s system modeling

Upload: kaleem-ullah

Post on 07-Aug-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 s System Modeling

    1/56

    [email protected] 

    http://www.powerworld.com

    2001 South First Street

    Champaign, Illinois 61820

    +1 (217) 384.6330 

    2001 South First Street

    Champaign, Illinois 61820

    +1 (217) 384.6330 

    Steady-State Power System Security

    Analysis with PowerWorld Simulator 

    S1: Power System Modeling

    Methods and Equations

  • 8/20/2019 s System Modeling

    2/56

    2© 2014 PowerWorld CorporationS1: Power System Modeling

    • Nominal Voltage Levels

    • Per Unit Values

    • Admittance and

    Impedance• Y-Bus Matrix

    • Buses

    • Transmission Branches

    • Loads

    • Switched Shunts

    • Generators

    • Power Flow Equations

    • PV, PQ, Slack buses

    • Newton's Method

    • Multiple Solutions

    • 2-Bus Power Flow

    • PV and QV Curves

    • Maximum Loadability

    Topics in the Section

  • 8/20/2019 s System Modeling

    3/56

    3© 2014 PowerWorld CorporationS1: Power System Modeling

    • Why do transmission systems operate at many differentvoltage levels? –  Power = Voltage * Current

    • Thus for a given power, if you use a higher voltage, then the current willbe lower

     –  Why do we care? Transmission Losses• Losses = Resistance * (Current)2 

     –  Example: What if we want to transmit 460 MW?• At 230 kV, that means 2,000 Amps

    • At 115 kV, that means 4,000 Amps

    • Because current is Twice as high for 115 kV, that means the losseswould be 4 times higher

    • Thus Higher Voltage is better, but more expensive, thusthere is a trade-off –  Means voltages vary depending on the situation

    Transmission System:

    Nominal Voltage Levels

  • 8/20/2019 s System Modeling

    4/56

    4© 2014 PowerWorld CorporationS1: Power System Modeling

    • Varying Nominal Voltage – Harder for a human to

    compare the voltagelevels

     – Harder to handle in theequations used in powersystems

    • You’d have to include“turns-ratio” multipliers all

    over the place

    • This leads the industryto use a normalizationmethod

    Transmission System:

    Nominal Voltage Levels

    138 kV

    138 kV

    138 kV

    345 kV

    345 kV

    345 kV

    69 kV

    69 kV

  • 8/20/2019 s System Modeling

    5/56

    5© 2014 PowerWorld CorporationS1: Power System Modeling

    • Per unit values are used in power systems to avoid worryingabout various voltage level transitions created bytransformers

    • They also allow us to compare voltages using a “percentage-like” number

    • All buses in the power system are assigned a NominalVoltage. –  Normally this is corresponds the physical voltage rating of devices

    connected to this bus and voltages are expected to be close tothis

    • This means 1.00 per unit voltage is usually “normal”

     –  But strictly speaking it doesn’t have to be. It’s just a number usedto normalize the various parameters in the power system model.

    • Example: In Western United States, there is a lot of 500 kV transmission,but it generally operates at about 525 kV

    Transmission Voltage Normalization

    using Per-Unit Values

  • 8/20/2019 s System Modeling

    6/56

    6© 2014 PowerWorld CorporationS1: Power System Modeling

    • Define a “Power Base” (SBase ) for the entire

    system

     – Transmission system SBase = 100 MVA

    • The “Voltage Base” (VBase) for each part of the

    system is equal to the nominal voltage

    • From these determine the “Impedance Base”

    (ZBase) and “Current Base” (IBase)

    “Base Values”

    SBase

    (VBase)ZBase

    2

    =VBase3

    SBaseIBase =

  • 8/20/2019 s System Modeling

    7/567© 2014 PowerWorld CorporationS1: Power System Modeling

    • Nominal Voltages are specified as the “Line toLine” voltage by tradition – This is the voltage magnitude difference between the

    A-B phase, B-C phase, and C-A phase

    • 138 kV 80 kV Line-Ground

    • Current applies to only one phase,

    but the Power is the sum acrossall three phases, thus

    Current Base Calculation:

