sao 1 of 17 a new laboratory test of the equivalence principle r.d. reasenberg and j.d. phillips...

17
SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian Center for Astrophysics APS Meeting, Jacksonville Florida, 14 April 2007

Upload: kelly-mitchell

Post on 16-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 1 of 17

A New Laboratory Test of the Equivalence Principle

R.D. Reasenberg and J.D. Phillips

Smithsonian Astrophysical Observatory

Harvard-Smithsonian Center for Astrophysics

APS Meeting, Jacksonville Florida, 14 April 2007

Page 2: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 2 of 17

Roland Eötvös

1922, 5 10-9

Robert Dicke

1964, 1 10-11

Vladimere Braginsky

1972, 1 10-12

Eric Adelberger

today

Torsion balances are exquisitely sensitive force detectors.

Solar and horizontal gravity down by 10-3.

Depends on mechanical behavior of stressed fiber.

Page 3: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 3 of 17

Alternative: Galilean test.• Faller and Niebauer at JILA: σ (Δg) / g = 5 × 10-10

• Limited by systematic error associated with lateral separation of falling masses in separate chambers.

Page 4: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 4 of 17

POEM Chamber Optics, Gen-I

Key Technologies:

Laser gauge;

Capacitance gauge;

Motion system.

POEM long-term goal:

σ(η) = 5 10-14

requires second pair of TMA

Page 5: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 5 of 17

Gen-I TMA

Φ = 44.5 mm

h = 36.5 mm

Page 6: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 6 of 17

TFG, Classic Realization

Stabilized Laser

Frequency Shifter (ADM)

Phase Modulator

L

VFS

Int

(Hopping) Controller

VCO

Frequency Counter

Analog Output

~fm

Tracking Frequency laser Gauge: loop closed by Pound-Drever-Hall locking.

Page 7: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 7 of 17

Measurement Precision

TFG early results: Nov 1991

σ(length) < 2 pm, 1 min < τ < 400 min0 0 0

2

( )( )acc T K

Q T

12 5 27K

( ) /( 2)acc R g

For 1 pm @ 1 s, Q = 0.8 s, R = 0.3,

σ(η) = 1.1 10-11, single toss.

σ(Δg)/g = 5 10-14 => 5.1 104 tosses

(22 hours ) 1 s 10,000 s

1 pm

10 pm

Page 8: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 8 of 17

New TFG

Tunable Laser

Phase Modulator LVFS

Int

Hopping Controller

~

Frequency Counter

Analog Output

Reference Laser

fm

Page 9: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 9 of 17

POEM Capacitance Gauges

TMA ADC24 bit

100 kHz

Cal.

Correlators/w in PCf1, f2, …, f5

+-

+-

~ f1

Vacuum

Moving Static

Estimates of 5 positions (x, y: top and bottom & z) per TMA, at 1 kHz

Collaboration with Winfield Hill, Rowland Institute at Harvard

Page 10: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 10 of 17

TMA, exclusive of feet.

Drive plates, 3 of 5 sets.

Pick-up ring.

Drive: 0.1 V rms, 10 – 20 kHz

Sensitivity: < 8 nm @ 1 s.

Electrode gaps: 1 mm (nominal)

Page 11: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 11 of 17

Motion System Requirements

• Follow free-falling TMA.• Rapid reversal of motion at bottom.

– Minimize shock, vibration & energy loss.

• Lateral velocity deviation < 10 μm/s.– Simplify Coriolis correction.

• Smooth transition through zero-g to launch TMA.• Structural resonances high.

– Avoid interaction with motion servo.

Page 12: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 12 of 17

Present Motion System• Slide (commercial).

– Follow nominal trajectory.

• Torsion bar bouncer.– Store and return energy.– Do no harm. (Cause no

shock.)

• Horizontal cable hit by moving system.– Soft onset of force on moving

system, from geometry.– Effective mass of cable, 0.05

kg (chamber, 40 kg).

Page 13: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 13 of 17

New Motion System

• Granite beam as way for air bearings. [ordered]• Porous graphite air bearings. [stock items]• Aluminum box to hold bearings. [parts ordered]• HEIDENHAIN linear position encoder.*• Aerotech motor controller.*• Massive steel base. [designed]• Mechanical modes > 40 Hz.

* Corporate donation.

Page 14: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 14 of 17

Systematic Error, I

• Earth’s gravity gradient.– Δg / g = 1.6 10-7 (for Δh = 0.5 m)

• Goal (TMA): σ (Δg) / g = 1.5 × 10-14

• => require σ(Δh) < 0.05 μm.

– Second pair of TMA. – Absolute distance measurement.– Top-bottom interchange.

• Requires breaking vacuum =>

separate runs 1 or 2 days apart.

A

B

B

A

Page 15: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 15 of 17

Systematic Error, II

• Gravity gradient due to local mass (parked cars).– SUV assumed 2000 kg, on street, 9 m from TMA.

• On street closest to TMA => 9 10-12 g (top-bottom).

– Second pair of TMA.• SUV, worst location (26 deg) => 6.2 10-14 g (double diff.)

– Inventory of cars during night.• Model using estimated masses.

– Frequent left-right interchanges of TMA, if needed.TMA separation (70 mm) → seating error (<< 0.1 mm).

Would address all variabilities in local gravity.

Page 16: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 16 of 17

Systematic Error, III

• Coriolis force and transverse velocity.– Capacitance gauge measures velocity.

• Require ve-w be measured to 33 nm/s [bias < 0.25 nm/s].

• Air slide reduces vibration => reduced transverse velocity, and thus dynamic range requirement.

• Rotation of TMA around horizontal axis.– Vertical offset, optical reference point from CM,

εz=2 μm; 1 mrad/s rotation: δa=2×10-13 g

– Measure rotation with capacitance gauge and calibrate εz by inducing fast rotation via high voltage on capacitance gauge electrodes.

– Correction to 0.5×10-14 g.

Page 17: SAO 1 of 17 A New Laboratory Test of the Equivalence Principle R.D. Reasenberg and J.D. Phillips Smithsonian Astrophysical Observatory Harvard-Smithsonian

SAO 17 of 17

More Information

• www.cfa.harvard.edu/poem

[email protected]

• 617-495-7108

[email protected]

• 617-495-7360