sap net weaver 2004s enterprise data warehousing
Embed Size (px)
TRANSCRIPT

SAP NetWeaver 7.0:Enterprise Data WarehousingOverview
Product Management SAP NetWeaver BI
November 2007

© SAP 2007 / Page 2
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 3
Enterprise Data Warehousing
e.g.,at business unit level provide a:
local/subsidary viewregional viewglobal view
Provide each organizational unit or better each role with the needed reliable,consolidated, integrated, up-to-date, and historical information
at headquarter levelacross business unitsprovide
regional viewglobal view

© SAP 2007 / Page 4
The Challenge of Enterprise Data Warehousing
With an centralised Enterprise Data Warehouse:People will find the right informationRelated information is connected
Collaboration and information exchange between people does work
EDW

© SAP 2007 / Page 5
Architecture SAP NetWeaver BI
SAPOperational Data
Non-SAPOperational Data
SAP NetWeaverBI Data3rd-Party BI Data
Information Broadcasting
Analyzer
BI Consumer ServicesBI Consumer Services
Visual ComposerEmbedded BI
BI Kit
Services &B
APIS
Composite
ReportDesigner
Web ApplicationDesigner
WebAnalyzer
Business Explorer Suite (BEx)
SAP NetWeaver Portal
UIs can be embedded
Enterprise Search WorklistsKnowledge Management Collaboration
Data Sources
BI Layer
SAP NetWeaverBI Accelerator
Appliance
Meta D
ataR
epository
Master D
ata
Open HubService
OperationalData Store
Data Marts
Data Warehouse
Virtual-Provider
Query Designer
Planning Modeler
Analytic Engine
PSA
Downstream System
ODBO/XMLA
Web Services
Near-LineStorage
EnterpriseReportBI App MS ExcelAd Hoc
PlanningLayout

© SAP 2007 / Page 6
Analytic Engine
BI Architecture:Enterprise BI Data Management
Dat
a Fl
ow C
ontr
ol /
Proc
ess
Cha
ins
Enterprise Query, Reporting & Analysis
Caching
Source Systems
Mon
itorin
g / A
dmin
istr
atio
n
Calculation
Aggregation
Planning Services
Enterprise Data Warehouse
OperationalData Store(volatile) Data Warehouse Layer
(historical)
(Architected)Data Marts Open
HubService
DataSource / PSA
Analysis Process DesignBI A
ccel
erat
or
Security
Met
a D
ata
Rep
osito
ry /
Doc
umen
ts
Info
Obj
ects
/ M
aste
r Dat
a
Nea
r-Li
ne S
tora
ge

© SAP 2007 / Page 7
Enterprise Data Warehousing - Processes
Data Modeling for EDWBusiness (Process) Experts can define the basis for the enterprise reporting. They define data containers(InfoProviders) and data consolidation rules. Multiple-layer EDW-architectures are supported.
Data Flow DesignThe data flow (in particular DTP and InfoPackage) is defined at this level.
Maintaining Data SecurityThis process enables organizations to model the company‘s security rules into the software in a highlyflexible matter.
Administration and MonitoringThe BI administrator is offered a central admin and monitoring tool (NetWeaver Administrator), whichfacilitates monitoring of complex landscapes. In addition, lifecycle management tasks can be initiated fromhere.
Performance ManagementProvides all means to accelerate query performance, in particular the SAP NetWeaver BI Accelerator.
Data Modelingfor EDW
Data FlowDesign
Maintaining DataSecurity
Administrationand Monitoring
PerformanceManagement

© SAP 2007 / Page 8
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 9
Overview
Data Warehousing Workbench with SAP NetWeaver 7.0Modeling and Administration view

© SAP 2007 / Page 10
Data Warehousing Workbench
Usability FeaturesFavoritesPersonalizationAdvanced SearchComplete data flow at a glance

© SAP 2007 / Page 11
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 12
Conceptual Layers of Data Warehousing
(Persistent) Staging Area
OperationalData Store
DataWarehouse
(Architected)Data Marts
Any Source
Information Access
DataSources

© SAP 2007 / Page 13
Data Acquisition Layer – Data Sources
SourcesSupport of virtually all sources
ETL Tool
RelationalSource
Multi-Dimensional
SourceFile XMLSAP
Source
DataSource
UDConnect
DBConnect BAPIWeb
ServiceFile
Interface
LegacyApplications
BI ServiceAPI
e.g. IBM DB2,Teradata
e.g. Hyperion e.g. ORACLEFinancials
e.g. SAP CRM e.g. SAPNetWeaver PI(via proxyframework)

© SAP 2007 / Page 14
New BI DataSource concept withSAP NetWeaver 7.0
Highlightsunique look and feel for all of the DataSource TypesPSA is attached to DataSource
InfoPackage writes to PSAData Transfer Process writes from PSA to data targets
direct/remote access is optionalpreview feature is standardautomated conversions (e.g. date format detection)

© SAP 2007 / Page 15
Source System Tree
Source sytems categories:
SAP vs. non SAPFile vs. databaseRelational vs.Multidimensional DBABAP vs. JavaXML vs. Text/BinaryPull vs. PushRealtime vs. Batch