    Line to Line Voltage

    3

    linetolineound line-to-gr 

    V V    −−=

    A

    B

    C

    linetoline

    ound line-to-gr 

     IV S 

     I V S 

    −−=

    =

    3

    3

    linetolineV 

    S  I 

    −−

    =3   NomVoltage

     MVARating I  Rating

    3=

    Ground

  • 8/20/2019 s System Modeling

    8/568© 2014 PowerWorld CorporationS1: Power System Modeling

    Voltage Base Zones

    138 kV

    138 kV

    138 kV

    345 kV

    345 kV

    345 kV

    69 kV

    69 kV

    VBase = 345 kV

    VBase = 138 kV

    VBase = 69 kV

    NOTE: Zones are separated by transformers

  • 8/20/2019 s System Modeling

    9/569© 2014 PowerWorld CorporationS1: Power System Modeling

    • To determine a per-unit value, simply divide

    the actual number by the base

    • For example

    Determining a Per-Unit Value

    Z = 10 + j50 ohms

    138 kV Base

    SBase = 100 MVA

    Ohms190.440100,000,00

    (138,000)

    ZBase

    2

    ==

     j0.26250.0525Ohms190.44

    Ohms j5010

    ZBase

    ZZpu   +=

    +==

  • 8/20/2019 s System Modeling

    10/5610© 2014 PowerWorld CorporationS1: Power System Modeling

    • Y-Bus (Admittance Matrix )

    • Will review the various parts of the

    transmission system

    • How we model transmission system

    • How these models are entered into software

    The Transmission System - Model of

    the Wires

  • 8/20/2019 s System Modeling

    11/5611© 2014 PowerWorld CorporationS1: Power System Modeling

    • The complex number for Impedance isrepresented by the letter Z

     – Z = R + jX

    • R = Resistance• X = Reactance

    •  Admittance is the numeric inverse ofImpedance and represented by the letter Y

     – Y = G + jB• G = Conductance

    • B = Susceptance 

    Impedance (Z) and Admittance (Y)

    and related terms R, X, B, and G

  • 8/20/2019 s System Modeling

    12/56

    12© 2014 PowerWorld CorporationS1: Power System Modeling

    • Impedance and Admittance are complex

    numbers and are inverses of each other

    Conversion Between

    Impedance (Z) and Admittance (Y)

     b

    2222 xr  x- j

    xr r 

     jxr1

    z1y  

      

      

    ++

      

      

    +=

    +==

    g

     

      

     

    +=

    22 xr 

    r g  

     

      

     

    +

    −=

    22 xr 

    xb

  • 8/20/2019 s System Modeling

    13/56

    13© 2014 PowerWorld CorporationS1: Power System Modeling

    • Used to model ALL of the transmission lines, transformers,capacitors, etc.

    • These are all the “passive” elements –  This part of the model does not change for different solution states

     –  Represents only constant impedances

    • The Y-Bus is an N X N matrix –  N is the number of buses in the system

    • A software package will calculate the Y-Bus from the data providedby the user regarding the passive elements of the system –  Transmission Lines

     –  Line Shunts –  Switched Shunts (Capacitors/Reactors)

     –  Bus Shunts

    Y-Bus Matrix

    (the Admittance Matrix)

  • 8/20/2019 s System Modeling

    14/56

    14© 2014 PowerWorld CorporationS1: Power System Modeling

    • Nominal Voltage (in kV)

    • B Shunt, G Shunt (in Nominal Mvar)

    • Voltage Magnitude in per unit (calculated)

     – Used as initial guess in power flow solution

    • Voltage Angle in degrees (calculated)

     – Used as initial guess in power flow solution

    Power System Bus (or node)

  • 8/20/2019 s System Modeling

    15/56

    15© 2014 PowerWorld CorporationS1: Power System Modeling

    • G Shunt and B Shunt are given as MW or Mvar

    at Nominal Voltage

    • They represent constant admittance G + jB

    • Writing this in actual units

    • Converting to Per Unit Values

    • Similar derivation for G

    Converting “Nominal MW/Mvar” into

    a per unit admittance

     BV  BShunt  nom MVar 2=

      

      +=

    SBase BShunt  B   MVar  pu

    SBase

     BShunt 

    V V 

    SBase

     BShunt 

     B   MVar 

    nom

    nom

     MVar 

     pu   =

     

      

