s34709 (347h) - gatech.edu

1
Stress Corrosion Cracking Effect of ageing on mechanical and corrosion properties of high strength aluminum alloys. 80% Cold rolled material 50% cold rolled material 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Strain ratio Strain ratio Sample 80% cold work material 50% cold work material Effect of grain size on the SCC susceptibility of high strength Al alloy Figure 1: Fluoride Salt-cooled High Temperature Reactor (FHR) flow diagram. Fluoride Salt-cooled High Temperature Reactor (FHR). Molten halide salts have been proposed as coolant for several emerging energy technologies, including advanced fission reactors, fusion reactors, and high temperature concentrated solar power storage. Corrosion of containment materials, which include nickel-based alloys and austenitic stainless steels, is a challenge due to the harsh chemical environment at typical operating temperatures, which exceed 650°C. Objectives are to: (1) Study effect of salt impurities to improve understanding of corrosion mechanisms, (2) Develop and test corrosion mitigation strategies such as redox control, (3) Develop stable reference electrodes for studying the changes occurring in alloys in molten fluoride and chloride salts Results : Selective dissolution of chromium is the primary corrosion mechanism. Presence of impurities such as oxides and moisture drive this corrosion behavior A surface chromium carbide layer acts a diffusion barrier to reduce chromium dissolution. Addition of a higher-reacting element, such as Mg in molten chloride salts or Li in molten fluoride salts, inhibits corrosion. Corrosion can also be inhibited by purifying the salt or by cathodic protection Corrosion in Fluoride and Chloride Molten Salts Post-corrosion cross section of SS 304L Mass loss of pre-carburized Cr samples after 100h exposure to molten FLiNaK at 700°C. Ni + /Ni reference electrode for fluoride salt environments. Cross section of SS 316H sample showing LiCrO 2 film, which forms in 700°C FLiNaK salt with oxide impurity. Corrosion Mechanisms in Different Alloy/Environment Systems i. General and Localized Corrosion Aqueous Corrosion High Temperature Oxidation Molten Salt Corrosion Environmental Sensitive Cracking Corrosion Fatigue Stress Corrosion Cracking Hydrogen Embrittlement ii. Understanding Passivity Corrosion Control i. Alloy Selection and Microstructural Effects ii. Environmental Modifications (Inhibitors etc.) iii. Surface Modification (Metallic and non-metallic coatings, Hydrophobic surfaces) Singh Research Group: Corrosion of Metallic Materials Group Overview stress corrosion cracking. Direct Corrosion Costs” account for 3.1%, or $276 billion, of the U.S. GDP in 2002. percentages of the cost of corrosion in specific industry categories. Environmental Degradation of Metallic Materials Corrosion Behavior of Additively Manufactured Alloys 26.3 28.5 29.8 33.6 Aluminum alloys are increasingly replacing the steel in automotive vehicles due to its high strength to weight ratio. Unfortunately some of these high strength aluminum alloys suffer from various structural forms of corrosion such as intergranular and stress corrosion cracking at peak aged tempers. Objective : The principle aim of this project is to asses the effect of composition and processing conditions on the microstructure of the high strength aluminum alloys resulting in stress corrosion cracking and corrosion fatigue. Schematic diagram of recovery boiler. Objective : To evaluate the resistance to high temperature corrosion of candidate superheater tube (shown in orange) materials for an increase in boiler operating temperature. These tubes are faced with various corrosive gaseous species and smelt deposits which accelerate tube failure, leading to boiler explosions. Samples were tested in a variety of gaseous environments with and without salt similar to that found in recovery boilers. Results : i. Alloy performance in steam environments at 772 hours show that esshete 1250 had the worst corrosion resistance, while Haynes 625 had the best corrosion resistance. ii. XRD of 347H and Esshete 1250 show the surface oxides present contain mostly Fe and Mn based oxides, for