© SAP 2007 / Page 16
DataSource Example – One fits all approach
General InformationDescriptionsReconciliation flag (notfunctional)Opening Balance(inventory)Error handling (duprecs)

© SAP 2007 / Page 17
Data Flow Concept in SAP NetWeaver 7.0
SAP NetWeaver BI
Source
InfoProvider
Source System 1
DataSource / PSA
Transformation
Process Chain
InfoPackage
Data TransferProcess

© SAP 2007 / Page 18
Data Flow Concept in SAP NetWeaver 7.0Simplified
SAP NetWeaver BI
Source
InfoProvider
Source System 1
DataSource / PSA
Transformation
Process Chain(optional)
Data TransferProcess
XRestrictions:
Not optimized formass data transfer
No packaging of data
Full Mode Only

© SAP 2007 / Page 19
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 20
Data Flow in SAP NetWeaver 7.0 BI
Any Source
SAP NetWeaver Business Intelligence
DataSource / PSA
Non-SAP SAPSAP NetWeaver BI
SAP NetWeaver PI
InfoProvider
Transformation
InfoPackage
Downstream Systems
Open Hub DestinationInfoProvider
DataTransferProcess
DTP DTP
InfoPackage
Transformation Transformation

© SAP 2007 / Page 21
Transformation
Source
Package 1
Transformation
Start Routine
ExpertRoutine
End Routine
Transformation Rule 1Transformation Rule n
Package 2Package m
Target
SemanticGroups
* optional
*
*
*
*
Universal transformation from sourceto target objects
Transformation types:Move, aggregate, constant, master data lookup, …Business rules, e.g. unit + currency translationFormula builder with rich predefined functionslibraryABAP routines incl. regular expressions
SAP NetWeaver 7.0 EnhancementsIntuitive UIUnit conversionUnified transfer + update rules into all-in-onecapabilityIntegration of Open Hub Service

© SAP 2007 / Page 22
Transformation – Definition
Access from the Data Warehousing WorkbenchNew transformation
Unification of transfer and update rulesInfoSource not mandatory anymore
Former concept of update rulesSmall square next to the transformation iconAccess from context menu via ‘additional functions’
Links sources and targetNew source: InfoSetOther sources: DataSource, InfoCube, DataStore object, InfoObject, InfoSourceTargets: InfoCube, DataStore object, InfoObject, InfoSource, Open Hub Destination
Transformation
Update rule

© SAP 2007 / Page 23
Transformation – Graphical UI
Sourcefields
Targetfields
Rules pergroupNote: Key figures, characteristics and date
fields are shown on the same level(transformation group)

© SAP 2007 / Page 24
Transformation Rules
Transformation rule detailsInformation on
Rule typeCurrency/Unit ConversionSource fieldsTarget Fields

© SAP 2007 / Page 25
Enhanced Data Flow in SAP NetWeaver 7.0 BI
SAP NetWeaver Business Intelligence
DataSource / PSA
InfoProvider
DataTransferProcess
InfoProvider
TransformationTransformation
InfoSource (optional)
Transformation (optional)
InfoSource (optional)
Transformation (optional)

© SAP 2007 / Page 26
Transformations – InfoSource – 1 –
InfoSourceTransformation directly links from a source InfoProvider (or DataSource) to a targetInfoProviderAn InfoSource is usually not neededNew InfoSource architecture is used (flat InfoObject-based structure)Scenarios for (flexible) InfoSource
A flexible InfoSource is necessary in order to use currency or unit conversionfrom the source DataSource Define InfoSource as an intermediate structureYou can use a flexible InfoSource as a uniform source for several targets; theInfoSource can the be target from different sources (see next slide)
Note: for ‘direct’ InfoSources (for master data updates), there is no differencebetween ‘old’ and ‘new’ InfoSource, i.e. you can define a transformation as well astransfer rules
Pre-requisite: InfoObject is defined as InfoProvider

© SAP 2007 / Page 27
Transformations – InfoSource – 2 –
InfoSourceScenario: InfoSource as a uniform source for several targets and as target fromdifferent sources
SAP NetWeaver Business Intelligence
DataSource
InfoProvider
DataSource 1 DataSource 2 DataSource n…
InfoProvider 1 InfoProvider 2 InfoProvider m…
Transformation…
InfoSource
Transformation…

© SAP 2007 / Page 28
Transformation Groups – 1 –
Transformation GroupsSummarize key figures with the same characteristics assignments
All key figures of one transformation are updated based on the same characteristicvaluesIf other characteristic updates are necessary for particular key figures, a newtransformation is created

© SAP 2007 / Page 29
Transformation Groups – 2 –
Transformation GroupsUse / Example
Scenario: overview on bonus-relevant sales of all employeesAn employee generates a certain sales volume, which is the basis for his/herbonusThe manager of the employee will be assigned 10% of the employee’s bonus asmanager’s bonus relevant
two transformation groups are generated (e.g. ‘employee’ and ‘manager’)
Giles1000Johnson
ManagerSales VolumeEmployee
Source
Transformation Group 1Employee Employee
Sales Volume Bonus-relevant Sales
100Giles
1000Johnson
Bonus-relevant SalesEmployee
Target Transformation Group 1Manager Employee
Sales Volume*0,1 Bonus-relevant Sales