     =

    2

    )(  MVar  MW    BShunt and GShunt 

  • 8/20/2019 s System Modeling

    16/56

    16© 2014 PowerWorld CorporationS1: Power System Modeling

    • Values expressed in MW/Mvar at nominal voltage

    • Represent a constant impedance/admittance at bus

     – B Shunt : represents an impedance Mvar injection

     – G Shunt : represents an impedance MW absorption• Sign of B and G are opposite for historical reasons

     –  G represented a load term

     –  B represented a capacitor term

    • Y-Bus is affected onlyon diagonal

    Bus Shunts (B and G)

     

      

     +

     

      

     −

    SBase

     BShunt  j

    SBase

    GShunt   MVar  MW K Bus

    K Bus

    On Bus Dialog

  • 8/20/2019 s System Modeling

    17/56

    17© 2014 PowerWorld CorporationS1: Power System Modeling

    • Impedance Parameters

     – Series Resistance (R) in per unit

     – Series Reactance (X) in per unit

     – Shunt Charging (B) in per unit

     – Shunt Conductance (G) in per unit

    Transmission Branch

    (Line or Transformer)

    R + jX

     jB

    2

    G

    2

    Bus

    KBus

    M

     jB

    2

    G

    2

    Note: This model is modified when including tap-ratios or phase-shifts

    for variable transformers

    On Branch Dialog

  • 8/20/2019 s System Modeling

    18/56

    18© 2014 PowerWorld CorporationS1: Power System Modeling

    • To make the Y-Bus, we express all the impedances of themodel as an admittance

    • Then add several terms to the Y-Bus as a result of thetransmission line (or transformer)

    Transmission Branch

    affect on the Y-Bus

     

      

     

    +=

    22  xr 

    r g series  

     

      

     

    +

    −=

    22  xr 

     xbseries

    ( )

    ( )

     

      

     +++−−

    −− 

      

     +++

    22

    22

    BusM

    BusK 

    BusMBusK 

     B j

    G jbg jbg

     jbg B

     jG

     jbg

    seriesseriesseriesseries

    seriesseriesseriesseries

  • 8/20/2019 s System Modeling

    19/56

    19© 2014 PowerWorld CorporationS1: Power System Modeling

    • Input the nominal MVAR,

    the MVAR supplied by the

    capacitor at nominal voltage 

    • It represents a constant impedance

    • Use same conversion as

    with the Bus Shunts

    • Y-Bus is thus affected

    only on diagonal terms

    Switched Shunts

    (Capacitor and Reactor Banks)

    Bus K

     jB

     

      

     +

    SBase

    Q j   MVar K Bus

    K Bus

    On Switched Shunt Dialog

  • 8/20/2019 s System Modeling

    20/56

    20© 2014 PowerWorld CorporationS1: Power System Modeling

    • Graphic represents

    a 118 Bus System

     – Sparse or “Mostly

    Zeros”

     – “Incident

    Symmetric”

    What does Y-Bus look like?

    Each dot represents a non-zero entry in the Y-Bus

  • 8/20/2019 s System Modeling

    21/56

    21© 2014 PowerWorld CorporationS1: Power System Modeling

    • Loads are modeled as constant impedance (Z),

    current (I), power (P), or a combination of the

    three

    • For each of these values you specify a realpower and a reactive power (Pspec + jQ spec)

    • Constant Power - the most commonly used

    Loads (ZIP model)

    specspecLk    jQP   +=S

    On Load Dialog

  • 8/20/2019 s System Modeling

    22/56

    22© 2014 PowerWorld CorporationS1: Power System Modeling

    • P+jQ specified are what the load would be atnominal voltage of 1.0 per unit

    • Go back to the equations for complex power and

    derive expression for S

    • Load becomes a linear function of voltagemagnitude

    Constant Current Load

    On Load Dialog

     

      

     

    +∠=⇒

    +==⇒=

    v

    v

    v

    V θ 

    θ θ  0.1

     jQP

    0.1

     jQP specspecspecspec**S

    V

    SIVIS

    ) jQP( specspecLk    +=  V S

  • 8/20/2019 s System Modeling

    23/56

    23© 2014 PowerWorld CorporationS1: Power System Modeling

    • P+jQ specified are what the load would be at nominalvoltage of 1.0 per unit

    • Go back to the equations for complex power

    • Load becomes a quadratic function of voltage magnitude

    Constant Impedance Load

    On Load Dialog

    ) jQP(

     jQP

    )0.1(

     jQP

    )0.1(

    specspec

    2

    specspec

    2

    2

    load 

    specspec

    22*

    *

    2*

    *

    +=

     