steam environments containing the simulated recovery boiler deposit. High-Temperature Corrosion Surface SEM image of which underwent oxidation testing at 600°C for 336 hours in steam with simulated recovery boiler salt (A) 347H (B) Esshete 1250. Cr O Mn Fe C Si 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Intensity (counts) 2 (Cu) S21500 (1250) S34709 (347H) Fe 2 O 3 Mn 3 O 4 Mn 2 O 3 NiO S21500 (1250) S34709 (347H) S34709 (347H) XRD of salt post-exposure in air 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Intensity (counts) 2 (Cu) S21500 (1250) S34709 (347H) S21500 (1250) S34709 (347H) S34709 (347H) FeO(OH) MnO(OH) K2MnO4 K2NiO2 XRD of salt post-exposure in steam 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 1000 2000 3000 4000 5000 6000 7000 Intensity(counts) 2 (Cu) Na 2 SO 4 Na 2 CO 3 KCl K 2 SO 4 73.9 wt.% 11.5 wt.% 10.2 wt.% 4.4 wt.% XRD of salt pre-exposure 48 168 336 672 0 -5 -10 -15 -20 -25 -30 625 230 282 347 310 28 1250 Metal Loss [mg/cm 2 ] Time [Hrs] 600°C in Steam Exposure testing of candidate alloys. 48 168 336 672 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 Metal Loss [mg/cm 2 ] Time [Hrs] 625 230 282 347 310 28 1250 600°C in Air Exposure testing of candidate alloys. Elements Wt% Fe 76.18 Mn 19.99 O 3.38 C 0.33 Si 0.13 Elements Wt% Fe 62.63 O 29.06 Mn 5.57 C 1.9 Cr 0.55 Si 0.28 Fe 3 O 4 Mn 3 O 4 Mn 2 O 3 NiO CrO2 Additive manufacturing(AM) or 3D printing is a disruptive approach to traditional manufacturing process, enabling creation of superior parts with more flexibility and efficiency. Microstructural differences due to AM processing conditions and much higher solidification rates in AM alloys, their corrosion or stress corrosion cracking (SCC) behavior can be different from the equivalent wrought alloys. Objective : To understand the effects of processing, microstructure, and environment on corrosion susceptibility and stress corrosion cracking behavior of additively manufactured vs. wrought aluminum 7xxx alloys. Results : AM 7050 alloys used in this study are found to have higher resistance to stress corrosion cracking in chloride environments. In presence of oxidizing conditions (with H 2 O 2 in chloride solution), these AM 7050 alloys showed intergranular cracking near necking region. Presence of Ti and Al rich particles in AM 7050 alloys used in this study lead to mechanical cracks originating from the interface. Microstructure of heat-treated wrought AA 7050 alloy Microstructure of heat treated and modified AM 7050 alloy Stress Corrosion Cracks in wrought alloys in Cl environment No Stress Corrosion Cracks in AM alloys in Cl environment Scanning Vibration Electrode Technique results showing localized corrosion activity SSRT Results - Wrought AA 7050 SSRT Results - modified AM 7050 Wrought AA 7050 Modified AM 7050 Wrought AA 7050 Modified AM 7050 Results : Pitting corrosion behavior and mechanism of lean duplex stainless steels in paper machine white water was studied. Pitting Corrosion Pitting corrosion behavior and mechanism of lean duplex stainless steels in paper machine white water was studied using potentiodynamic polarization test and scratch test method. Materials factors including alloying elements and heat-treatment and environmental factors in terms of chloride and thiosulfate concentration were studied. Pit initiates in the phase that is most susceptible to pitting corrosion. Microstructure of DSSs Pit on DSS 2304 in (300mg/L NaCl+29mg/L Na 2 S 2 O 3 ) Scratch on DSS 2101 in (300mg/L NaCl+29mg/L Na 2 S 2 O 3 ) 26.3 28.5 29.8 33.6 Pitting potential of lean duplex stainless steels in environment containing 300 ppm Cl - and 29 ppm S 2 O 3 2- . *PREN number shown in white. 850 , pit formed after test Cr-depletion near nitride Kasey L. Hanson, Ganesh Bhaskaran, Krishna Moorthi Sankar, Rupesh Rajendran, Sonja Brankovic, Jamshad Mahmood Group Members Study Sponsored by Federal Highway Administration, McLean, VA. Office of Infrastructure Research and Development, 2002. Corrosion when there is no redox control Corrosion with there is redox control with higher-reactive element Cross-sections of Hastelloy N Samples in molten fluorides LiCrO 2 film on surface