© SAP 2007 / Page 30
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 31
DataStore Object Types
DataStore Object types – overview
via APIs,Staging intosubsequenttargetspossibleX
for externalapplicationsand analysisprocesses(APD)XNo
DataStore Object fordirect update
via staging(DTP)X
Staging layeresp. for largesets of datawith(generally)unique keyX
On requestlevelX
Write-optimizedDataStore Object
via staging(DTP)XXX
Deltadeterminationfrom afterimageson record levelXX
Standard DataStoreObject
Activ-ationQueue
ChangeLog
ActiveDataOthers
Fast Access(no activation)
Delta / ChangeData Capture
ODSLayer
EDWlayer
Integrationinto data flow
StructurePrimary Usage
DataStore object type

© SAP 2007 / Page 32
Standard DataStore Object – 1 –
DetailsOption ‘Generation of SID Values’
Improves query performanceQueries are also possible if SIDvalues are not generated
Option ‘Unique data records’Only available if ‘Generation ofSID Values’ is setActivation process is optimized(only inserts, no sorting, nobefore image)Note: error if key already existsFor (non-reporting) scenarios, write-optimized DataStores are recommended instead ofstandard DataStore objects with unique flag
Performance ImprovementRollback
Instead of rolling back in serial and in one transactionrollback now is in parallel and for each data package there is a single task

© SAP 2007 / Page 33
Standard DataStore Object – 2 –
StructureActivation queue
Used to store data to be updated in DataStore Object which has not been activatedAfter activation the data can be deletedTechnical key: Request SID, Package ID, Record number
Active Data TableSame structure asthe DataStore Objectdefinition
Change LogChange history for delta mechanism from the DataStore Object into other InfoProviderKey fields:– Request GUID, Package ID, Record number

© SAP 2007 / Page 34
Write-optimized DataStore Object – 1 –
ScenariosFast EDW inbound layer (no activation needed)For large sets of data records on detailed level (e.g. document level)
“wide” structure is possible (16 key fields, 749 data fields)“Load of new records”:
Every record has a new key No update, only insertsE.g. for POS data
“Load & Drop”:Full Upload into DataStore ObjectUpdate subsequent InfoProviderDrop DataStore Object dataContinue with full uploads

© SAP 2007 / Page 35
Write-optimized DataStore Object – 2 –
DetailsDefinition
Only active data table (key: request ID, Packet No., Record No.)– No change log and no activation queue– Technical key is uniquePartitioned on request IDNo SID generation– Nevertheless: Reporting is possible (but not optimized for performance)Fully integrated in data flow: usable as data source and data target– Export into InfoProviders via request deltaCan be included into MultiProvider or InfoSet
Uniqueness of DataCheckbox “Do not check Uniqueness of data”Performance improvement during data load– Does not create/maintain unique index on
semantic key

© SAP 2007 / Page 36
DataStore Object For Direct Update – 1 –
DetailsDefinition
Only active data tableCan be used as data target within APDcannot be used for transformation (upload) scenarios
no loading process within BIbut export into next InfoProvider is possible
Reporting is possibleScenarios
Used for direct input of (external) transactional data– E.g. BI table for user interactionAn API is available with a set of function modules(some are RFC enabled)Fed by APD processes

© SAP 2007 / Page 37
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 38
InfoCube
InfoCubeStar Schema optimized for multi-dimensional reporting
Fact TableFact Table
DimensionDimension
DimensionDimensionDimensionDimension
DimensionDimension
Dimension ID
MasterData
MasterData
MasterData
MasterData
MasterData
MasterData
MasterData
MasterData
Surrogate Key
Support ofdegenerateddimensions

© SAP 2007 / Page 39
InfoCube
Example:
InfoCube in Meta DataRepository

© SAP 2007 / Page 40
MultiProvider
MultiProviderLogical definition without data persistencyAbstraction level for queriesCan integrate the following InfoProviders via union operator
InfoCubeInfoObjectDataStore ObjectVirtualProviderInfoSetAggregation Level

© SAP 2007 / Page 41
InfoSet
InfoSetLogical definition without data persistencyCan integrate InfoCubes, DataStore Objects and InfoObjectsjoin and outer join operator
InfoCube DataStore Object InfoObject /Master Data
InfoSetw/o data
persistency

© SAP 2007 / Page 42
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 43
Data Transfer Process: Complex Example
DataStore Object 1
DTP
DataStore Object 2
DataStore Object 3
InfoSource
DTPDTP
DTPDTP
DTP
IP IP
TR
TR TR
TR
TRTR
DataSource (PSA)DataSource (PSA) DataSource (PSA)DataSource (PSA)
Source System 1 Source System 2
TRProcess Chain
Process Chain
SAP Netweaver BI

© SAP 2007 / Page 44
Benefits of New Data Transfer Process
Data Transfer Process (DTP) - Data Distribution within SAP NetWeaver BILoading data from one layer to others except InfoSourcesSeparation of delta mechanism for different data targetsEnhanced filtering in dataflowImproved transparency of staging processes across datawarehouse layers(PSA, DWH layer, ODS layer, Architected Data Marts)Improved performance: optimized parallelizationEnhanced error handling for DataStore object (error stack)Enables real-time data acquisition