     

     

     

    +

    =

    +==⇒=

     

      

     ==

    V V 

    V V 

    S

    SZ

    ZZ

    VVVIS

    ) jQP( specspec2

    Lk    +=  V S

  • 8/20/2019 s System Modeling

    24/56

    24© 2014 PowerWorld CorporationS1: Power System Modeling

    • Model them as a source of Real and Reactive

    Power - MW, MVAR output

    • Control features of generators

     – AVR (Automatic Voltage Regulation)

    • Controls the reactive power output (Q) to maintain a

    specified voltage level at a regulated bus (doesn’t have

    to be the bus to which it is connected)

     – AGC (Automatic Generation Control)

    • Modifies the real power output (P)

    Generators

  • 8/20/2019 s System Modeling

    25/56

    25© 2014 PowerWorld CorporationS1: Power System Modeling

    • MW Output

    • Minimum and Maximum MW Output

    • Available for AGC

    • Enforce Limits

    • Participation Factor

     – Used when on participation factor control

    Generator MW Power Control Input

    On Generator Dialog

    G V l C l F

  • 8/20/2019 s System Modeling

    26/56

    26© 2014 PowerWorld CorporationS1: Power System Modeling

    • Mvar Output• Minimum and Maximum MVAR output

     – Or can Use Capability Curve

     – More detailed, but more data

    • Voltage Setpoint in per unit

    • Available for AVR

    • Remote Regulation %

     – Used when more thanone generator iscontrolling the samebus voltage

    Generator Voltage Control Features

    (AVR)

    Pout

    Q outMust Stay inside shaded

    region during operation

    On

    Generator

    Dialog

  • 8/20/2019 s System Modeling

    27/56

    27© 2014 PowerWorld CorporationS1: Power System Modeling

    • This is the heart of all power system analysis

    • Kirchoff’s Laws for a power system:

    Sum of the Currents at every Node Equals Zero

    The Power Flow Equations

  • 8/20/2019 s System Modeling

    28/56

    28© 2014 PowerWorld CorporationS1: Power System Modeling

    • Many loads (like heaters) are just big resistorswhich should be just an impedance, so why solvethe “power flow”? – Because our input data is MW and MVAR values. This

    is because … – The experience of utilities for more than 100 years

    shows that consumers behave similar to constantpower over the long-run

     – If the voltage drops on a heater, the powerconsumption also decreases, but eventually somepeople get cold and turn up the heat

    • Actually the built in thermostat and control system probablydo this automatically

    Why the “Power Flow”?

  • 8/20/2019 s System Modeling

    29/56

    29© 2014 PowerWorld CorporationS1: Power System Modeling

    • Using the Y-Bus, write Kirchoff’s Current Law atevery bus as a matrix equation

    • We are studying POWER systems, so we like to talkabout power not current, so

    • These are N-1 complex number equations (whereN = the number of buses in the system)

    Deriving the Power Flow Equations

    0IIYVloadsgenerators  =+−

    etc. 0SS-)Y[V](V

    0V]I[[V]I-)YV](V[VIS

    loadsgenerators**

    *

    loads

    *

    generators

    ***

    =+

    =+==

  • 8/20/2019 s System Modeling

    30/56

    30© 2014 PowerWorld CorporationS1: Power System Modeling

    • These N-1 complex number equations can then

    be written as 2*(N-1) real number equations as

    below

    The Power Flow Equations

    ( ) ( )[ ][ ]

    ( ) ( )[ ][ ]   Lk Gk  N 

    m

    mk kmmk kmmk 

     Lk Gk 

     N 

    m

    mk kmmk kmmk 

    QQbgV V Q

    PPbgV V P

    +−−−−==

    +−−+−==

    =

    =

    1

    1

    1

    1

    cossin0

    sincos0

    δ  δ  δ  δ  

    δ  δ  δ  δ  

    Transmission lines,

    transformers, capacitorsGenerators Loads

    Elements of the Y-BusNote: The variables gkm and bkm are the real and imaginary parts of the Y-Bus.