Upload: others

Post on 16-Jan-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S34709 (347H) - gatech.edu

Stress Corrosion Cracking

Effect of ageing on mechanical and corrosion properties

of high strength aluminum alloys.

80% Cold rolled material 50% cold rolled material

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Strain ratio

Str

ain

ratio

Sample

80% cold work material

50% cold work material

Effect of grain size on the SCC susceptibility of high strength Al alloy

Figure 1: Fluoride Salt-cooled High Temperature Reactor (FHR) flow diagram.

Fluoride Salt-cooled High Temperature Reactor (FHR).

• Molten halide salts have been proposed as coolant for several emerging energy technologies, including advanced fission

reactors, fusion reactors, and high temperature concentrated solar power storage.

• Corrosion of containment materials, which include nickel-based alloys and austenitic stainless steels, is a challenge due to

the harsh chemical environment at typical operating temperatures, which exceed 650°C.

Objectives are to: (1) Study effect of salt impurities to improve understanding of corrosion mechanisms, (2) Develop and test

corrosion mitigation strategies such as redox control, (3) Develop stable reference electrodes for studying the changes

occurring in alloys in molten fluoride and chloride salts

Results:

• Selective dissolution of chromium is the primary corrosion mechanism.

• Presence of impurities such as oxides and moisture drive this corrosion behavior

• A surface chromium carbide layer acts a diffusion barrier to reduce chromium dissolution.

• Addition of a higher-reacting element, such as Mg in molten chloride salts or Li in molten fluoride salts, inhibits corrosion.

• Corrosion can also be inhibited by purifying the salt or by cathodic protection

Corrosion in Fluoride and Chloride Molten Salts

Post-corrosion cross section of SS 304L

Mass loss of pre-carburized Cr samples after

100h exposure to molten FLiNaK at 700°C.

Ni+/Ni reference electrode for

fluoride salt environments.

Cross section of SS 316H sample showing LiCrO2 film,

which forms in 700°C FLiNaK salt with oxide impurity.

• Corrosion Mechanisms in Different Alloy/Environment Systems

i. General and Localized Corrosion

−Aqueous Corrosion

−High Temperature Oxidation

−Molten Salt Corrosion

−Environmental Sensitive Cracking➢ Corrosion Fatigue

➢ Stress Corrosion Cracking

➢ Hydrogen Embrittlement

ii. Understanding Passivity

• Corrosion Controli. Alloy Selection and Microstructural Effects

ii. Environmental Modifications (Inhibitors etc.)

iii. Surface Modification (Metallic and non-metallic coatings, Hydrophobic

surfaces)

Singh Research Group: Corrosion of Metallic Materials

Group Overview

stress corrosion cracking.

Direct Corrosion Costs” account for 3.1%,

or $276 billion, of the U.S. GDP in 2002.

percentages of the

cost of corrosion in

specific industry

categories.

Environmental Degradation of Metallic Materials

Corrosion Behavior of Additively Manufactured Alloys

26.3 28.5 29.8 33.6

• Aluminum alloys are increasingly replacing the steel

in automotive vehicles due to its high strength to

weight ratio.

• Unfortunately some of these high strength aluminum

alloys suffer from various structural forms of

corrosion such as intergranular and stress corrosion

cracking at peak aged tempers.

• Objective: The principle aim of this project is to

asses the effect of composition and processing

conditions on the microstructure of the high strength

aluminum alloys resulting in stress corrosion

cracking and corrosion fatigue.

Schematic diagram of recovery boiler.

Objective: To evaluate the resistance to high temperature corrosion of candidate

superheater tube (shown in orange) materials for an increase in boiler operating

temperature.

▪ These tubes are faced with various corrosive gaseous species and smelt deposits

which accelerate tube failure, leading to boiler explosions.

▪ Samples were tested in a variety of gaseous environments with and without salt

similar to that found in recovery boilers.

Results:

i. Alloy performance in steam environments at 772 hours show that esshete 1250 had

the worst corrosion resistance, while Haynes 625 had the best corrosion resistance.

ii. XRD of 347H and Esshete 1250 show the surface oxides present contain mostly Fe

and Mn based oxides, for steam environments containing the simulated recovery

boiler deposit.

High-Temperature Corrosion

Surface SEM image of which underwent oxidation testing at 600°C for 336 hours in steam with simulated

recovery boiler salt (A) 347H (B) Esshete 1250.

Cr

O

Mn

Fe

C

Si

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Inte

nsity (

counts

)

2 (Cu)

S21500 (1250)

S34709 (347H)

Fe2O3

Mn3O4

Mn2O3

NiO

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Inte

nsity (

counts

)

2 (Cu)

S21500 (1250)

S34709 (347H)

Fe2O3

Mn3O4

Mn2O3

NiO

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Inte

nsity (

cou

nts

)

2 (Cu)

S21500 (1250)

S34709 (347H)

Fe2O3

Mn3O4

Mn2O3

NiO

XRD of salt post-exposure in air

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Inte

nsity (

cou

nts

)

2 (Cu)

S21500 (1250)

S34709 (347H)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Inte

nsity (

cou

nts

)