© SAP 2007 / Page 45
Filter in Data Transfer Process
With filter it is possible toload a set of data to the
data target instead of thecomplete volume of data.Different data selectionscan be made via different
data transfer processes forthe same or for different
data targets.
Extractionmode: Delta or
Full

© SAP 2007 / Page 46
Data Transfer Process
Loading directlyinto Data Target
without PSA
PrerequisiteDataSource is enabled for direct access (table ROOSOURCE)Or SAP Basis Plug-In Release 2005.1 SP8, or SAP Plug-In Release 2004.1 4.6C SupportPackage 13Or if you want to have the correction before the above support packages are released, pleaseapply note 923783.

© SAP 2007 / Page 47
Process chaincan automatethe loadingprocess
Error Handling Overview
DTP SchedulerDTP Scheduler
Error StackError Stack
DataSource (PSA)DataSource (PSA)IP DTP
There is no error handlingavailable for an InfoPackage.In case of invalid records,data needs to be reloadedfrom the source system.
Invalid records can be corrected in the errorstack and updated into the data target
Source System
Error DTP

© SAP 2007 / Page 48
Error Handling Features
Error HandlingPossibility to choose in the scheduler to...
abort process when errors occurprocess the correct records but do not allow reporting on themprocess the correct records and allow reporting on them
Number of wrong records which lead to a wrong requestInvalid records can be written into an error stackKeys should be defined for error stack to enable the error handling of DataStore objectTemporary data storage can be switched on/off for each substep of the loading processInvalid records can be updated into data targets after their correction.

© SAP 2007 / Page 49
Error Handling
Error HandlingOnce errors occur, the wholeData Package is terminated.The request is not releasedfor reporting.
Valid records are updated.After manual release of therequest, data is valid forreporting.
Valid records are updated andavailable for reporting

© SAP 2007 / Page 50
Error Stack – 1 –
Error StackStores erroneous records
Automatic checks: Existence of master data, conversion exit (restricted, e.g.Alpha)Customer-defined checks in transformation routines (see appendix for moreinformation)
Keeps the right sequence of records for consistent DataStore handlingKey of error stack defines which data should be detained from the update after theerroneous data recordAfter correction, Error-DTP updates data from error stack to data targetNote: Once the request in the source object is deleted, the related data records inerror stack are automatically deleted

© SAP 2007 / Page 51
Error Stack – 2 –
Error StackKey of Error Stack = Semantic Groups
Subset of the key of the target objectMax. 16 fieldsDefining which data should be detained from the update after the erroneousdata record (for DataStore Object)Semantic groups bundle records with the same semantic group key into thesame request see transformation chapter for more details (for DataStoreObject and InfoProvider)

© SAP 2007 / Page 52
Temporary Data Storage
Temporary Data StorageHelp for tracing the erroneous records and transformationsData records from different steps within the data transfer process can be storedtemporarilyStores complete set of data (erroneous as well as valid records)Scenario:
If the debugging mode is switched onTrace the erroneous recordsTrace Transformation

© SAP 2007 / Page 53
Temporary Data Storage
Settings for Temporary Data StorageLevel of detail
Tracing the erroneous recordsTracing transformation by packageTracing transformation by record
Deletion of temporary storageWith request status ‚green‘If request is deletedAfter X days
Switch on/off thetemporary datastorage for dataloading steps

© SAP 2007 / Page 54
Data Transfer Process Monitor – 1 –
DTP MonitorIntegrated in InfoProvider management screenIntegrated in DTP maintenanceAdditional information: duration of each stepTemporary storage access – if activatedError Stack is displayed in DTP Monitor
Data display intemporary storage
Error Stack

© SAP 2007 / Page 55
DTP and Open Hub
Open Hub DestinationasDTP DataTarget

© SAP 2007 / Page 56
Open Hub Destinations

© SAP 2007 / Page 57
DTP Initialization without Data Transfer
Data TransferProcess Initializationwithout data transfer

© SAP 2007 / Page 58
DTP Monitor – Header
Monitor Data transferprocess ‚header‘

© SAP 2007 / Page 59
New with SPS08:Monitor Datatransfer process‚Detail‘
DTP Monitor – Detail

© SAP 2007 / Page 60
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 61
Introduction: Typical Data Load Cycle
Data LoadMonitor
Data TargetMaintenance
Start
Load into PSA
Load into DataStore
ActivateData in
DataStoreObject
Load into InfoCube
Roll up to BIAIndex
…
Drop Indices

© SAP 2007 / Page 62
Process Chain Example

© SAP 2007 / Page 63
Three Different Views in the Transaction
Planning view: Build and change process chainsGrey: unplanned processesGreen: planned prozessesYellow: planned but unknown processesRed: multiple planned processes
Check view: Check for errors in designGreen: Error-free processesYellow: Process with warningsRed: Process with errors
Log view: Monitoring of process chainsGrey: Not yet runGreen: Finished without errorYellow: runningRed: broken or failed

© SAP 2007 / Page 64
Process Chains:Failed processes can send email
Planning viewcontext menu
Write a messageand fill in recipient
and type. Infosaved within
process variant.