    ( Y = G + jB or ykm

     = gkm

     + jbkm

     )

  • 8/20/2019 s System Modeling

    31/56

    31© 2014 PowerWorld CorporationS1: Power System Modeling

    • Four parameters describe the bus

     – Voltage magnitude (V)

     – Voltage angle (δ or θ)

     – Real Power Injection (P = Pgen - Pload)

     – Reactive Power Injection (Q = Q gen - Q load)

    • The objective of the Power Flow algorithm is to

    determine all four of these values

    The Power Flow Equation Variables

  • 8/20/2019 s System Modeling

    32/56

    32© 2014 PowerWorld CorporationS1: Power System Modeling

    • In the Power Flow we are given two of thesevalues at each bus and then solve for the othertwo

    • Generally, there are three types of buses in aPower Flow

    Three Types of Buses

    Type of Bus

    Voltage

    Mag.

    (V)

    Voltage

    Angle

    )

    Power

    Injection

    (P = Pgen–Pload)

    Reactive Power

    Injection

    (Q = Qgen – Qload)

    Slack Bus (V 

    -Bus)

    (only one of these)

    GIVEN GIVEN SOLVE FOR SOLVE

    FOR

    PV-Bus

    (generator on AVR control)

    GIVEN SOLVE

    FOR

    GIVEN SOLVE

    FOR

    PQ-Bus

    (load or generator not on

    AVR control)

    SOLVE

    FOR

    SOLVE

    FOR

    GIVEN GIVEN

  • 8/20/2019 s System Modeling

    33/56

    33© 2014 PowerWorld CorporationS1: Power System Modeling

    • The power flow equations are non-linear,which means they can not be directly solved

     – Linear: 35 = 7x - 14, so x = 7

     – Non-linear: 5x = sin(x), so x = ???

    • To solve non-linear equations, an iterative

    technique must be used

    • To solve the Power Flow, Newton’s Method isnormally the best technique

     – Simulator uses this by default.

    How does the Power Flow work?

  • 8/20/2019 s System Modeling

    34/56

    34© 2014 PowerWorld CorporationS1: Power System Modeling

    • Power Flow Equations are NON-LINEAR equations.

     – There are cos(*) and sin(*) terms which make the

    equations non-linear

    • This means that finding a direct solution to them isimpossible

    • Thus we must use iterative numerical schemes to

    determine their solution

    • For power flow equations, variations on Newton’s

    Method has been found to be the best technique

    Solving Non-Linear Equations

  • 8/20/2019 s System Modeling

    35/56

    35© 2014 PowerWorld CorporationS1: Power System Modeling

    • Discussed in Calculus courses

    • Consider a simple scalar equation f(x)

    • You can write f(x) as a “Taylor Series”

    Newton’s Method

    ...)(2

    1)()()( 2

    02

    2

    00

    00

    t oh x x x

     f  x x

     x

     f  x f  x f 

     x x x x

    +−

     

     

     

     

    ∂+−

     

     

     

     

    ∂+=

    ==

    Newton’s Method for

  • 8/20/2019 s System Modeling

    36/56

    36© 2014 PowerWorld CorporationS1: Power System Modeling

    • Now, approximate this Taylor Series by ignoringall but the first two terms

    • We are trying to find where f(x) = 0 (the power

    flow equations sum to zero), therefore we can

    approximate and estimate

    Newton s Method for

    Scalar Functions

    )()()( 000

     x x x

     f 

     x f  x f   x x −

     

     

     

     

    +≈ = [ ] [ ])()( 0

    1

    0

    0 x f  x f  x

     f 

     x x x x −

     

     

     

     

    ≈−

    =

    [ ])( 0

    1

    0

    0

     x f  x

     f  x x

     x x

     

     

     

     

    ∂−≈

  • 8/20/2019 s System Modeling

    37/56

    37© 2014 PowerWorld CorporationS1: Power System Modeling

    • This is called an iterative method because you take aguess at x0 and use the “Newton-step” to a new guesscalled x1. Then you use x1 to find x2, etc.

