

I at each step, one checks if the remaining piece is just a singlecut Pomeron (with all the absorptive eects included):

...

= + ...+

a

d

y ,b1 1

+ + +

I or a diractive cut (last graph in the rhs)I or a splitting into 2 or more cut net-fans (2nd graph in the rhs)

Page 94: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Backup

Procedure for a 'cut net-fan' reconstruction(for simplicity, illustrated without Pomeron loops)

1 1y ,b

1 1y ,b

n’>0/

1 1y ,b

m’>2/_

/m’>0

1 1y ,b

n’>0/= ...y’,b’+ ...

net

......

net

+...

netnet

/m’>2

...y’,b’

net......

net

I at each step, one checks if the remaining piece is just a singlecut Pomeron (with all the absorptive eects included):

...

= + ...+

a

d

y ,b1 1

+ + +

I or a diractive cut (last graph in the rhs)I or a splitting into 2 or more cut net-fans (2nd graph in the rhs)

Page 95: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Fixed target pC-collision

10-3

10-2

10-1

1

10

10 2

0 0.25 0.5 0.75 1 x

dn/

dx

p+C → π+/π- QGSJET II-04

0

0.25

0.5

0.75

1

-4 -2 0 2 4 y

dn/

dy

p+C → π+/π- QGSJET II-04

Page 96: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Interferention between double diraction and double singlediraction

Example: double high mass diraction at the lowest order

+

2

= + +

Page 97: S. Ostapchenko- Pomeron Calculus: X-sections, Diffraction & MC

Comparison with heavy ions (QGSJET-II-03 - previousversion)

0

200

400

600

800

-5 -2.5 0 2.5 5pseudorapidity eta

dn/d

eta Au+Au 130 GeV → C

0-5%

5-10%

10-20%

20-30%

30-40%

40-50%0

200

400

600

800

-5 -2.5 0 2.5 5pseudorapidity eta

dn/d

eta Au+Au 200 GeV → C

0-5%

5-10%

10-20%

20-30%

30-40%40-50%