© SAP 2007 / Page 65
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 66
BI Administration Cockpit - Motivation
Easy administrationfor complex
Enterprise Data Warehousesusing the BI
Administration Cockpit
Easy administrationfor complex
Enterprise Data Warehousesusing the BI
Administration Cockpit

© SAP 2007 / Page 67
BI Administration Cockpit - Scope
Support the BI administrator inStatus trackingPerformance optimizationStrategic administration
…in the areas ofEnterprise Data WarehousingEnterprise Query, Reporting and AnalysisBusiness Planning and Analytical Services
…by providing a central point of entry withcockpits
Real-time monitorsRuntime StatisticsCross system monitoring
…including context-specificDrill-down to detailsProcessing optionsExceptions (optional)
…using proven technologyBI QueriesBI Web ApplicationsSAP NetWeaver Portal
…to make administrationeasier and faster
…and thus to lower the TCO

© SAP 2007 / Page 68
BI Administration Cockpit - Overview
Central access to most important BImonitoring information
Monitoring ofmultiple BI systems
in one view
Flexible filtering ofrelevant information
Context menu foraccess to more
detailed informationor BI Transaction
Exception definition forintuitive display of criticalmonitoring data (optional)
Graphical display

© SAP 2007 / Page 69
BI Administration Cockpit –Architecture
BISuite
BIPlatform
DataWarehousing
Queries
BI Web Applications
SAP NetWeaver BI
InfoProviders / MultiProviders
Query RuntimeStatistics
Data LoadStatistics
Data LoadStatus
DataSources
iViews iViews
SAP NetWeaver Portal
PortalPages iViews
SAP NetWeaver 7.0 BItechnology(software componentSAP_BW)
Technical Content for SAPNetWeaver BI (softwarecomponent BI_CONT,release 7.0.2), TheTechnical Content isentirely based on SAP BW3.x functionality notrequiring BI_JAVA.
Business Package „BIAdministration 1.0“ fromthe Portal ContentPortfolio. BI AdministrationCockpit can run in acentral or in a local portal.

© SAP 2007 / Page 70
BI Administration Cockpit –Main building blocks
BISuite
BIPlatform
DataWarehousing
Queries
BI Web Applications
SAP NetWeaver BI
InfoProviders / MultiProviders
Query RuntimeStatistics
Data LoadStatistics
Data LoadStatus
DataSources
iViews iViews
SAP NetWeaver Portal
PortalPages iViews
BI StatisticsDetailed Runtime Statistics Data collection for various BI
Objects in Data Warehousing, Enterprise Reporting and Planning
Technical Content (InfoProviders and DataSources)Central Data Basis for BI Administration Cockpit and BI system
load transaction ST03Persistent Data Storage and Remote Access to BI Statistics
Information
Technical Content (Web Application and Queries)Flexible analysis of statistics data and sophisticated
presentation of information (graphs, charts, tables)
BI Administration Cockpit (Business Package)Single point of entry and integration with other (non BI related)
portal content (example: Universal Work List)
Built-In
Mandato
ry
Recommen
ded

© SAP 2007 / Page 71
New BI Statistics and Technical Content
Main enhancementsNew Technical Content for new and enhanced BI Statistics
New Query Runtime StatisticsProcess Chain and DTP StatisticsBI Object Request and Process Status
Technical Content for direct access and analysis on persistent dataPer default, queries from the Technical Content filter on reading frompersistent InfoProviders onlyReading from Virtual Providers can be enabled on query level by customers
Technical Content on detailed and aggregated levelFor Query Runtime Statistics
New maintenance for statistics data collectionEnabling statistics and selection of detail level for statistics

© SAP 2007 / Page 72
Analysis of BI Statistics data in SAPNetWeaver 7.0
Statistics tables (RSSDSTAT)
Direct analysisof tables RSDDSTAT*
ST03 – BW System Load
New and enhancedTechnical Content
Query Monitor (RSRT)
BI Administration Cockpit
Expert mode “profiling”in the (new) BEx Web
New: Persistentdata storage and
direct access
New: System Loadanalysis for BI basedon Technical Content
New: Ad hocanalysis of
statistics data

© SAP 2007 / Page 73
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 74
Analytic Engine
BI Architecture:Platform & Data Warehouse
Dat
a Fl
ow C
ontr
ol /
Proc
ess
Cha
ins
Enterprise Query, Reporting & Analysis
Caching
Source Systems
Mon
itorin
g / A
dmin
istr
atio
n
Calculation
Aggregation
Planning Services
Enterprise Data Warehouse
OperationalData Store(volatile) Data Warehouse Layer
(historical)
(Architected)Data Marts Open
HubService
DataSource / PSA
Analysis Process DesignBI A
ccel
erat
or
Security
Met
a D
ata
Rep
osito
ry /
Doc
umen
ts
Info
Obj
ects
/ M
aste
r Dat
a
Nea
r-Li
ne S
tora
ge

© SAP 2007 / Page 75
Data-Aging Strategies – Initial Steps
Frequently read /changed data
Very rarely read data
Rarely read data
Classic ArchiveNear-Line StorageOnline Database
Categorizing Information According to Importance:

© SAP 2007 / Page 76
Persistent Data Warehouse Layers –Strategic Aspects
Data Warehouse
OperationalData Store(volatile)
Data Warehouse Layer(historical)
ArchitectedData Marts
NLS
NLS
Eng
ine
InfoProviderInfoCubesDataStore-Objects
• Multidimensional Model• High Performance Capabilities• High Volume Capabilities• Optimized TCO
BIA
Eng
ine
BI

© SAP 2007 / Page 77
Offline Archive
RDBMS
Modeling Aspects –Perfect InfoCube Design Example
InfoCube
NLSBIA
Staging
Indexing Archiving
BI

© SAP 2007 / Page 78
Offline Archive
NLS
RDBMS
InfoCube
BIA Engine
BI
Accelerated Online Nearline Offline
high frequently frequently non frequently rarely
Information Lifecycle Management Aspects

© SAP 2007 / Page 79
RDBMS
NLS EngineBIA Engine
BI
Offline Archive
Business Explorer Suite (BEx)Transparent Access No Access
Adjoint InfoProvider
InfoProvider
NearlineProvider
Reporting Aspects

© SAP 2007 / Page 80
Sources
NLS EngineBIA Engine
BI
Data Mart
EDW
PSA
DTP
Indexing
DAP
DTP
• timeslices + dimensions• ADK, ADK/NLS, NLS• new process type in
ProcessChains• flexible for structural changes• Archive and delete in one LUW• write protection for removed
areas in Data Store objects
• Reload via DTP available
Dataflow Aspects

© SAP 2007 / Page 81
The Near-Line Storage Solution forSAP NetWeaver BI
Near-Line StorageSeparation of frequently used data and rarely used data via Admin CockpitcapabilitiesNLS support for InfoCubes and DataStore objects
Transparent access to „non-archived“ and „archived“ data for queriesOpen interface for certified partnersDevelopment partners
PBS Software – CBW®FileTek – StorHouse®OuterBay - LiveArchive®SAND-Technologies - Searchable Archive®

© SAP 2007 / Page 82
SAP NetWeaver 7.0 BI: NLS-Based Archiving
InfoProviderInfoCubesData Store Objects
Data Archiving Process
Defining a flat view of the InfoProviderwithout navigational attributes and SIDs
Scheduling via Process Chain
Archive TypeOffline, ADK only (like BW 3.x)Near-Line onlyOffline and Near-Line (NLSindexing Offline Archive)
Selection SchemaTime-Slice Archivingrelative archiving periods, delta oriented,DSO and compressed InfoCube,range protection for incoming data
Pure Request-basedfor uncompressed InfoCubes
Flexible Selectionsno support for periodic processingArchiveOnline DB
Query PropertiesNear-line storage to be read as well

© SAP 2007 / Page 83
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 84
Authorizations Levels
Authorizations can be definedOn InfoCube levelOn characteristic levelOn characteristic value levelOn key figure levelOn hierarchy node level
Authorization
Authorization
Autho-rization
On key figure levelOn characteristic value level
On characteristic level

© SAP 2007 / Page 85
Introduction to Analysis Authorizations
Authorization Check okQuery results will be shown ifquery selection is a propersubset of the authorization
Authorization Check not okQuery results will not be shown at all (‘not authorized’)– even if parts of the authorizations are met
Authorizations
QuerySelection
Authorizations
QuerySelection

© SAP 2007 / Page 86
Authorization Relevant Characteristics
Before restrictingauthorizations oncharacteristics, you haveto mark them asauthorization-relevant.
InfoObject maintenance / transaction RSD1

© SAP 2007 / Page 87
Authorizing Characteristic Values – 1 –
Scenario: A group of usersis authorized only tospecific salesorganizations (e.g. Berlinand Birmingham)
Central maintenance for(analysis) authorizations /transaction RSECADMIN

© SAP 2007 / Page 88
Authorizing Characteristic Values – 2 –
A group of users isauthorized only to specificsales organizations (e.g.Berlin and Birmingham)
Possible ValuesEQ: single valueBT: range of valuesCP: contains (simple) patterns ending with ‘*’ or ‘+’(e.g. XY*)
(Berlin)(Birmingham)

© SAP 2007 / Page 89
Authorizing Navigational Attributes – 1 –
If you want to grantauthorizations onnavigational attributes,mark them in the attributetab strip as authorizationrelevant.

© SAP 2007 / Page 90
Authorizing Hierarchies – 1 –
On the same level like thevalue authorization, youcan also grantauthorizations onhierarchy levels.
Assume you’ll have asales organization asdepicted.

© SAP 2007 / Page 91
Authorizing Hierarchies – 2 –
Now you grant access forthe complete Americasand France.
You can also usevariables for flexiblyand dynamicallydetermininghierarchy nodes.