    • Consider f(x) = x2-2. We find

    • Thus and

    Newton’s Method

     x x

     x x

     f 

    2=

     

     

     

     

    =

    )2(21 2 −−≈∆   k 

    k    x x

     x

    −−+=∆+≈+ )2(

    2

    1 21   k 

    k k k k    x x

     x x x x

  • 8/20/2019 s System Modeling

    38/56

    38© 2014 PowerWorld CorporationS1: Power System Modeling

    • Now take and initial guess, say x0=1, and iteratethe previous equation

    • Error decreases quite quickly

     – Quadratic convergence• f(xk) is known as the “mismatch”

     – The problem is solved when the mismatch is zero

    Newton’s Method

    k xk   f(xk ) ∆ xk  

    0 1.0 -1.0 0.5

    1 1.5 0.25 -0.083332 1.41667 6.953x10-3  -2.454x10-3 

    3 1.41422 6.024x10-6  Done 

    Non Linear Equations can

  • 8/20/2019 s System Modeling

    39/56

    39© 2014 PowerWorld CorporationS1: Power System Modeling

    • Consider the previous example.

     – There are two solutions.

    • In an iterative scheme, the initial guess

    determines which solutions you “converge” to.Consider starting at x0= -1 .

    Non-Linear Equations can

    have Multiple Solutions

    S1-39

    2 and  2   −==   x x

    k xk   f(xk ) ∆ xk  

    0 -1.0 -1.0 -0.5

    1 -1.5 0.25 0.08333

    2 -1.41667 6.953x10-3  2.454x10-3 

    3 -1.41422 6.024x10-6  Done 

    Non Linear Equations can

  • 8/20/2019 s System Modeling

    40/56

    40© 2014 PowerWorld CorporationS1: Power System Modeling

    • Consider the equation x2 - λ = 0, where λ is anindependent parameter

    • The number of real solutions depends on the

    value of λ . – For λ > 0, there are two real solutions

     – For λ =0, there is one real solution at x=0

     – For λ 

  • 8/20/2019 s System Modeling

    41/56

    41© 2014 PowerWorld CorporationS1: Power System Modeling

    • Global convergence characteristics of the N-Ralgorithm are not easy to characterize

    • The N-R algorithm converges quite quickly

    provided the initial guess is “close enough” tothe solution

    • However the algorithm doesn’t alwaysconverge to the “closest” solution

    • Some initial guesses are just plain bad. Forexample, if is near zero (“ill-conditioned”), the process may diverge

    Newton-Rhapson

    Convergence Characteristics

     x f    ∂∂

    Extending Scalar to

  • 8/20/2019 s System Modeling

    42/56

    42© 2014 PowerWorld CorporationS1: Power System Modeling

    • Newton’s method may also be used when youare trying to find a solution where many

    functions are equal to zero

    • Let f (x) be a n-dimensional function and let x be an n-dimensional vector

    Extending Scalar to

    Vectors and Matrices

    =

    )(

    )(

    )(

    1

     x f 

     x f 

     x

    n

    =

    n x

     x

     x  

    1

    Newton’s Method for Multiple

  • 8/20/2019 s System Modeling

    43/56

    43© 2014 PowerWorld CorporationS1: Power System Modeling

    • Now, the Newton-step is still defined as

    • But is now a matrix, called the Jacobian

    Newton s Method for Multiple

    Equations

    )(

    1

    1   k k k k   xf 

    x

    f xxx

    kxx

    =

    +

     

     

     

     

    ∂−≈∆=−

    ∂∂

    =∂∂

    n

    nn

    n

     x

     f 

     x

     f 

     x

     f 

     x

     f 

     x

     f 

     x

     f 

     x

     f 

    1

    2

    2

    1

    2

    1

    2

    1

    1

    1

    x

    x

    ∂∂

  • 8/20/2019 s System Modeling

    44/56

    44© 2014 PowerWorld CorporationS1: Power System Modeling

    • Power Flow Equations are NON-LINEARequations

     – The cos(*) and sin(*) terms make them non-linear

    • This means we have to use an iterativetechnique to solve them

    • Define f  to be the real and reactive power

    balance equations at every bus

    • Define x to be the vector of voltages and angles

    at every bus (except the slack bus)

    Solving the Power Flow Equations

  • 8/20/2019 s System Modeling

    45/56

    45© 2014 PowerWorld CorporationS1: Power System Modeling

    • Recall

    • Thus,

    Setting up the Power Flow Solution

    ( ) ( )[ ][ ]