2 (Cu)

S21500 (1250)

S34709 (347H)

Fe2O3

Mn3O4

Mn2O3

NiO

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Inte

nsity (

cou

nts

)

2 (Cu)

S21500 (1250)

S34709 (347H)

Fe2O3

Mn3O4

Mn2O3

NiO

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

counts

)

2 (Cu)

XRD of salt post-exposure in steam

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

1000

2000

3000

4000

5000

6000

7000

Inte

nsity(c

oun

ts)

2 (Cu)

Salt Pre-Exposure

Na2SO4

Na2CO3

KCl

K2SO4

73.9 wt.%

11.5 wt.%

10.2 wt.%

4.4 wt.%

XRD of salt pre-exposure

48 168 336 672

0

-5

-10

-15

-20

-25

-30

625

230

282

347

310

28

1250

Meta

l L

oss [

mg

/cm

2]

Time [Hrs]

600°C in Steam

Exposure testing of candidate alloys.

48 168 336 672

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

Meta

l L

oss [

mg

/cm

2]

Time [Hrs]

625

230

282

347

310

28

1250

600°C in Air

Exposure testing of candidate alloys.

Elements Wt%

Fe 76.18

Mn 19.99

O 3.38

C 0.33

Si 0.13

Elements Wt%

Fe 62.63

O 29.06

Mn 5.57

C 1.9

Cr 0.55

Si 0.28

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

200

400

Fe3O4

Mn3O4

Mn2O3

NiO

CrO2

FeO(OH)

MnO(OH)

K2MnO4

K2NiO2

Inte

nsity (

cou

nts

)

2 (Cu)

▪ Additive manufacturing(AM) or 3D printing is a disruptive approach to traditional manufacturing

process, enabling creation of superior parts with more flexibility and efficiency.

▪ Microstructural differences due to AM processing conditions and much higher solidification rates

in AM alloys, their corrosion or stress corrosion cracking (SCC) behavior can be different from

the equivalent wrought alloys.

Objective: To understand the effects of processing, microstructure, and environment on corrosion

susceptibility and stress corrosion cracking behavior of additively manufactured vs. wrought

aluminum 7xxx alloys.

Results:

▪ AM 7050 alloys used in this study are found to have higher resistance to

stress corrosion cracking in chloride environments.

▪ In presence of oxidizing conditions (with H2O2 in chloride solution), these

AM 7050 alloys showed intergranular cracking near necking region.

▪ Presence of Ti and Al rich particles in AM 7050 alloys used in this study

lead to mechanical cracks originating from the interface.

Microstructure of heat-treated

wrought AA 7050 alloy

Microstructure of heat treated

and modified AM 7050 alloy

Stress Corrosion Cracks in

wrought alloys in Cl environment

No Stress Corrosion Cracks in

AM alloys in Cl environment

Scanning Vibration Electrode Technique results showing localized

corrosion activity

SSRT Results - Wrought AA 7050 SSRT Results - modified AM 7050

Wrought AA 7050 Modified AM 7050

Wrought AA 7050 Modified AM 7050

Results: Pitting corrosion behavior and mechanism of

lean duplex stainless steels in paper machine white

water was studied.

Pitting CorrosionPitting corrosion behavior and mechanism of lean duplex

stainless steels in paper machine white water was studied

using potentiodynamic polarization test and scratch test

method. Materials factors including alloying elements and

heat-treatment and environmental factors in terms of

chloride and thiosulfate concentration were studied. Pit

initiates in the phase that is most susceptible to pitting

corrosion.

Microstructure of DSSs

Pit on DSS 2304 in (300mg/L

NaCl+29mg/L Na2S2O3)

Scratch on DSS 2101 in (300mg/L

NaCl+29mg/L Na2S2O3)

26.3 28.5 29.8 33.6

Pitting potential of

lean duplex

stainless steels in

environment

containing 300 ppm

Cl- and 29 ppm

S2O32-

.

*PREN number

shown in white.

850 ℃, pit formed after test

Cr-depletion near nitride

Kasey L. Hanson, Ganesh Bhaskaran, Krishna Moorthi Sankar, Rupesh Rajendran, Sonja Brankovic, Jamshad Mahmood

Group Members

Study Sponsored by Federal Highway Administration, McLean, VA. Office of Infrastructure Research and Development, 2002.

Corrosion when there is no redox control

Corrosion with there is redox control

with higher-reactive element

Cross-sections of Hastelloy N Samples in

molten fluorides

LiCrO2 film on surface