© SAP 2007 / Page 92
Special Authorizations
Special authorizations* (asterisk): denotes a set of arbitrary characters+ (plus): denotes exactly one character (e.g. 01.++.2005 until 10.++.2005 : allowsaccess only the first 10 days of each month in 2005 - only available for timevalidity (0TCAVALID)): (colon): allows only aggregated access to data (e.g. allows information on allsales areas only on aggregated level – not on particular countries)
Key figure authorizations
For key figure authorizations, you can include 0TCAKYFNM ascharacteristic into the authorization. Note: hierarchy authorizations are notallowed on this characteristic.
Note: Once you define 0TCAKYFNM authorization-relevant, key figuresare checked for every InfoProvider.

© SAP 2007 / Page 93
Selection and Authorization
Check of AuthorizationsSelection of query will be checked against the union of the authorizationsExample:
One authorization grants access to cost center 1000 for year 2004, a secondone grants access to the same cost center for year 2005Access to a query selection with cost center 1000 and years 2004 and 2005 willbe granted
Note: In the former concept of authorization objects, the query selection had tobe in the intersection of the two authorization object if the authorization shouldbe checked (i.e. the mentioned query was not authorized)
Year
200
5
Year
CostCenter
Year
200
4
CC 1000

© SAP 2007 / Page 94
Comparing Authorization Concept
Comparison Analysis Authorizations<= SAP NetWeaver 2004 vs. SAP NetWeaver 7.0
Most important differences
Analysis AuthorizationAuthorization Objects
<=SAP NetWeaver 2004 SAP NetWeaver 7.0
Technical Foundation
ChangeableNot ChangeableAfterwardsMaintenance
Number of InfoObjectsnot limited10 objectsNumber of objects
IndividuallyOnly on global basisNavigational Attributes
Equivalent to valueauthorizations
Via GUID and0TCTAUTHHHierarchy Authorizations
Union (‚as expected‘)Intersection of businessobjects
Composition ofauthorizations
Only InfoObject settingPer InfoObject ANDInfoCubeAuthorization Relevance

© SAP 2007 / Page 95
Migration
Migration SupportABAP program RSEC_MIGRATION (use transaction SA38)No complete, automatic migration, but support
About 80% automatic migration expectedThe more complex the existing authorization concept, the more manualmigration work might be necessaryCustomer-exit variables for 0TCTAUTHH cannot be migrated; the respectivehierarchy nodes must be assigned manuallyIntensive tests are highly recommended
Singular event, not for schedulingDuring migration to the new authorization concept, the existing concept won‘t bechanged

© SAP 2007 / Page 96
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 97
Customer Pain Points
Increasing datavolume
Increasing numberof information
workers
AdditionalAdministration
effort
Information at thespeed of thought
Quick and easyscalability
Reducecost of operation
significantly

© SAP 2007 / Page 98
SAP NetWeaver BI AcceleratorValue Proposition
SAP NetWeaver BI Accelerator
Very fast queryresponse time
Stable queryresponse time
High scalability Low maintenance
Performanceimprovements
by factor 10 – 100
Independent ofDB optimizer,aggregates, ...
No aggregatemaintenance, minimized
roll-up/change run
Implemented for latestblade server hardware
platforms
Increasedquality of
information/ExtendedBI reach
Significantreduction of
operationcosts

© SAP 2007 / Page 99
SAP NetWeaver BI Accelerator
SAP NetWeaver BI Accelerator for high performance BIA new transparent approach to boost BI query performance
Performance speedup factor between 10 and 100Without changing the BI user experience (transparent to users)Pre-requisite: BI in SAP NetWeaver 7.0
DBMS
Database
SAP NetWeaverBusiness
IntelligenceBI Accelerator
Queries Queries
X

© SAP 2007 / Page 100
SAP NetWeaver BI Accelerator Scenarios
Ready for high data volumesQueries that routinely involve access to many millions of records and may involve up tobillions of recordsExamples: retail, utilities, telephone companies
Challenging response time SLAsExample: service level agreements for call center operators demand short response timesfor good closure rates
Unpredictable types of queriesFar more different data sets and aggregations than traditional optimization and cachingstrategies can handleExcellent response times for any drill-down, slice & dice, …Examples: on-demand reporting for different user groups,ad hoc analyses
Minimizing costs of operationMaintenance of aggregates can be significantly reducedReduced roll-up and change run times

© SAP 2007 / Page 101
1. Overview2. Data Modeling
2.1. Data Warehousing Workbench2.2. DataSource2.3. Transformation2.4. DataStore Objects2.5. Modeling Data Marts
3. Data Flow Design3.1. Data Transfer Process3.2. Process Chains
4. Administration & Monitoring4.1. Administration Cockpit4.2. Information Lifecycle Management
5. Maintaining Data Security6. Performance Management
5.1. SAP NetWeaver BI Accelerator5.2. Other Performance Techniques
Agenda

© SAP 2007 / Page 102
Aggregates
AggregatesPre-aggregated (sub-)InfoCubesAlternative to SAP NetWeaver BI Accelerator
Database /Selection
Analytic Engine
Aggregate
Month RevenueJuly 30August 30
Month RevenueJuly 30August 30
Month Material RevenueJuly Hammer 10July Nail 20August Hammer 10August Nail 20

© SAP 2007 / Page 103
Query Cache
Query CacheStores query results in cross-transactional application bufferRe-use of similar query results – also for other usersCan be actively used for performance improvement pre-load the cache viainformation broadcasting
InfoCube(if BIA is used, InfoCube data on database is not read)
Aggregates orSAP NetWeaver BIA
Query Cache