    ( ) ( )[ ][ ]   Lk Gk  N 

    m

    mk kmmk kmmk 

     Lk Gk 

     N 

    m

    mk kmmk kmmk 

    QQbgV V Q

    PPbgV V P

    +−−−−=

    +−−+−=

    ∑−

    =

    =

    1

    1

    1

    1

    cossin

    sincos

    δ δ δ δ 

    δ δ δ δ 

    =

    =

    1

    1

    2

    2

    1

    1

    1

    1

    2

    2

    1

    1

     and  )(

    n

    n

    n

    n

    Q

    P

    Q

    P

    Q

    P

    δ  

    δ  

    δ  

    xxf 

    ∂∂

    ∂∂

    ∂∂

    ∂∂∂

    ∂∂

    ∂∂

    ∂∂

    ∂∂

    ∂∂

    =

    −−−

    −−−

    −−

    −−

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    2

    1

    2

    1

    2

    1

    2

    1

    1

    1

    1

    2

    1

    2

    1

    1

    1

    1

    1

    1

    1

    1

    1

    2

    1

    2

    1

    1

    1

    1

    1

    n

    n

    n

    nnn

    n

    n

    n

    nnn

    nn

    nn

    QQ

    QQ

    PP

    PP

    QQ

    PP

    QQ

    QQ

    QQ

    V PP

    V PP

    V PP

    δ  δ  

    δ  δ  

    δ  

    δ  

    δ  δ  δ  

    δ  δ  δ  

    x

    Note: There are n buses, with bus n being the slack bus

  • 8/20/2019 s System Modeling

    46/56

    46© 2014 PowerWorld CorporationS1: Power System Modeling

    • The power flow equations exhibit the samebehavior as other non-linear equations

    • In theory there are up to 2n -1 solutions to the

    power flow equations – Of these, ALL or NONE may be real number

    solutions

    • In power system analysis, we are normallyinterested only in the solution that is the “high

    voltage” solution for every bus

    Power Flow Solutions

    S1-46

  • 8/20/2019 s System Modeling

    47/56

    47© 2014 PowerWorld CorporationS1: Power System Modeling

    • Consider this lossless (R=0) example system

    • Variable Definitions

    • Power balance

    equations :

    Example Two-Bus Power System

    Bus 2 Bus 1 (Slack) 

    P L 

    + j Q L 

    R+jX = 0.000 + j0.100 

    100.10

    1.0

    xr 

    x222

      −= 

     

     

     

    +

    −=

     

     

     

     

    +

    −= B

    2BusatMagnitudeVoltage

    2BusatAngleVoltage

    =

    =

    θ 

    2)cos(

    )sin(

     BV  BV QQMismatch

     BV PPMismatch

     L

     L

    −+=

    −=

    θ 

    θ 

    How do power flow solutions vary as

  • 8/20/2019 s System Modeling

    48/56

    48© 2014 PowerWorld CorporationS1: Power System Modeling

    • Solution: Calculate a series of power flowsolutions for various load levels

    • First determine the following

    How do power flow solutions vary as

    load is changed?

    −+

    =

    = 2)cos(

    )sin()( ;   BV  BV Q

     BV P

    V  L

     L

    k θ 

    θ θ 

    xf x

    −−

    −−==

     BV  B BV 

     B BV V 

    2)cos()sin(

    )sin()cos(),(

    θ θ 

    θ θ θ J

    x

  • 8/20/2019 s System Modeling

    49/56

    49© 2014 PowerWorld CorporationS1: Power System Modeling

    • Now for each load level, iterate from an initialguess until the solution (hopefully) converges

    • Consider a per unit load of PL = 2 pu and Q L=0 pu

     – A 200 MW load since SBase = 100 MVA

    • Then consider a “flat start” for the initial guess: V0 = 1 ; θ0 = 0.

    • Also consider a start of V0 = 0.5 ; θ0 = -1.