© SAP 2007 / Page 104
Other Performance Options
Modeling optionsMultiProvider (semantic) partitioningLine-item dimensions
Database featuresIndexingDatabase Statistics

© SAP 2007 / Page 105
Compression
CompressionMove data from F to E fact tableCompression usually reduces the number of records by combining records withthe same key that has been loaded in separate requestsWhen dealing with non-cumulative key figures, it is highly recommended toregularly compress (also when using SAP NetWeaver BI Accelerator)Double fact table
“F” Table– Request Information– Typically small– Optimised for Loading
and Deleting“E” Table– Optimised for Queries– Typically large– User-defined DB Partitioning
(depending on the DBMS)– But: no information on requests
Fact Table
REQUEST No. Time Material Sales
F - Table
REQUEST No. Time Material Sales
E - Table
Compression
Upload
As InfoPackages are added, Ffact table partitions are created

© SAP 2007 / Page 106
Copyright 2007 SAP AGAll rights reserved
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG. The information contained herein may be changedwithout prior notice.Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, Duet, Business ByDesign, ByDesign, PartnerEdge and other SAP products and services mentioned herein as well as theirrespective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All other product and service names mentioned andassociated logos displayed are the trademarks of their respective companies. Data contained in this document serves informational purposes only. National product specifications may vary.
The information in this document is proprietary to SAP. This document is a preliminary version and not subject to your license agreement or any other agreement with SAP. This documentcontains only intended strategies, developments, and functionalities of the SAP® product and is not intended to be binding upon SAP to any particular course of business, product strategy,and/or development. SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the accuracy or completeness of the information, text, graphics, links, orother items contained within this material. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties ofmerchantability, fitness for a particular purpose, or non-infringement.
SAP shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials. This limitationshall not apply in cases of intent or gross negligence.The statutory liability for personal injury and defective products is not affected. SAP has no control over the information that you may access through the use of hot links contained in thesematerials and does not endorse your use of third-party Web pages nor provide any warranty whatsoever relating to third-party Web pages
Weitergabe und Vervielfältigung dieser Publikation oder von Teilen daraus sind, zu welchem Zweck und in welcher Form auch immer, ohne die ausdrückliche schriftliche Genehmigung durchSAP AG nicht gestattet. In dieser Publikation enthaltene Informationen können ohne vorherige Ankündigung geändert werden.Einige von der SAP AG und deren Vertriebspartnern vertriebene Softwareprodukte können Softwarekomponenten umfassen, die Eigentum anderer Softwarehersteller sind.SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, Duet, Business ByDesign, ByDesign, PartnerEdge und andere in diesem Dokument erwähnte SAP-Produkte und Servicessowie die dazugehörigen Logos sind Marken oder eingetragene Marken der SAP AG in Deutschland und in mehreren anderen Ländern weltweit. Alle anderen in diesem Dokument erwähntenNamen von Produkten und Services sowie die damit verbundenen Firmenlogos sind Marken der jeweiligen Unternehmen. Die Angaben im Text sind unverbindlich und dienen lediglich zuInformationszwecken. Produkte können länderspezifische Unterschiede aufweisen.
Die in diesem Dokument enthaltenen Informationen sind Eigentum von SAP. Dieses Dokument ist eine Vorabversion und unterliegt nicht Ihrer Lizenzvereinbarung oder einer anderenVereinbarung mit SAP. Dieses Dokument enthält nur vorgesehene Strategien, Entwicklungen und Funktionen des SAP®-Produkts und ist für SAP nicht bindend, einen bestimmtenGeschäftsweg, eine Produktstrategie bzw. -entwicklung einzuschlagen. SAP übernimmt keine Verantwortung für Fehler oder Auslassungen in diesen Materialien. SAP garantiert nicht dieRichtigkeit oder Vollständigkeit der Informationen, Texte, Grafiken, Links oder anderer in diesen Materialien enthaltenen Elemente. Diese Publikation wird ohne jegliche Gewähr, wederausdrücklich noch stillschweigend, bereitgestellt. Dies gilt u. a., aber nicht ausschließlich, hinsichtlich der Gewährleistung der Marktgängigkeit und der Eignung für einen bestimmten Zwecksowie für die Gewährleistung der Nichtverletzung geltenden Rechts.
SAP übernimmt keine Haftung für Schäden jeglicher Art, einschließlich und ohne Einschränkung für direkte, spezielle, indirekte oder Folgeschäden im Zusammenhang mit der Verwendungdieser Unterlagen. Diese Einschränkung gilt nicht bei Vorsatz oder grober Fahrlässigkeit.Die gesetzliche Haftung bei Personenschäden oder die Produkthaftung bleibt unberührt. Die Informationen, auf die Sie möglicherweise über die in diesem Material enthaltenen Hotlinkszugreifen, unterliegen nicht dem Einfluss von SAP, und SAP unterstützt nicht die Nutzung von Internetseiten Dritter durch Sie und gibt keinerlei Gewährleistungen oder Zusagen überInternetseiten Dritter ab.
Alle Rechte vorbehalten.