    Example Power Flow Solution

    S1-49

    [ ])( 0

    1

    0

    0

     x f 

     x

     f  x x

     x x

    =  

     

     

     

     

    ∂−≈

    Power Flow Two Bus.xls

  • 8/20/2019 s System Modeling

    50/56

    50© 2014 PowerWorld CorporationS1: Power System Modeling

    • Open Microsoft Excel – …\S01_SystemModeling\Power Flow Two Bus.xls

     – Gray Shadedcells are

    user inputs(initial guess,load and networkparameters)

    Simple 2-Bus Power Flow in Excel

    Iteration ResultsPower Flow Two Bus.xls

  • 8/20/2019 s System Modeling

    51/56

    51© 2014 PowerWorld CorporationS1: Power System Modeling

    • Change Initial Voltage to V0 = 1 ; θ0 = 0 – Cell B5 = 1.0

     – Cell C5 = 0.0

    • Change Initial Voltage to V0 = 0.5 ; θ0 = -1

     – Cell B5 = 0.5 – Cell C5 = -1.0

    Iteration Results

    for Power Flow Solution

    k Vk   θk  (radians)0 1.0000 -0.0000

    1 1.0000 -0.2000

    2 0.9794 -0.2055

    3 0.9789 -0.2058

    4 0.9789 -0.2058

    k Vk   θk  (radians)0 0.5000 -1.00001 0.0723 -1.5152

    2 0.2010 -1.3397

    3 0.2042 -1.3657

    4 0.2043 -1.3650

    Low Voltage Solution

    High Voltage Solution

  • 8/20/2019 s System Modeling

    52/56

    52© 2014 PowerWorld CorporationS1: Power System Modeling

    Region of Convergence

    Initial guess of Bus 2 angle is plotted on x-axis, voltagemagnitude on y-axis, for load = 200 MW, 100 Mvar; x = 0.1 pu

    Initial guesses in the

    red region convergeto the high voltage

    solution, while those in

    the yellow region

    converge to the low

    voltage solution

  • 8/20/2019 s System Modeling

    53/56

    53© 2014 PowerWorld CorporationS1: Power System Modeling

    • A PV-Curve is generated by plotting these two solutions as the realpower load is varied with the reactive load and impedance constant

    • Experiment with parameters in cells O2-O4

    • Higher transmission impedance usually decreases the systemcapacity (maximum load)

    PV-Curves

    0 100 200 300 400 500 600Real power load (MW)

    0

    0.2

    0.4

    0.6

    0.8

    1

       P  e  r  u  n   i   t  v  o

       l   t  a  g  e  m  a  g  n   i   t  u   d  e

    High voltage solutions

    Low voltage solutions

    Note: load values below500 have two solutions,

    those above 500 have no

    solution

    For a critical value (i.e.

    the “nose point”) there

    is only one solution

  • 8/20/2019 s System Modeling

    54/56

    54© 2014 PowerWorld CorporationS1: Power System Modeling

    • A QV-Curve is generated by plotting these twosolutions as the reactive power load is varied

    with the real load and impedance constant

    QV-Curves

    0 50 100 150 200 250 300

    Reactive pow er load (Mvar)

    0

    0.2

    0.4

    0.6

    0.8

    1

       P  e  r  u  n   i   t  v  o

       l   t  a  g  e  m  a  g  n   i   t  u   d  e

    High voltage solutions

    Low voltage solutions

    Again: load values below250 have two solutions,

    while those above 250 have

    no solution

    For a critical value (i.e.

    the “nose point”) there

    is only one solution

  • 8/20/2019 s System Modeling

    55/56

    55© 2014 PowerWorld CorporationS1: Power System Modeling

    • The “nose points” on the PV and QV curves arecritical values

    • They correspond to points of maximum

    loadability from a static point of view – Note: this only considers the static equations.

    Other problems can occur long before the powersystem reaches this points: lines overheating or

    system dynamic problems• The critical values depend on the relative

    allocation between real and reactive power

    Maximum Loadability

    Mathematical Characteristics of the

  • 8/20/2019 s System Modeling

    56/56

    • At the critical value, the power flow Jacobianwill be singular

     – A singular matrix is one that has a zero determinant

    (a generalization of scalar case when df/dx = 0)• A singular matrix CANNOT be inverted

     – Thus the Newton power flow does not work well

    near this point because it requires us to invert theJacobian matrix

    Mathematical Characteristics of the

    Critical Value

    )(

    1

    1   k k k k   xf 

    x

    f xxx

    kxx

    =

    +

     

     

    ∂−≈∆=−